diff options
Diffstat (limited to 'numpy/typing')
-rw-r--r-- | numpy/typing/__init__.py | 3 | ||||
-rw-r--r-- | numpy/typing/_array_like.py | 27 | ||||
-rw-r--r-- | numpy/typing/_dtype_like.py | 46 | ||||
-rw-r--r-- | numpy/typing/_shape.py | 6 |
4 files changed, 82 insertions, 0 deletions
diff --git a/numpy/typing/__init__.py b/numpy/typing/__init__.py new file mode 100644 index 000000000..94f76a91f --- /dev/null +++ b/numpy/typing/__init__.py @@ -0,0 +1,3 @@ +from ._array_like import _SupportsArray, ArrayLike +from ._shape import _Shape, _ShapeLike +from ._dtype_like import DtypeLike diff --git a/numpy/typing/_array_like.py b/numpy/typing/_array_like.py new file mode 100644 index 000000000..54a612fb4 --- /dev/null +++ b/numpy/typing/_array_like.py @@ -0,0 +1,27 @@ +import sys +from typing import Any, overload, Sequence, Tuple, Union + +from numpy import ndarray +from ._dtype_like import DtypeLike + +if sys.version_info >= (3, 8): + from typing import Protocol + HAVE_PROTOCOL = True +else: + try: + from typing_extensions import Protocol + except ImportError: + HAVE_PROTOCOL = False + else: + HAVE_PROTOCOL = True + +if HAVE_PROTOCOL: + class _SupportsArray(Protocol): + @overload + def __array__(self, __dtype: DtypeLike = ...) -> ndarray: ... + @overload + def __array__(self, dtype: DtypeLike = ...) -> ndarray: ... +else: + _SupportsArray = Any + +ArrayLike = Union[bool, int, float, complex, _SupportsArray, Sequence] diff --git a/numpy/typing/_dtype_like.py b/numpy/typing/_dtype_like.py new file mode 100644 index 000000000..b9df0af04 --- /dev/null +++ b/numpy/typing/_dtype_like.py @@ -0,0 +1,46 @@ +from typing import Any, Dict, List, Sequence, Tuple, Union + +from numpy import dtype +from ._shape import _ShapeLike + +_DtypeLikeNested = Any # TODO: wait for support for recursive types + +# Anything that can be coerced into numpy.dtype. +# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html +DtypeLike = Union[ + dtype, + # default data type (float64) + None, + # array-scalar types and generic types + type, # TODO: enumerate these when we add type hints for numpy scalars + # TODO: add a protocol for anything with a dtype attribute + # character codes, type strings or comma-separated fields, e.g., 'float64' + str, + # (flexible_dtype, itemsize) + Tuple[_DtypeLikeNested, int], + # (fixed_dtype, shape) + Tuple[_DtypeLikeNested, _ShapeLike], + # [(field_name, field_dtype, field_shape), ...] + # + # The type here is quite broad because NumPy accepts quite a wide + # range of inputs inside the list; see the tests for some + # examples. + List[Any], + # {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., + # 'itemsize': ...} + # TODO: use TypedDict when/if it's officially supported + Dict[ + str, + Union[ + Sequence[str], # names + Sequence[_DtypeLikeNested], # formats + Sequence[int], # offsets + Sequence[Union[bytes, str, None]], # titles + int, # itemsize + ], + ], + # {'field1': ..., 'field2': ..., ...} + Dict[str, Tuple[_DtypeLikeNested, int]], + # (base_dtype, new_dtype) + Tuple[_DtypeLikeNested, _DtypeLikeNested], +] diff --git a/numpy/typing/_shape.py b/numpy/typing/_shape.py new file mode 100644 index 000000000..4629046ea --- /dev/null +++ b/numpy/typing/_shape.py @@ -0,0 +1,6 @@ +from typing import Sequence, Tuple, Union + +_Shape = Tuple[int, ...] + +# Anything that can be coerced to a shape tuple +_ShapeLike = Union[int, Sequence[int]] |