summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/core/_add_newdocs.py2
-rw-r--r--numpy/core/_methods.py75
-rw-r--r--numpy/core/code_generators/generate_umath.py11
-rw-r--r--numpy/core/code_generators/ufunc_docstrings.py50
-rw-r--r--numpy/core/fromnumeric.py14
-rw-r--r--numpy/core/setup.py2
-rw-r--r--numpy/core/src/common/lowlevel_strided_loops.h3
-rw-r--r--numpy/core/src/multiarray/arraytypes.c.src172
-rw-r--r--numpy/core/src/multiarray/calculation.c21
-rw-r--r--numpy/core/src/multiarray/methods.c16
-rw-r--r--numpy/core/src/multiarray/number.c2
-rw-r--r--numpy/core/src/multiarray/number.h1
-rw-r--r--numpy/core/src/umath/clip.c.src119
-rw-r--r--numpy/core/src/umath/clip.h.src18
-rw-r--r--numpy/core/src/umath/fast_loop_macros.h8
-rw-r--r--numpy/core/src/umath/funcs.inc.src11
-rw-r--r--numpy/core/src/umath/loops.c.src22
-rw-r--r--numpy/core/src/umath/loops.h.src3
-rw-r--r--numpy/core/src/umath/simd.inc.src2
-rw-r--r--numpy/core/tests/test_multiarray.py15
-rw-r--r--numpy/core/tests/test_numeric.py152
21 files changed, 501 insertions, 218 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index 3e9d05674..e5e7f6667 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -2771,7 +2771,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
"""
- a.clip(min=None, max=None, out=None)
+ a.clip(min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to ``[min, max]``.
One of max or min must be given.
diff --git a/numpy/core/_methods.py b/numpy/core/_methods.py
index 3ab64f7a1..ba6f7d111 100644
--- a/numpy/core/_methods.py
+++ b/numpy/core/_methods.py
@@ -11,6 +11,7 @@ from numpy.core import multiarray as mu
from numpy.core import umath as um
from numpy.core._asarray import asanyarray
from numpy.core import numerictypes as nt
+from numpy.core import _exceptions
from numpy._globals import _NoValue
# save those O(100) nanoseconds!
@@ -55,6 +56,80 @@ def _count_reduce_items(arr, axis):
items *= arr.shape[ax]
return items
+# Numpy 1.17.0, 2019-02-24
+# Various clip behavior deprecations, marked with _clip_dep as a prefix.
+
+def _clip_dep_is_scalar_nan(a):
+ # guarded to protect circular imports
+ from numpy.core.fromnumeric import ndim
+ if ndim(a) != 0:
+ return False
+ try:
+ return um.isnan(a)
+ except TypeError:
+ return False
+
+def _clip_dep_is_byte_swapped(a):
+ if isinstance(a, mu.ndarray):
+ return not a.dtype.isnative
+ return False
+
+def _clip_dep_invoke_with_casting(ufunc, *args, out=None, casting=None, **kwargs):
+ # normal path
+ if casting is not None:
+ return ufunc(*args, out=out, casting=casting, **kwargs)
+
+ # try to deal with broken casting rules
+ try:
+ return ufunc(*args, out=out, **kwargs)
+ except _exceptions._UFuncOutputCastingError as e:
+ # Numpy 1.17.0, 2019-02-24
+ warnings.warn(
+ "Converting the output of clip from {!r} to {!r} is deprecated. "
+ "Pass `casting=\"unsafe\"` explicitly to silence this warning, or "
+ "correct the type of the variables.".format(e.from_, e.to),
+ DeprecationWarning,
+ stacklevel=2
+ )
+ return ufunc(*args, out=out, casting="unsafe", **kwargs)
+
+def _clip(a, min=None, max=None, out=None, *, casting=None, **kwargs):
+ if min is None and max is None:
+ raise ValueError("One of max or min must be given")
+
+ # Numpy 1.17.0, 2019-02-24
+ # This deprecation probably incurs a substantial slowdown for small arrays,
+ # it will be good to get rid of it.
