summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py24
1 files changed, 12 insertions, 12 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index c5af61434..3da6b5149 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -10,17 +10,17 @@ from numpy.testing import (
# Test data
-_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
- [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
- [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
- [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
+_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
+ [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
+ [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
+ [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
# Rows of _ndat with nans removed
-_rdat = [np.array([ 0.6244, 0.2692, 0.0116, 0.1170]),
- np.array([ 0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
- np.array([ 0.1042, -0.5954]),
- np.array([ 0.1610, 0.1859, 0.3146])]
+_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
+ np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
+ np.array([0.1042, -0.5954]),
+ np.array([0.1610, 0.1859, 0.3146])]
class TestNanFunctions_MinMax(TestCase):
@@ -205,7 +205,7 @@ class TestNanFunctions_IntTypes(TestCase):
int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)
- mat = np.array([127, 39, 93, 87, 46])
+ mat = np.array([127, 39, 93, 87, 46])
def integer_arrays(self):
for dtype in self.int_types:
@@ -383,13 +383,13 @@ class TestNanFunctions_MeanVarStd(TestCase):
def test_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object]:
- assert_raises( TypeError, f, _ndat, axis=1, dtype=np.int)
+ assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int)
def test_out_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object]:
out = np.empty(_ndat.shape[0], dtype=dtype)
- assert_raises( TypeError, f, _ndat, axis=1, out=out)
+ assert_raises(TypeError, f, _ndat, axis=1, out=out)
def test_keepdims(self):
mat = np.eye(3)
@@ -587,7 +587,7 @@ class TestNanFunctions_Median(TestCase):
# Randomly set some elements to NaN:
w = np.random.randint(0, d.size, size=d.size // 5)
d.ravel()[w] = np.nan
- d[:,0] = 1. # ensure at least one good value
+ d[:,0] = 1. # ensure at least one good value
# use normal median without nans to compare
tgt = []
for x in d: