summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/core/ma.py13
-rw-r--r--numpy/f2py/tests/array_from_pyobj/tests/test_array_from_pyobj.py2
-rw-r--r--numpy/fft/fftpack.py2
-rw-r--r--numpy/lib/arraysetops.py2
-rw-r--r--numpy/lib/function_base.py4
-rw-r--r--numpy/lib/shape_base.py4
-rw-r--r--numpy/lib/utils.py2
-rw-r--r--numpy/linalg/linalg.py2
-rw-r--r--numpy/numarray/functions.py4
-rw-r--r--numpy/oldnumeric/random_array.py2
10 files changed, 23 insertions, 14 deletions
diff --git a/numpy/core/ma.py b/numpy/core/ma.py
index 67335019f..35f8ee120 100644
--- a/numpy/core/ma.py
+++ b/numpy/core/ma.py
@@ -1604,8 +1604,17 @@ def masked_array (a, mask=nomask, fill_value=None):
"""
return array(a, mask=mask, copy=0, fill_value=fill_value)
-sum = add.reduce
-product = multiply.reduce
+def sum (target, axis=None, dtype=None):
+ if axis is None:
+ target = ravel(target)
+ axis = 0
+ return add.reduce(target, axis, dtype)
+
+def product (target, axis=None, dtype=None):
+ if axis is None:
+ target = ravel(target)
+ axis = 0
+ return multiply.reduce(target, axis, dtype)
def average (a, axis=None, weights=None, returned = 0):
"""average(a, axis=None, weights=None)
diff --git a/numpy/f2py/tests/array_from_pyobj/tests/test_array_from_pyobj.py b/numpy/f2py/tests/array_from_pyobj/tests/test_array_from_pyobj.py
index ab8b62f4b..e1d4a47a6 100644
--- a/numpy/f2py/tests/array_from_pyobj/tests/test_array_from_pyobj.py
+++ b/numpy/f2py/tests/array_from_pyobj/tests/test_array_from_pyobj.py
@@ -222,7 +222,7 @@ class Array:
if arr1.shape != arr2.shape:
return False
s = arr1==arr2
- return alltrue(s.flatten(),axis=0)
+ return alltrue(s.flatten())
def __str__(self):
return str(self.arr)
diff --git a/numpy/fft/fftpack.py b/numpy/fft/fftpack.py
index ffa6ac18d..1cb24f2b7 100644
--- a/numpy/fft/fftpack.py
+++ b/numpy/fft/fftpack.py
@@ -200,7 +200,7 @@ def _cook_nd_args(a, s=None, axes=None, invreal=0):
if axes == None:
s = list(a.shape)
else:
- s = take(a.shape, axes,axis=0)
+ s = take(a.shape, axes)
else:
shapeless = 0
s = list(s)
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index b98517f3d..7bd666029 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -179,7 +179,7 @@ def test_unique1d_speed( plot_results = False ):
dt1s.append( dt1 )
dt2s.append( dt2 )
- assert numpy.alltrue( b == c)
+ assert numpy.alltrue( b == c )
print nItems
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index a202f67cb..a14a3dc9f 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -540,9 +540,9 @@ def extract(condition, arr):
"""Return the elements of ravel(arr) where ravel(condition) is True
(in 1D).
- Equivalent to compress(ravel(condition), ravel(arr),0).
+ Equivalent to compress(ravel(condition), ravel(arr)).
"""
- return _nx.take(ravel(arr), nonzero(ravel(condition))[0],axis=0)
+ return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
def place(arr, mask, vals):
"""Similar to putmask arr[mask] = vals but the 1D array vals has the
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index 03db2570a..d44215446 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -32,7 +32,7 @@ def apply_along_axis(func1d,axis,arr,*args):
if isscalar(res):
outarr = zeros(outshape,asarray(res).dtype)
outarr[ind] = res
- Ntot = product(outshape,axis=0)
+ Ntot = product(outshape)
k = 1
while k < Ntot:
# increment the index
@@ -48,7 +48,7 @@ def apply_along_axis(func1d,axis,arr,*args):
k += 1
return outarr
else:
- Ntot = product(outshape,axis=0)
+ Ntot = product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = len(res)
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
index deca8fa06..db7c00db6 100644
--- a/numpy/lib/utils.py
+++ b/numpy/lib/utils.py
@@ -126,7 +126,7 @@ def who(vardict=None):
namestr = name
original=1
shapestr = " x ".join(map(str, var.shape))
- bytestr = str(var.itemsize*product(var.shape,axis=0))
+ bytestr = str(var.itemsize*product(var.shape))
sta.append([namestr, shapestr, bytestr, var.dtype.name,
original])
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index e0b3268a6..e48e52fd3 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -661,7 +661,7 @@ Singular values less than s[0]*rcond are treated as zero.
if one_eq:
x = array(ravel(bstar)[:n], dtype=result_t, copy=True)
if results['rank']==n and m>n:
- resids = array([sum((ravel(bstar)[n:])**2,axis=0)], dtype=result_t)
+ resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_t)
else:
x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True)
if results['rank']==n and m>n:
diff --git a/numpy/numarray/functions.py b/numpy/numarray/functions.py
index 95738d220..55922e9fe 100644
--- a/numpy/numarray/functions.py
+++ b/numpy/numarray/functions.py
@@ -206,7 +206,7 @@ def fromfile(infile, type=None, shape=None, sizing=STRICT,
##file whose size may be determined before allocation, should be
##quick -- only one allocation will be needed.
- recsize = dtype.itemsize * N.product([i for i in shape if i != -1],axis=0)
+ recsize = dtype.itemsize * N.product([i for i in shape if i != -1])
blocksize = max(_BLOCKSIZE/recsize, 1)*recsize
##try to estimate file size
@@ -268,7 +268,7 @@ def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None):
if shape is None:
count = -1
else:
- count = N.product(shape,axis=0)*dtype.itemsize
+ count = N.product(shape)*dtype.itemsize
res = N.fromstring(datastring, count=count)
if shape is not None:
res.shape = shape
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py
index 550af720c..e8d386ce4 100644
--- a/numpy/oldnumeric/random_array.py
+++ b/numpy/oldnumeric/random_array.py
@@ -166,7 +166,7 @@ def multinomial(trials, probs, shape=[]):
trials is the number of trials in each multinomial distribution.
probs is a one dimensional array. There are len(prob)+1 events.
prob[i] is the probability of the i-th event, 0<=i<len(prob).
- The probability of event len(prob) is 1.-Numeric.sum(prob,axis=0).
+ The probability of event len(prob) is 1.-Numeric.sum(prob).
The first form returns a single 1-D array containing one multinomially
distributed vector.