+ if not _clip_dep_is_byte_swapped(a) and not _clip_dep_is_byte_swapped(out):
+ using_deprecated_nan = False
+ if _clip_dep_is_scalar_nan(min):
+ min = -float('inf')
+ using_deprecated_nan = True
+ if _clip_dep_is_scalar_nan(max):
+ max = float('inf')
+ using_deprecated_nan = True
+ if using_deprecated_nan:
+ warnings.warn(
+ "Passing `np.nan` to mean no clipping in np.clip has always "
+ "been unreliable, and is now deprecated. "
+ "In future, this will always return nan, like it already does "
+ "when min or max are arrays that contain nan. "
+ "To skip a bound, pass either None or an np.inf of an "
+ "appropriate sign.",
+ DeprecationWarning,
+ stacklevel=2
+ )
+
+ if min is None:
+ return _clip_dep_invoke_with_casting(
+ um.minimum, a, max, out=out, casting=casting, **kwargs)
+ elif max is None:
+ return _clip_dep_invoke_with_casting(
+ um.maximum, a, min, out=out, casting=casting, **kwargs)
+ else:
+ return _clip_dep_invoke_with_casting(
+ um.clip, a, min, max, out=out, casting=casting, **kwargs)
+
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py
index 76360eb5a..c58690069 100644
--- a/numpy/core/code_generators/generate_umath.py
+++ b/numpy/core/code_generators/generate_umath.py
@@ -511,6 +511,13 @@ defdict = {
TD(noobj),
TD(O, f='npy_ObjectMin')
),
+'clip':
+ Ufunc(3, 1, ReorderableNone,
+ docstrings.get('numpy.core.umath.clip'),
+ 'PyUFunc_SimpleUniformOperationTypeResolver',
+ TD(noobj),
+ [TypeDescription('O', 'npy_ObjectClip', 'OOO', 'O')]
+ ),
'fmax':
Ufunc(2, 1, ReorderableNone,
docstrings.get('numpy.core.umath.fmax'),
@@ -963,6 +970,9 @@ arity_lookup = {
'O': 'OO_O',
'P': 'OO_O_method',
},
+ (3, 1): {
+ 'O': 'OOO_O',
+ }
}
#for each name
@@ -1139,6 +1149,7 @@ def make_code(funcdict, filename):
#include "ufunc_type_resolution.h"
#include "loops.h"
#include "matmul.h"
+ #include "clip.h"
%s
static int
diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py
index 8b1a5a3db..6a5def4f2 100644
--- a/numpy/core/code_generators/ufunc_docstrings.py
+++ b/numpy/core/code_generators/ufunc_docstrings.py
@@ -42,14 +42,20 @@ subst = {
def add_newdoc(place, name, doc):
doc = textwrap.dedent(doc).strip()
- if name[0] != '_' and name != 'matmul':
- # matmul is special, it does not use the OUT_SCALAR replacement strings
+ skip = (
+ # gufuncs do not use the OUT_SCALAR replacement strings
+ 'matmul',
+ # clip has 3 inputs, which is not handled by this
+ 'clip',
+ )
+ if name[0] != '_' and name not in skip:
if '\nx :' in doc:
assert '$OUT_SCALAR_1' in doc, "in {}".format(name)
elif '\nx2 :' in doc or '\nx1, x2 :' in doc:
assert '$OUT_SCALAR_2' in doc, "in {}".format(name)
else:
assert False, "Could not detect number of inputs in {}".format(name)
+
for k, v in subst.items():
doc = doc.replace('$' + k, v)
@@ -2535,6 +2541,46 @@ add_newdoc('numpy.core.umath', 'fmin',
""")
+add_newdoc('numpy.core.umath', 'clip',
+ """
+ Clip (limit) the values in an array.
+
+ Given an interval, values outside the interval are clipped to
+ the interval edges. For example, if an interval of ``[0, 1]``
+ is specified, values smaller than 0 become 0, and values larger
+ than 1 become 1.
+
+ Equivalent to but faster than ``np.minimum(np.maximum(a, a_min), a_max)``.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing elements to clip.
+ a_min : array_like
+ Minimum value.
+ a_max : array_like
+ Maximum value.
+ out : ndarray, optional
+ The results will be placed in this array. It may be the input
+ array for in-place clipping. `out` must be of the right shape
+ to hold the output. Its type is preserved.
+ $PARAMS
+
+ See Also
+ --------
+ numpy.clip :
+ Wrapper that makes the ``a_min`` and ``a_max`` arguments optional,
+ dispatching to one of `~numpy.core.umath.clip`,
+ `~numpy.core.umath.minimum`, and `~numpy.core.umath.maximum`.
+
+ Returns
+ -------
+ clipped_array : ndarray
+ An array with the elements of `a`, but where values
+ < `a_min` are replaced with `a_min`, and those > `a_max`
+ with `a_max`.
+ """)
+
add_newdoc('numpy.core.umath', 'matmul',
"""
Matrix product of two arrays.
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 7024ac237..58da8a54b 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -1961,12 +1961,12 @@ def compress(condition, a, axis=None, out=None):
return _wrapfunc(a, 'compress', condition, axis=axis, out=out)
-def _clip_dispatcher(a, a_min, a_max, out=None):
+def _clip_dispatcher(a, a_min, a_max, out=None, **kwargs):
return (a, a_min, a_max)
@array_function_dispatch(_clip_dispatcher)
-def clip(a, a_min, a_max, out=None):
+def clip(a, a_min, a_max, out=None, **kwargs):
"""
Clip (limit) the values in an array.
@@ -1975,6 +1975,9 @@ def clip(a, a_min, a_max, out=None):
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.
+ Equivalent to but faster than ``np.maximum(a_min, np.minimum(a, a_max))``.
+ No check is performed to ensure ``a_min < a_max``.
+
Parameters
----------
a : array_like
@@ -1992,6 +1995,11 @@ def clip(a, a_min, a_max, out=None):
The results will be placed in this array. It may be the input
array for in-place clipping. `out` must be of the right shape
to hold the output. Its type is preserved.
