summaryrefslogtreecommitdiff
path: root/numpy/polynomial/chebyshev.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/chebyshev.py')
-rw-r--r--numpy/polynomial/chebyshev.py16
1 files changed, 7 insertions, 9 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index 6745c9371..210000ec4 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -1149,9 +1149,6 @@ def chebval(x, c, tensor=True):
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
- Examples
- --------
-
"""
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
@@ -1585,10 +1582,11 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
.. versionadded:: 1.5.0
@@ -1952,8 +1950,8 @@ def chebpts1(npts):
if _npts < 1:
raise ValueError("npts must be >= 1")
- x = np.linspace(-np.pi, 0, _npts, endpoint=False) + np.pi/(2*_npts)
- return np.cos(x)
+ x = 0.5 * np.pi / _npts * np.arange(-_npts+1, _npts+1, 2)
+ return np.sin(x)
def chebpts2(npts):