summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/function_base.py21
-rw-r--r--numpy/lib/tests/test_function_base.py23
2 files changed, 36 insertions, 8 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 5c1654fc3..efa51173a 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -898,15 +898,19 @@ def average(a, axis=None, weights=None, returned=False):
TypeError: Axis must be specified when shapes of a and weights differ.
"""
- if not isinstance(a, np.matrix):
- a = np.asarray(a)
+ a = np.asanyarray(a)
if weights is None:
avg = a.mean(axis)
scl = avg.dtype.type(a.size/avg.size)
else:
- a = a + 0.0
- wgt = np.asarray(weights)
+ wgt = np.asanyarray(weights)
+
+ if issubclass(a.dtype.type, (np.integer, np.bool_)):
+ result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
+ else:
+ result_dtype = np.result_type(a.dtype, wgt.dtype)
+
# Sanity checks
if a.shape != wgt.shape:
if axis is None:
@@ -921,17 +925,18 @@ def average(a, axis=None, weights=None, returned=False):
"Length of weights not compatible with specified axis.")
# setup wgt to broadcast along axis
- wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis)
+ wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape)
+ wgt = wgt.swapaxes(-1, axis)
- scl = wgt.sum(axis=axis, dtype=np.result_type(a.dtype, wgt.dtype))
+ scl = wgt.sum(axis=axis, dtype=result_dtype)
if (scl == 0.0).any():
raise ZeroDivisionError(
"Weights sum to zero, can't be normalized")
- avg = np.multiply(a, wgt).sum(axis)/scl
+ avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl
if returned:
- scl = np.multiply(avg, 0) + scl
+ scl = np.broadcast_to(scl, avg.shape)
return avg, scl
else:
return avg
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 235b7f2fe..943544dd5 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -167,6 +167,29 @@ class TestAverage(TestCase):
avg, scl = average(y, weights=w2, axis=1, returned=True)
assert_array_equal(scl, np.array([1., 6.]))
+ def test_subclasses(self):
+ class subclass(np.ndarray):
+ pass
+ a = np.array([[1,2],[3,4]]).view(subclass)
+ w = np.array([[1,2],[3,4]]).view(subclass)
+
+ assert_equal(type(np.average(a, weights=w)), subclass)
+
+ # also test matrices
+ a = np.matrix([[1,2],[3,4]])
+ w = np.matrix([[1,2],[3,4]])
+
+ r = np.average(a, axis=0, weights=w)
+ assert_equal(type(r), np.matrix)
+ assert_equal(r, [[2.5, 10.0/3]])
+
+ def test_upcasting(self):
+ types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
+ ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')]
+ for at, wt, rt in types:
+ a = np.array([[1,2],[3,4]], dtype=at)
+ w = np.array([[1,2],[3,4]], dtype=wt)
+ assert_equal(np.average(a, weights=w).dtype, np.dtype(rt))
class TestSelect(TestCase):
choices = [np.array([1, 2, 3]),