summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/arraysetops.py12
-rw-r--r--numpy/lib/tests/test_arraysetops.py2
2 files changed, 7 insertions, 7 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 90b5f0419..6d7d1c397 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -608,9 +608,9 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, method='auto'):
if ar2.dtype == object:
ar2 = ar2.reshape(-1, 1)
# Convert booleans to uint8 so we can use the fast integer algorithm
- if ar1.dtype == np.bool_:
+ if ar1.dtype == bool:
ar1 = ar1.view(np.uint8)
- if ar2.dtype == np.bool_:
+ if ar2.dtype == bool:
ar2 = ar2.view(np.uint8)
# Check if we can use a fast integer algorithm:
@@ -647,16 +647,16 @@ def in1d(ar1, ar2, assume_unique=False, invert=False, method='auto'):
if optimal_parameters or method == 'dictionary':
if invert:
- outgoing_array = np.ones_like(ar1, dtype=np.bool_)
+ outgoing_array = np.ones_like(ar1, dtype=bool)
else:
- outgoing_array = np.zeros_like(ar1, dtype=np.bool_)
+ outgoing_array = np.zeros_like(ar1, dtype=bool)
# Make elements 1 where the integer exists in ar2
if invert:
- isin_helper_ar = np.ones(ar2_range + 1, dtype=np.bool_)
+ isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
isin_helper_ar[ar2 - ar2_min] = 0
else:
- isin_helper_ar = np.zeros(ar2_range + 1, dtype=np.bool_)
+ isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
isin_helper_ar[ar2 - ar2_min] = 1
# Mask out elements we know won't work
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index e4f37556a..d54ca1673 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -454,7 +454,7 @@ class TestSetOps:
# This hits it without the use of method='dictionary'
a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64)
b = np.array([2, 3, 4, 1e9], dtype=np.int64)
- expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=np.bool)
+ expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool)
assert_array_equal(expected, in1d(a, b))
assert_array_equal(np.invert(expected), in1d(a, b, invert=True))