+ **kwargs
+ For other keyword-only arguments, see the
+ :ref:`ufunc docs <ufuncs.kwargs>`.
+
+ .. versionadded:: 1.17.0
Returns
-------
@@ -2020,7 +2028,7 @@ def clip(a, a_min, a_max, out=None):
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
"""
- return _wrapfunc(a, 'clip', a_min, a_max, out=out)
+ return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs)
def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 81d140d5e..62147d22b 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -906,6 +906,8 @@ def configuration(parent_package='',top_path=None):
join('src', 'umath', 'loops.c.src'),
join('src', 'umath', 'matmul.h.src'),
join('src', 'umath', 'matmul.c.src'),
+ join('src', 'umath', 'clip.h.src'),
+ join('src', 'umath', 'clip.c.src'),
join('src', 'umath', 'ufunc_object.c'),
join('src', 'umath', 'extobj.c'),
join('src', 'umath', 'cpuid.c'),
diff --git a/numpy/core/src/common/lowlevel_strided_loops.h b/numpy/core/src/common/lowlevel_strided_loops.h
index 5f139cffb..bacd27473 100644
--- a/numpy/core/src/common/lowlevel_strided_loops.h
+++ b/numpy/core/src/common/lowlevel_strided_loops.h
@@ -4,6 +4,9 @@
#include <npy_config.h>
#include "mem_overlap.h"
+/* For PyArray_ macros used below */
+#include "numpy/ndarrayobject.h"
+
/*
* NOTE: This API should remain private for the time being, to allow
* for further refinement. I think the 'aligned' mechanism
diff --git a/numpy/core/src/multiarray/arraytypes.c.src b/numpy/core/src/multiarray/arraytypes.c.src
index 1463d8990..5f7bcb8f7 100644
--- a/numpy/core/src/multiarray/arraytypes.c.src
+++ b/numpy/core/src/multiarray/arraytypes.c.src
@@ -3810,176 +3810,6 @@ static void
/*
*****************************************************************************
- ** FASTCLIP **
- *****************************************************************************
- */
-
-#define _LESS_THAN(a, b) ((a) < (b))
-#define _GREATER_THAN(a, b) ((a) > (b))
-
-/*
- * In fastclip, 'b' was already checked for NaN, so the half comparison
- * only needs to check 'a' for NaN.
- */
-
-#define _HALF_LESS_THAN(a, b) (!npy_half_isnan(a) && npy_half_lt_nonan(a, b))
-#define _HALF_GREATER_THAN(a, b) (!npy_half_isnan(a) && npy_half_lt_nonan(b, a))
-
-/**begin repeat
- *
- * #name = BOOL,
- * BYTE, UBYTE, SHORT, USHORT, INT, UINT,
- * LONG, ULONG, LONGLONG, ULONGLONG,
- * HALF, FLOAT, DOUBLE, LONGDOUBLE,
- * DATETIME, TIMEDELTA#
- * #type = npy_bool,
- * npy_byte, npy_ubyte, npy_short, npy_ushort, npy_int, npy_uint,
- * npy_long, npy_ulong, npy_longlong, npy_ulonglong,
- * npy_half, npy_float, npy_double, npy_longdouble,
- * npy_datetime, npy_timedelta#
- * #isfloat = 0*11, 1*4, 0*2#
- * #isnan = nop*11, npy_half_isnan, npy_isnan*3, nop*2#
- * #lt = _LESS_THAN*11, _HALF_LESS_THAN, _LESS_THAN*5#
- * #gt = _GREATER_THAN*11, _HALF_GREATER_THAN, _GREATER_THAN*5#
- */
-static void
-@name@_fastclip(@type@ *in, npy_intp ni, @type@ *min, @type@ *max, @type@ *out)
-{
- npy_intp i;
- @type@ max_val = 0, min_val = 0;
-
- if (max != NULL) {
- max_val = *max;
-#if @isfloat@
- /* NaNs result in no clipping, so optimize the case away */
- if (@isnan@(max_val)) {
- if (min == NULL) {
- memmove(out, in, ni * sizeof(@type@));
- return;
- }
- max = NULL;
- }
-#endif
- }
- if (min != NULL) {
- min_val = *min;
-#if @isfloat@
- if (@isnan@(min_val)) {
- if (max == NULL) {
- memmove(out, in, ni * sizeof(@type@));
- return;
- }
- min = NULL;
- }
-#endif
- }
- if (max == NULL) {
- for (i = 0; i < ni; i++) {
- if (@lt@(in[i], min_val)) {
- out[i] = min_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
- else if (min == NULL) {
- for (i = 0; i < ni; i++) {
- if (@gt@(in[i], max_val)) {
- out[i] = max_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
- else {
- /*
- * Visual Studio 2015 loop vectorizer handles NaN in an unexpected
