diff options
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 240 |
1 files changed, 240 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py new file mode 100644 index 000000000..1d11862e9 --- /dev/null +++ b/numpy/lib/tests/test_nanfunctions.py @@ -0,0 +1,240 @@ +from __future__ import division, absolute_import, print_function + +import warnings + +import numpy as np +from numpy.testing import ( + run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal + ) +from numpy.lib import ( + nansum, nanmax, nanargmax, nanargmin, nanmin, nanmean, nanvar, nanstd + ) + +class TestNaNFuncts(TestCase): + def setUp(self): + self.A = np.array([[[ np.nan, 0.01319214, 0.01620964], + [ 0.11704017, np.nan, 0.75157887], + [ 0.28333658, 0.1630199 , np.nan ]], + [[ 0.59541557, np.nan, 0.37910852], + [ np.nan, 0.87964135, np.nan ], + [ 0.70543747, np.nan, 0.34306596]], + [[ 0.72687499, 0.91084584, np.nan ], + [ 0.84386844, 0.38944762, 0.23913896], + [ np.nan, 0.37068164, 0.33850425]]]) + + def test_nansum(self): + assert_almost_equal(nansum(self.A), 8.0664079100000006) + assert_almost_equal(nansum(self.A, 0), + np.array([[ 1.32229056, 0.92403798, 0.39531816], + [ 0.96090861, 1.26908897, 0.99071783], + [ 0.98877405, 0.53370154, 0.68157021]])) + assert_almost_equal(nansum(self.A, 1), + np.array([[ 0.40037675, 0.17621204, 0.76778851], + [ 1.30085304, 0.87964135, 0.72217448], + [ 1.57074343, 1.6709751 , 0.57764321]])) + assert_almost_equal(nansum(self.A, 2), + np.array([[ 0.02940178, 0.86861904, 0.44635648], + [ 0.97452409, 0.87964135, 1.04850343], + [ 1.63772083, 1.47245502, 0.70918589]])) + + def test_nanmin(self): + assert_almost_equal(nanmin(self.A), 0.01319214) + assert_almost_equal(nanmin(self.A, 0), + np.array([[ 0.59541557, 0.01319214, 0.01620964], + [ 0.11704017, 0.38944762, 0.23913896], + [ 0.28333658, 0.1630199 , 0.33850425]])) + assert_almost_equal(nanmin(self.A, 1), + np.array([[ 0.11704017, 0.01319214, 0.01620964], + [ 0.59541557, 0.87964135, 0.34306596], + [ 0.72687499, 0.37068164, 0.23913896]])) + assert_almost_equal(nanmin(self.A, 2), + np.array([[ 0.01319214, 0.11704017, 0.1630199 ], + [ 0.37910852, 0.87964135, 0.34306596], + [ 0.72687499, 0.23913896, 0.33850425]])) + assert_(np.isnan(nanmin([np.nan, np.nan]))) + + def test_nanargmin(self): + assert_almost_equal(nanargmin(self.A), 1) + assert_almost_equal(nanargmin(self.A, 0), + np.array([[1, 0, 0], + [0, 2, 2], + [0, 0, 2]])) + assert_almost_equal(nanargmin(self.A, 1), + np.array([[1, 0, 0], + [0, 1, 2], + [0, 2, 1]])) + assert_almost_equal(nanargmin(self.A, 2), + np.array([[1, 0, 1], + [2, 1, 2], + [0, 2, 2]])) + + def test_nanmax(self): + assert_almost_equal(nanmax(self.A), 0.91084584000000002) + assert_almost_equal(nanmax(self.A, 0), + np.array([[ 0.72687499, 0.91084584, 0.37910852], + [ 0.84386844, 0.87964135, 0.75157887], + [ 0.70543747, 0.37068164, 0.34306596]])) + assert_almost_equal(nanmax(self.A, 1), + np.array([[ 0.28333658, 0.1630199 , 0.75157887], + [ 0.70543747, 0.87964135, 0.37910852], + [ 0.84386844, 0.91084584, 0.33850425]])) + assert_almost_equal(nanmax(self.A, 2), + np.array([[ 0.01620964, 0.75157887, 0.28333658], + [ 0.59541557, 0.87964135, 0.70543747], + [ 0.91084584, 0.84386844, 0.37068164]])) + assert_(np.isnan(nanmax([np.nan, np.nan]))) + + def test_nanmin_allnan_on_axis(self): + assert_equal(np.isnan(nanmin([[np.nan] * 2] * 3, axis=1)), + [True, True, True]) + + def test_nanmin_masked(self): + a = np.ma.fix_invalid([[2, 1, 3, np.nan], [5, 2, 3, np.nan]]) + ctrl_mask = a._mask.copy() + test = np.nanmin(a, axis=1) + assert_equal(test, [1, 2]) + assert_equal(a._mask, ctrl_mask) + assert_equal(np.isinf(a), np.zeros((2, 4), dtype=bool)) + + def test_nanmean(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_(nanmean(A) == (10.0 / 3)) + assert_(all(nanmean(A,0) == np.array([1, 4, 5]))) + assert_(all(nanmean(A,1) == np.array([1, 