diff options
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 137 |
1 files changed, 111 insertions, 26 deletions
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index e64634b69..d91d36282 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -195,7 +195,8 @@ class TestSetOps: assert_equal(actual, expected) assert actual.dtype == expected.dtype - def test_isin(self): + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin(self, kind): # the tests for in1d cover most of isin's behavior # if in1d is removed, would need to change those tests to test # isin instead. @@ -205,7 +206,7 @@ class TestSetOps: isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) def assert_isin_equal(a, b): - x = isin(a, b) + x = isin(a, b, kind=kind) y = isin_slow(a, b) assert_array_equal(x, y) @@ -231,12 +232,14 @@ class TestSetOps: assert_isin_equal(5, 6) # empty array-like: - x = [] - assert_isin_equal(x, b) - assert_isin_equal(a, x) - assert_isin_equal(x, x) - - def test_in1d(self): + if kind in {None, "sort"}: + x = [] + assert_isin_equal(x, b) + assert_isin_equal(a, x) + assert_isin_equal(x, x) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_in1d(self, kind): # we use two different sizes for the b array here to test the # two different paths in in1d(). for mult in (1, 10): @@ -244,57 +247,58 @@ class TestSetOps: a = [5, 7, 1, 2] b = [2, 4, 3, 1, 5] * mult ec = np.array([True, False, True, True]) - c = in1d(a, b, assume_unique=True) + c = in1d(a, b, assume_unique=True, kind=kind) assert_array_equal(c, ec) a[0] = 8 ec = np.array([False, False, True, True]) - c = in1d(a, b, assume_unique=True) + c = in1d(a, b, assume_unique=True, kind=kind) assert_array_equal(c, ec) a[0], a[3] = 4, 8 ec = np.array([True, False, True, False]) - c = in1d(a, b, assume_unique=True) + c = in1d(a, b, assume_unique=True, kind=kind) assert_array_equal(c, ec) a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) b = [2, 3, 4] * mult ec = [False, True, False, True, True, True, True, True, True, False, True, False, False, False] - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) b = b + [5, 5, 4] * mult ec = [True, True, True, True, True, True, True, True, True, True, True, False, True, True] - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5] * mult) ec = np.array([True, False, True, True]) - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) a = np.array([5, 7, 1, 1, 2]) b = np.array([2, 4, 3, 3, 1, 5] * mult) ec = np.array([True, False, True, True, True]) - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) a = np.array([5, 5]) b = np.array([2, 2] * mult) ec = np.array([False, False]) - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) a = np.array([5]) b = np.array([2]) ec = np.array([False]) - c = in1d(a, b) + c = in1d(a, b, kind=kind) assert_array_equal(c, ec) - assert_array_equal(in1d([], []), []) + if kind in {None, "sort"}: + assert_array_equal(in1d([], [], kind=kind), []) def test_in1d_char_array(self): a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) @@ -305,16 +309,29 @@ class TestSetOps: assert_array_equal(c, ec) - def test_in1d_invert(self): + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_in1d_invert(self, kind): "Test in1d's invert parameter" # We use two different sizes for the b array here to test the # two different paths in in1d(). for mult in (1, 10): a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) b = [2, 3, 4] * mult - assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) - - def test_in1d_ravel(self): + assert_array_equal(np.invert(in1d(a, b, kind=kind)), + in1d(a, b, invert=True, kind=kind)) + + # float: + if kind in {None, "sort"}: + for mult in (1, 10): + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], + dtype=np.float32) + b = [2, 3, 4] * mult + b = np.array(b, dtype=np.float32) + assert_array_equal(np.invert(in1d(a, b, kind=kind)), + in1d(a, b, invert=True, kind=kind)) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_in1d_ravel(self, kind): # Test that in1d ravels its input arrays. This is not documented # behavior however. The test is to ensure consistentency. a = np.arange(6).reshape(2, 3) @@ -322,10 +339,44 @@ class TestSetOps: long_b = np.arange(3, 63).reshape(30, 2) ec = np.array([False, False, False, True, True, True]) - assert_array_equal(in1d(a, b, assume_unique=True), ec) - assert_array_equal(in1d(a, b, assume_unique=False), ec) - assert_array_equal(in1d(a, long_b, assume_unique=True), ec) - assert_array_equal(in1d(a, long_b, assume_unique=False), ec) + assert_array_equal(in1d(a, b, assume_unique=True, kind=kind), + ec) + assert_array_equal(in1d(a, b, assume_unique=False, + kind=kind), + ec) + assert_array_equal(in1d(a, long_b, assume_unique=True, + kind=kind), + ec) + assert_array_equal(in1d(a, long_b, assume_unique=False, + kind=kind), + ec) + + def test_in1d_hit_alternate_algorithm(self): + """Hit the standard isin code with integers""" + # Need extreme range to hit standard code + # This hits it without the use of kind='table' + a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64) + b = np.array([2, 3, 4, 1e9], dtype=np.int64) + expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool) + assert_array_equal(expected, in1d(a, b)) + assert_array_equal(np.invert(expected), in1d(a, b, invert=True)) + + a = np.array([5, 7, 1, 2], dtype=np.int64) + b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64) + ec = np.array([True, False, True, True]) + c = in1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_in1d_boolean(self, kind): + """Test that in1d works for boolean input""" + a = np.array([True, False]) + b = np.array([False, False, False]) + expected = np.array([False, True]) + assert_array_equal(expected, + in1d(a, b, kind=kind)) + assert_array_equal(np.invert(expected), + in1d(a, b, invert=True, kind=kind)) def test_in1d_first_array_is_object(self): ar1 = [None] @@ -391,6 +442,40 @@ class TestSetOps: result = np.in1d(ar1, ar2, invert=True) assert_array_equal(result, np.invert(expected)) + def test_in1d_errors(self): + """Test that in1d raises expected errors.""" + + # Error 1: `kind` is not one of 'sort' 'table' or None. + ar1 = np.array([1, 2, 3, 4, 5]) + ar2 = np.array([2, 4, 6, 8, 10]) + assert_raises(ValueError, in1d, ar1, ar2, kind='quicksort') + + # Error 2: `kind="table"` does not work for non-integral arrays. + obj_ar1 = np.array([1, 'a', 3, 'b', 5], dtype=object) + obj_ar2 = np.array([1, 'a', 3, 'b', 5], dtype=object) + assert_raises(ValueError, in1d, obj_ar1, obj_ar2, kind='table') + + for dtype in [np.int32, np.int64]: + ar1 = np.array([-1, 2, 3, 4, 5], dtype=dtype) + # The range of this array will overflow: + overflow_ar2 = np.array([-1, np.iinfo(dtype).max], dtype=dtype) + + # Error 3: `kind="table"` will trigger a runtime error + # if there is an integer overflow expected when computing the + # range of ar2 + assert_raises( + RuntimeError, + in1d, ar1, overflow_ar2, kind='table' + ) + + # Non-error: `kind=None` will *not* trigger a runtime error + # if there is an integer overflow, it will switch to + # the `sort` algorithm. + result = np.in1d(ar1, overflow_ar2, kind=None) + assert_array_equal(result, [True] + [False] * 4) + result = np.in1d(ar1, overflow_ar2, kind='sort') + assert_array_equal(result, [True] + [False] * 4) + def test_union1d(self): a = np.array([5, 4, 7, 1, 2]) b = np.array([2, 4, 3, 3, 2, 1, 5]) |