- * manner, see: https://github.com/numpy/numpy/issues/7601
- */
- #if (_MSC_VER == 1900)
- #pragma loop( no_vector )
- #endif
- for (i = 0; i < ni; i++) {
- if (@lt@(in[i], min_val)) {
- out[i] = min_val;
- }
- else if (@gt@(in[i], max_val)) {
- out[i] = max_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
-}
-/**end repeat**/
-
-#undef _LESS_THAN
-#undef _GREATER_THAN
-#undef _HALF_LESS_THAN
-#undef _HALF_GREATER_THAN
-
-/**begin repeat
- *
- * #name = CFLOAT, CDOUBLE, CLONGDOUBLE#
- * #type = npy_cfloat, npy_cdouble, npy_clongdouble#
- */
-static void
-@name@_fastclip(@type@ *in, npy_intp ni, @type@ *min, @type@ *max, @type@ *out)
-{
- npy_intp i;
- @type@ max_val, min_val;
-
- if (max != NULL) {
- max_val = *max;
- }
- if (min != NULL) {
- min_val = *min;
- }
- if (max == NULL) {
- for (i = 0; i < ni; i++) {
- if (PyArray_CLT(in[i],min_val)) {
- out[i] = min_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
- else if (min == NULL) {
- for (i = 0; i < ni; i++) {
- if (PyArray_CGT(in[i], max_val)) {
- out[i] = max_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
- else {
- for (i = 0; i < ni; i++) {
- if (PyArray_CLT(in[i], min_val)) {
- out[i] = min_val;
- }
- else if (PyArray_CGT(in[i], max_val)) {
- out[i] = max_val;
- }
- else {
- out[i] = in[i];
- }
- }
- }
-}
-
-/**end repeat**/
-
-#define OBJECT_fastclip NULL
-
-
-/*
- *****************************************************************************
** FASTPUTMASK **
*****************************************************************************
*/
@@ -4501,7 +4331,7 @@ static PyArray_ArrFuncs _Py@NAME@_ArrFuncs = {
(PyArray_ScalarKindFunc*)NULL,
NULL,
NULL,
- (PyArray_FastClipFunc*)@from@_fastclip,
+ (PyArray_FastClipFunc*)NULL,
(PyArray_FastPutmaskFunc*)@from@_fastputmask,
(PyArray_FastTakeFunc*)@from@_fasttake,
(PyArray_ArgFunc*)@from@_argmin
diff --git a/numpy/core/src/multiarray/calculation.c b/numpy/core/src/multiarray/calculation.c
index 90ee2c5b2..1d72a5227 100644
--- a/numpy/core/src/multiarray/calculation.c
+++ b/numpy/core/src/multiarray/calculation.c
@@ -918,6 +918,27 @@ PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject *max, PyArrayObject *o
}
func = PyArray_DESCR(self)->f->fastclip;
+ if (func == NULL) {
+ if (min == NULL) {
+ return PyObject_CallFunctionObjArgs(n_ops.minimum, self, max, out, NULL);
+ }
+ else if (max == NULL) {
+ return PyObject_CallFunctionObjArgs(n_ops.maximum, self, min, out, NULL);
+ }
+ else {
+ return PyObject_CallFunctionObjArgs(n_ops.clip, self, min, max, out, NULL);
+ }
+ }
+
+ /* NumPy 1.17.0, 2019-02-24 */
+ if (DEPRECATE(
+ "->f->fastclip is deprecated. Use PyUFunc_RegisterLoopForDescr to "
+ "attach a custom loop to np.core.umath.clip, np.minimum, and "
+ "np.maximum") < 0) {
+ return NULL;
+ }
+ /* everything below can be removed once this deprecation completes */
+
if (func == NULL
|| (min != NULL && !PyArray_CheckAnyScalar(min))
|| (max != NULL && !PyArray_CheckAnyScalar(max))
diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c
index 0ddec2995..0d30db07e 100644
--- a/numpy/core/src/multiarray/methods.c
+++ b/numpy/core/src/multiarray/methods.c
@@ -2399,21 +2399,7 @@ array_trace(PyArrayObject *self, PyObject *args, PyObject *kwds)
static PyObject *
array_clip(PyArrayObject *self, PyObject *args, PyObject *kwds)
{
- PyObject *min = NULL, *max = NULL;
- PyArrayObject *out = NULL;
- static char *kwlist[] = {"min", "max", "out", NULL};
-
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOO&:clip", kwlist,
- &min,
- &max,
- PyArray_OutputConverter, &out)) {
- return NULL;
- }
- if (max == NULL && min == NULL) {
- PyErr_SetString(PyExc_ValueError, "One of max or min must be given.");
- return NULL;
- }
- return PyArray_Return((PyArrayObject *)PyArray_Clip(self, min, max, out));