4.5]))) + + def test_nanstd(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_almost_equal(nanstd(A), 1.699673171197595) + assert_almost_equal(nanstd(A,0), np.array([0.0, 0.0, 0.0])) + assert_almost_equal(nanstd(A,1), np.array([0.0, 0.5])) + + def test_nanvar(self): + A = [[1, np.nan, np.nan], [np.nan, 4, 5]] + assert_almost_equal(nanvar(A), 2.88888888889) + assert_almost_equal(nanvar(A,0), np.array([0.0, 0.0, 0.0])) + assert_almost_equal(nanvar(A,1), np.array([0.0, 0.25])) + + +class TestNaNMean(TestCase): + def setUp(self): + self.A = np.array([1, np.nan, -1, np.nan, np.nan, 1, -1]) + self.B = np.array([np.nan, np.nan, np.nan, np.nan]) + self.real_mean = 0 + + def test_basic(self): + assert_almost_equal(nanmean(self.A),self.real_mean) + + def test_mutation(self): + # Because of the "messing around" we do to replace NaNs with zeros + # this is meant to ensure we don't actually replace the NaNs in the + # actual _array. + a_copy = self.A.copy() + b_copy = self.B.copy() + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + a_ret = nanmean(self.A) + assert_equal(self.A, a_copy) + b_ret = nanmean(self.B) + assert_equal(self.B, b_copy) + + def test_allnans(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanmean(self.B))) + assert_(w[0].category is RuntimeWarning) + + def test_empty(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanmean(np.array([])))) + assert_(w[0].category is RuntimeWarning) + + +class TestNaNStdVar(TestCase): + def setUp(self): + self.A = np.array([np.nan, 1, -1, np.nan, 1, np.nan, -1]) + self.B = np.array([np.nan, np.nan, np.nan, np.nan]) + self.real_var = 1 + + def test_basic(self): + assert_almost_equal(nanvar(self.A),self.real_var) + assert_almost_equal(nanstd(self.A)**2,self.real_var) + + def test_mutation(self): + # Because of the "messing around" we do to replace NaNs with zeros + # this is meant to ensure we don't actually replace the NaNs in the + # actual array. + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + a_copy = self.A.copy() + b_copy = self.B.copy() + a_ret = nanvar(self.A) + assert_equal(self.A, a_copy) + b_ret = nanstd(self.B) + assert_equal(self.B, b_copy) + + def test_ddof1(self): + mask = ~np.isnan(self.A) + assert_almost_equal(nanvar(self.A,ddof=1), + self.real_var*sum(mask)/float(sum(mask) - 1)) + assert_almost_equal(nanstd(self.A,ddof=1)**2, + self.real_var*sum(mask)/float(sum(mask) - 1)) + + def test_ddof2(self): + mask = ~np.isnan(self.A) + assert_almost_equal(nanvar(self.A,ddof=2), + self.real_var*sum(mask)/float(sum(mask) - 2)) + assert_almost_equal(nanstd(self.A,ddof=2)**2, + self.real_var*sum(mask)/float(sum(mask) - 2)) + + def test_allnans(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanvar(self.B))) + assert_(np.isnan(nanstd(self.B))) + assert_(w[0].category is RuntimeWarning) + + def test_empty(self): + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(nanvar(np.array([])))) + assert_(np.isnan(nanstd(np.array([])))) + assert_(w[0].category is RuntimeWarning) + + +class TestNanFunctsIntTypes(TestCase): + + int_types = ( + np.int8, np.int16, np.int32, np.int64, np.uint8, + np.uint16, np.uint32, np.uint64) + + def setUp(self, *args, **kwargs): + self.A = np.array([127, 39, 93, 87, 46]) + + def integer_arrays(self): + for dtype in self.int_types: + yield self.A.astype(dtype) + + def test_nanmin(self): + min_value = min(self.A) + for A in self.integer_arrays(): + assert_equal(nanmin(A), min_value) + + def test_nanmax(self): + max_value = max(self.A) + for A in self.integer_arrays(): + assert_equal(nanmax(A), max_value) + + def test_nanargmin(self): + min_arg = np.argmin(self.A) + for A in self.integer_arrays(): + assert_equal(nanargmin(A), min_arg) + + def test_nanargmax(self): + max_arg = np.argmax(self.A) + for A in self.integer_arrays(): + assert_equal(nanargmax(A), max_arg) + + +if __name__ == "__main__": + run_module_suite() |