+ NPY_FORWARD_NDARRAY_METHOD("_clip");
}
diff --git a/numpy/core/src/multiarray/number.c b/numpy/core/src/multiarray/number.c
index 420501ce2..0ceb994ef 100644
--- a/numpy/core/src/multiarray/number.c
+++ b/numpy/core/src/multiarray/number.c
@@ -113,6 +113,7 @@ _PyArray_SetNumericOps(PyObject *dict)
SET(rint);
SET(conjugate);
SET(matmul);
+ SET(clip);
return 0;
}
@@ -179,6 +180,7 @@ _PyArray_GetNumericOps(void)
GET(rint);
GET(conjugate);
GET(matmul);
+ GET(clip);
return dict;
fail:
diff --git a/numpy/core/src/multiarray/number.h b/numpy/core/src/multiarray/number.h
index 33a7cf872..643241b3d 100644
--- a/numpy/core/src/multiarray/number.h
+++ b/numpy/core/src/multiarray/number.h
@@ -40,6 +40,7 @@ typedef struct {
PyObject *rint;
PyObject *conjugate;
PyObject *matmul;
+ PyObject *clip;
} NumericOps;
extern NPY_NO_EXPORT NumericOps n_ops;
diff --git a/numpy/core/src/umath/clip.c.src b/numpy/core/src/umath/clip.c.src
new file mode 100644
index 000000000..30fa3d2b3
--- /dev/null
+++ b/numpy/core/src/umath/clip.c.src
@@ -0,0 +1,119 @@
+/**
+ * This module provides the inner loops for the clip ufunc
+ */
+#define _UMATHMODULE
+#define _MULTIARRAYMODULE
+#define NPY_NO_DEPRECATED_API NPY_API_VERSION
+
+#include "Python.h"
+
+#include "numpy/halffloat.h"
+#include "numpy/npy_math.h"
+#include "numpy/ndarraytypes.h"
+#include "numpy/npy_common.h"
+#include "numpy/utils.h"
+#include "fast_loop_macros.h"
+
+/*
+ * Produce macros that perform nan/nat-propagating min and max
+ */
+
+/**begin repeat
+ * #name = BOOL,
+ * BYTE, UBYTE, SHORT, USHORT, INT, UINT,
+ * LONG, ULONG, LONGLONG, ULONGLONG#
+ */
+#define _NPY_@name@_MIN(a, b) PyArray_MIN(a, b)
+#define _NPY_@name@_MAX(a, b) PyArray_MAX(a, b)
+/**end repeat**/
+
+#define _NPY_HALF_MIN(a, b) (npy_half_isnan(a) || npy_half_le(a, b) ? (a) : (b))
+#define _NPY_HALF_MAX(a, b) (npy_half_isnan(a) || npy_half_ge(a, b) ? (a) : (b))
+
+/**begin repeat
+ * #name = FLOAT, DOUBLE, LONGDOUBLE#
+ */
+#define _NPY_@name@_MIN(a, b) (npy_isnan(a) ? (a) : PyArray_MIN(a, b))
+#define _NPY_@name@_MAX(a, b) (npy_isnan(a) ? (a) : PyArray_MAX(a, b))
+/**end repeat**/
+
+/**begin repeat
+ * #name = CFLOAT, CDOUBLE, CLONGDOUBLE#
+ */
+#define _NPY_@name@_MIN(a, b) (npy_isnan((a).real) || npy_isnan((a).imag) || PyArray_CLT(a, b) ? (a) : (b))
+#define _NPY_@name@_MAX(a, b) (npy_isnan((a).real) || npy_isnan((a).imag) || PyArray_CGT(a, b) ? (a) : (b))
+/**end repeat**/
+
+/**begin repeat
+ * #name = DATETIME, TIMEDELTA#
+ */
+#define _NPY_@name@_MIN(a, b) ( \
+ (a) == NPY_DATETIME_NAT ? (a) : \
+ (b) == NPY_DATETIME_NAT ? (b) : \
+ (a) < (b) ? (a) : (b) \
+)
+#define _NPY_@name@_MAX(a, b) ( \
+ (a) == NPY_DATETIME_NAT ? (a) : \
+ (b) == NPY_DATETIME_NAT ? (b) : \
+ (a) > (b) ? (a) : (b) \
+)
+/**end repeat**/
+
+/**begin repeat
+ *
+ * #name = BOOL,
+ * BYTE, UBYTE, SHORT, USHORT, INT, UINT,
+ * LONG, ULONG, LONGLONG, ULONGLONG,
+ * HALF, FLOAT, DOUBLE, LONGDOUBLE,
+ * CFLOAT, CDOUBLE, CLONGDOUBLE,
+ * DATETIME, TIMEDELTA#
+ * #type = npy_bool,
+ * npy_byte, npy_ubyte, npy_short, npy_ushort, npy_int, npy_uint,
+ * npy_long, npy_ulong, npy_longlong, npy_ulonglong,
+ * npy_half, npy_float, npy_double, npy_longdouble,
+ * npy_cfloat, npy_cdouble, npy_clongdouble,
+ * npy_datetime, npy_timedelta#
+ */
+
+#define _NPY_CLIP(x, min, max) \
+ _NPY_@name@_MIN(_NPY_@name@_MAX((x), (min)), (max))
+
+NPY_NO_EXPORT void
+@name@_clip(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func))
+{
+ if (steps[1] == 0 && steps[2] == 0) {
+ /* min and max are constant throughout the loop, the most common case */
+ /* NOTE: it may be possible to optimize these checks for nan */
+ @type@ min_val = *(@type@ *)args[1];
+ @type@ max_val = *(@type@ *)args[2];
+
+ char *ip1 = args[0], *op1 = args[3];
+ npy_intp is1 = steps[0], os1 = steps[3];
+ npy_intp n = dimensions[0];
+
+ /* contiguous, branch to let the compiler optimize */
+ if (is1 == sizeof(@type@) && os1 == sizeof(@type@)) {
+ for(npy_intp i = 0; i < n; i++, ip1 += is1, op1 += os1) {
+ *(@type@ *)op1 = _NPY_CLIP(*(@type@ *)ip1, min_val, max_val);
+ }
+ }
+ else {
+ for(npy_intp i = 0; i < n; i++, ip1 += is1, op1 += os1) {
+ *(@type@ *)op1 = _NPY_CLIP(*(@type@ *)ip1, min_val, max_val);
+ }
+ }
+ }
+ else {
+ TERNARY_LOOP {
+ *(@type@ *)op1 = _NPY_CLIP(*(@type@ *)ip1, *(@type@ *)ip2, *(@type@ *)ip3);
+ }
+ }
+ npy_clear_floatstatus_barrier((char*)dimensions);
+}
+
+// clean up the macros we defined above
+#undef _NPY_CLIP
+#undef _NPY_@name@_MAX
+#undef _NPY_@name@_MIN
+
+/**end repeat**/
diff --git a/numpy/core/src/umath/clip.h.src b/numpy/core/src/umath/clip.h.src
new file mode 100644
index 000000000..d77971ad7
--- /dev/null
+++ b/numpy/core/src/umath/clip.h.src
@@ -0,0 +1,18 @@
+#ifndef _NPY_UMATH_CLIP_H_
+#define _NPY_UMATH_CLIP_H_
+
+
+/**begin repeat
+ *
+ * #name = BOOL,
+ * BYTE, UBYTE, SHORT, USHORT, INT, UINT,
+ * LONG, ULONG, LONGLONG, ULONGLONG,
+ * HALF, FLOAT, DOUBLE, LONGDOUBLE,
+ * CFLOAT, CDOUBLE, CLONGDOUBLE,
+ * DATETIME, TIMEDELTA#
+ */
+NPY_NO_EXPORT void
+@name@_clip(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
+/**end repeat**/
+
+#endif
diff --git a/numpy/core/src/umath/fast_loop_macros.h b/numpy/core/src/umath/fast_loop_macros.h
index 7a1ed66bc..ae6d69a3e 100644
--- a/numpy/core/src/umath/fast_loop_macros.h
+++ b/numpy/core/src/umath/fast_loop_macros.h
@@ -58,6 +58,14 @@
npy_intp i;\
for(i = 0; i < n; i++, ip1 += is1, ip2 += is2, op1 += os1, op2 += os2)
+/** (ip1, ip2, ip3) -> (op1) */
+#define TERNARY_LOOP\
+ char *ip1 = args[0], *ip2 = args[1], *ip3 = args[2], *op1 = args[3];\
+ npy_intp is1 = steps[0], is2 = steps[1], is3 = steps[2], os1 = steps[3];\
+ npy_intp n = dimensions[0];\
+ npy_intp i;\
+ for(i = 0; i < n; i++, ip1 += is1, ip2 += is2, ip3 += is3, op1 += os1)
+
/** @} */
/* unary loop input and output contiguous */
diff --git a/numpy/core/src/umath/funcs.inc.src b/numpy/core/src/umath/funcs.inc.src
index 2acae3c37..c2732f925 100644
--- a/numpy/core/src/umath/funcs.inc.src
+++ b/numpy/core/src/umath/funcs.inc.src
@@ -259,6 +259,17 @@ npy_ObjectLCM(PyObject *i1, PyObject *i2)
return PyNumber_Absolute(tmp);
}
+
+static PyObject *
+npy_ObjectClip(PyObject *arr, PyObject *min, PyObject *max) {
+ PyObject *o = npy_ObjectMax(arr, min);
+ if (o == NULL) {
+ return NULL;
+ }
+ Py_SETREF(o, npy_ObjectMin(o, max));
+ return o;
+}
+
/*
*****************************************************************************
** COMPLEX FUNCTIONS **
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src
index ff3b36428..89eeb0c47 100644
--- a/numpy/core/src/umath/loops.c.src
+++ b/numpy/core/src/umath/loops.c.src
@@ -425,6 +425,28 @@ PyUFunc_OO_O(char **args, npy_intp *dimensions, npy_intp *steps, void *func)
}
}
+NPY_NO_EXPORT void
+PyUFunc_OOO_O(char **args, npy_intp *dimensions, npy_intp *steps, void *func)
+{
+ ternaryfunc f = (ternaryfunc)func;
+ TERNARY_LOOP {
+ PyObject *in1 = *(PyObject **)ip1;
+ PyObject *in2 = *(PyObject **)ip2;
+ PyObject *in3 = *(PyObject **)ip3;
+ PyObject **out = (PyObject **)op1;
+ PyObject *ret = f(
+ in1 ? in1 : Py_None,
+ in2 ? in2 : Py_None,
+ in3 ? in3 : Py_None
+ );
+ if (ret == NULL) {
+ return;
+ }
+ Py_XDECREF(*out);
+ *out = ret;
+ }
+}
+
/*UFUNC_API*/
NPY_NO_EXPORT void
PyUFunc_OO_O_method(char **args, npy_intp *dimensions, npy_intp *steps, void *func)
diff --git a/numpy/core/src/umath/loops.h.src b/numpy/core/src/umath/loops.h.src
index 8dd3170e3..7f05a693a 100644
--- a/numpy/core/src/umath/loops.h.src
+++ b/numpy/core/src/umath/loops.h.src
@@ -549,6 +549,9 @@ OBJECT@suffix@_@kind@(char **args, npy_intp *dimensions, npy_intp *steps, void *
NPY_NO_EXPORT void
OBJECT_sign(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
+NPY_NO_EXPORT void
+PyUFunc_OOO_O(char **args, npy_intp *dimensions, npy_intp *steps, void *func);
+
/*
*****************************************************************************
** END LOOPS **
diff --git a/numpy/core/src/umath/simd.inc.src b/numpy/core/src/umath/simd.inc.src
index b94a5a0f7..72493e308 100644
--- a/numpy/core/src/umath/simd.inc.src
+++ b/numpy/core/src/umath/simd.inc.src
@@ -131,7 +131,7 @@ abs_ptrdiff(char *a, char *b)
* #func = exp, log#
*/
-static void
+static NPY_INLINE void
@ISA@_@func@_FLOAT(npy_float *, npy_float *, const npy_intp n);
/**end repeat1**/
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index d22f16099..59c19aa1b 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -4287,7 +4287,11 @@ class TestClip(object):
x = (np.random.random(1000) * array_max).astype(dtype)
if inplace:
- x.clip(clip_min, clip_max, x)
+ # The tests that call us pass clip_min and clip_max that
+ # might not fit in the destination dtype. They were written
+ # assuming the previous unsafe casting, which now must be
+ # passed explicitly to avoid a warning.
+ x.clip(clip_min, clip_max, x, casting='unsafe')
else:
x = x.clip(clip_min, clip_max)
byteorder = '='
@@ -4306,7 +4310,7 @@ class TestClip(object):
'float', 1024, 0, 0, inplace=inplace)
self._clip_type(
- 'int', 1024, -120, 100.5, inplace=inplace)
+ 'int', 1024, -120, 100, inplace=inplace)
self._clip_type(
'int', 1024, 0, 0, inplace=inplace)
@@ -7793,13 +7797,6 @@ class TestWritebackIfCopy(object):
res = np.argmin(mat, 0, out=out)
assert_equal(res, range(5))
- def test_clip_with_out(self):
- mat = np.eye(5)
- out = np.eye(5, dtype='i2')
- res = np.clip(mat, a_min=-10, a_max=0, out=out)
- assert_(res is out)
- assert_equal(np.sum(out), 0)
-
def test_insert_noncontiguous(self):
a = np.arange(6).reshape(2,3).T # force non-c-contiguous
# uses arr_insert
diff --git a/numpy/core/tests/test_numeric.py b/numpy/core/tests/test_numeric.py
index 406110fa7..ae596ec20 100644
--- a/numpy/core/tests/test_numeric.py
+++ b/numpy/core/tests/test_numeric.py
@@ -13,7 +13,7 @@ from numpy.random import rand, randint, randn
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
- HAS_REFCOUNT
+ assert_warns, HAS_REFCOUNT
)
@@ -1336,11 +1336,17 @@ class TestClip(object):
self.nr = 5
self.nc = 3
- def fastclip(self, a, m, M, out=None):
+ def fastclip(self, a, m, M, out=None, casting=None):
if out is None:
- return a.clip(m, M)
+ if casting is None:
+ return a.clip(m, M)
+ else:
+ return a.clip(m, M, casting=casting)
else:
- return a.clip(m, M, out)
+ if casting is None:
+ return a.clip(m, M, out)
+ else:
+ return a.clip(m, M, out, casting=casting)
def clip(self, a, m, M, out=None):
# use slow-clip
@@ -1378,6 +1384,20 @@ class TestClip(object):
return (10 * rand(n, m)).astype(np.int32)
# Now the real test cases
+
+ @pytest.mark.parametrize("dtype", '?bhilqpBHILQPefdgFDGO')
+ def test_ones_pathological(self, dtype):
+ # for preservation of behavior described in
+ # gh-12519; amin > amax behavior may still change
+ # in the future
+ arr = np.ones(10, dtype=dtype)
+ expected = np.zeros(10, dtype=dtype)
+ actual = np.clip(arr, 1, 0)
+ if dtype == 'O':
+ assert actual.tolist() == expected.tolist()
+ else:
+ assert_equal(actual, expected)
+
def test_simple_double(self):
# Test native double input with scalar min/max.
a = self._generate_data(self.nr, self.nc)
@@ -1476,14 +1496,21 @@ class TestClip(object):
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
- def test_simple_int32_inout(self):
+ @pytest.mark.parametrize("casting", [None, "unsafe"])
+ def test_simple_int32_inout(self, casting):
# Test native int32 input with double min/max and int32 out.
a = self._generate_int32_data(self.nr, self.nc)
m = np.float64(0)
M = np.float64(2)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ if casting is None:
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac, casting=casting)
+ else:
+ # explicitly passing "unsafe" will silence warning
+ self.fastclip(a, m, M, ac, casting=casting)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1505,7 +1532,9 @@ class TestClip(object):
M = np.float64(1)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1516,7 +1545,9 @@ class TestClip(object):
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1692,7 +1723,9 @@ class TestClip(object):
M = np.float64(2)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1714,7 +1747,9 @@ class TestClip(object):
M = np.float64(1)
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1725,7 +1760,9 @@ class TestClip(object):
M = 2.0
ac = np.zeros(a.shape, dtype=np.int32)
act = ac.copy()
- self.fastclip(a, m, M, ac)
+ with assert_warns(DeprecationWarning):
+ # NumPy 1.17.0, 2018-02-24 - casting is unsafe
+ self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
@@ -1778,11 +1815,94 @@ class TestClip(object):
def test_clip_nan(self):
d = np.arange(7.)
- assert_equal(d.clip(min=np.nan), d)
- assert_equal(d.clip(max=np.nan), d)
- assert_equal(d.clip(min=np.nan, max=np.nan), d)
- assert_equal(d.clip(min=-2, max=np.nan), d)
- assert_equal(d.clip(min=np.nan, max=10), d)
+ with assert_warns(DeprecationWarning):
+ assert_equal(d.clip(min=np.nan), d)
+ with assert_warns(DeprecationWarning):
+ assert_equal(d.clip(max=np.nan), d)
+ with assert_warns(DeprecationWarning):
+ assert_equal(d.clip(min=np.nan, max=np.nan), d)
+ with assert_warns(DeprecationWarning):
+ assert_equal(d.clip(min=-2, max=np.nan), d)
+ with assert_warns(DeprecationWarning):
+ assert_equal(d.clip(min=np.nan, max=10), d)
+
+ def test_object_clip(self):
+ a = np.arange(10, dtype=object)
+ actual = np.clip(a, 1, 5)
+ expected = np.array([1, 1, 2, 3, 4, 5, 5, 5, 5, 5])
+ assert actual.tolist() == expected.tolist()
+
+ def test_clip_all_none(self):
+ a = np.arange(10, dtype=object)
+ with assert_raises_regex(ValueError, 'max or min'):
+ np.clip(a, None, None)
+
+ def test_clip_invalid_casting(self):
+ a = np.arange(10, dtype=object)
+ with assert_raises_regex(ValueError,
+ 'casting must be one of'):
+ self.fastclip(a, 1, 8, casting="garbage")
+
+ @pytest.mark.parametrize("amin, amax", [
+ # two scalars
+ (1, 0),
+ # mix scalar and array
+ (1, np.zeros(10)),
+ # two arrays
+ (np.ones(10), np.zeros(10)),
+ ])
+ def test_clip_value_min_max_flip(self, amin, amax):
+ a = np.arange(10, dtype=np.int64)
+ # requirement from ufunc_docstrings.py
+ expected = np.minimum(np.maximum(a, amin), amax)
+ actual = np.clip(a, amin, amax)
+ assert_equal(actual, expected)
+
+ @pytest.mark.parametrize("arr, amin, amax, exp", [
+ # for a bug in npy_ObjectClip, based on a
+ # case produced by hypothesis
+ (np.zeros(10, dtype=np.int64),
+ 0,
+ -2**64+1,
+ np.full(10, -2**64+1, dtype=object)),
+ # for bugs in NPY_TIMEDELTA_MAX, based on a case
+ # produced by hypothesis
+ (np.zeros(10, dtype='m8') - 1,
+ 0,
+ 0,
+ np.zeros(10, dtype='m8')),
+ ])
+ def test_clip_problem_cases(self, arr, amin, amax, exp):
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, exp)
+
+ @pytest.mark.xfail(reason="no scalar nan propagation yet")
+ @pytest.mark.parametrize("arr, amin, amax", [
+ # problematic scalar nan case from hypothesis
+ (np.zeros(10, dtype=np.int64),
+ np.array(np.nan),
+ np.zeros(10, dtype=np.int32)),
+ ])
+ def test_clip_scalar_nan_propagation(self, arr, amin, amax):
+ # enforcement of scalar nan propagation for comparisons
+ # called through clip()
+ expected = np.minimum(np.maximum(a, amin), amax)
+ with assert_warns(DeprecationWarning):
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, expected)
+
+ @pytest.mark.xfail(reason="propagation doesn't match spec")
+ @pytest.mark.parametrize("arr, amin, amax", [
+ (np.array([1] * 10, dtype='m8'),
+ np.timedelta64('NaT'),
+ np.zeros(10, dtype=np.int32)),
+ ])
+ def test_NaT_propagation(self, arr, amin, amax):
+ # NOTE: the expected function spec doesn't
+ # propagate NaT, but clip() now does
+ expected = np.minimum(np.maximum(a, amin), amax)
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, expected)
class TestAllclose(object):