1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
|
#LyX 1.5.1 created this file. For more info see http://www.lyx.org/
\lyxformat 276
\begin_document
\begin_header
\textclass mybook
\begin_preamble
\usepackage{array}
% This gives us a better font in URL links (otherwise the default
% MonoSpace font is bitmapped, and it looks horrible in PDF)
\usepackage{courier}
\usepackage{fullpage}
\usepackage{color} % so we can use red for the fixme warnings
% The hyperref package gives us a pdf with properly built
% internal navigation ('pdf bookmarks' for the table of contents,
% internal cross-reference links, web links for URLs, etc.)
% A few colors to replace the defaults for certain link types
\definecolor{darkorange}{rgb}{.71,0.21,0.01}
\definecolor{darkgreen}{rgb}{.12,.54,.11}
\usepackage[
%pdftex, % needed for pdflatex
breaklinks=true, % so long urls are correctly broken across lines
colorlinks=true,
urlcolor=blue,
linkcolor=darkorange,
citecolor=darkgreen,
]{hyperref}
% This helps prevent overly long lines that stretch beyond the margins
\sloppy
% Define a \fixme command to mark visually things needing fixing in the draft.
% For final printing or to simply disable these bright warnings, simply
% uncomment the \renewcommand redefinition below
\newcommand{\fixme}[1] {
\textcolor{red}{
{\fbox{ {\bf FIX}
\ensuremath{\blacktriangleright \blacktriangleright \blacktriangleright}}
{\bf #1}
\fbox{\ensuremath{ \blacktriangleleft \blacktriangleleft \blacktriangleleft }
} } }
}
% Uncomment the next line to make the \fixme command be a no-op
%\renewcommand{\fixme}[1]{}
%%% If you also want to use the listings package for nicely formatted
%%% Python source code, this configuration produces good on-paper and
%%% on-screen results:
\definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% Use and configure listings package for nicely formatted code
\usepackage{listings}
\lstset{
language=Python,
basicstyle=\small\ttfamily,
commentstyle=\ttfamily\color{blue},
stringstyle=\ttfamily\color{orange},
showstringspaces=false,
breaklines=true,
postbreak = \space\dots
}
\end_preamble
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize 10
\spacing onehalf
\papersize custom
\use_geometry true
\use_amsmath 2
\use_esint 0
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\paperwidth 7in
\paperheight 9in
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle headings
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Standard
\begin_inset VSpace 2in*
\end_inset
\end_layout
\begin_layout Standard
\align center
\family sans
\series bold
\size giant
Guide to NumPy
\end_layout
\begin_layout Standard
\align center
\family sans
\size larger
Travis E.
Oliphant, PhD
\newline
August 21, 2008
\end_layout
\begin_layout Standard
\begin_inset VSpace vfill
\end_inset
This book was released from a restricted distribution using a Market-Determined,
Temporary, Distribution-Restriction (MDTDR) system (see http://www.trelgol.com)
on August 21, 2008.
It is now released to the public domain and can be used as source material
for other works.
\end_layout
\begin_layout Standard
\begin_inset LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FloatList table
\end_inset
\end_layout
\begin_layout Part
NumPy from Python
\end_layout
\begin_layout Chapter
Origins of NumPy
\end_layout
\begin_layout Quotation
A complex system that works is invariably found to have evolved from a simple
system that worked
\end_layout
\begin_layout Right Address
---
\emph on
John Gall
\end_layout
\begin_layout Quotation
Copy from one, it's plagiarism; copy from two, it's research.
\end_layout
\begin_layout Right Address
---
\emph on
Wilson Mizner
\end_layout
\begin_layout Standard
NumPy builds on (and is a successor to) the successful Numeric array object.
Its goal is to create the corner-stone for a useful environment for scientific
computing.
In order to better understand the people surrounding NumPy and (its library-pac
kage) SciPy, I will explain a little about how SciPy and (current) NumPy
originated.
In 1998, as a graduate student studying biomedical imaging at the Mayo
Clinic in Rochester, MN, I came across Python and its numerical extension
(Numeric) while I was looking for ways to analyze large data sets for Magnetic
Resonance Imaging and Ultrasound using a high-level language.
I quickly fell in love with Python programming which is a remarkable statement
to make about a programming language.
If I had not seen others with the same view, I might have seriously doubted
my sanity.
I became rather involved in the Numeric Python community, adding the C-API
chapter to the Numeric documentation (for which Paul Dubois graciously
made me a co-author).
\end_layout
\begin_layout Standard
As I progressed with my thesis work, programming in Python was so enjoyable
that I felt inhibited when I worked with other programming frameworks.
As a result, when a task I needed to perform was not available in the core
language, or in the Numeric extension, I looked around and found C or Fortran
code that performed the needed task, wrapped it into Python (either by
hand or using SWIG), and used the new functionality in my programs.
\end_layout
\begin_layout Standard
Along the way, I learned a great deal about the underlying structure of
Numeric and grew to admire it's simple but elegant structures that grew
out of the mechanism by which Python allows itself to be extended.
\end_layout
\begin_layout Note
Numeric was originally written in 1995 based off of an earlier Matrix Object
design by Jim Fulton which was released in 1994.
Most of the code was written by Jim Hugunin while he was a graduate student
at MIT.
He received help from many people including Jim Fulton, David Ascher, Paul
Dubois, and Konrad Hinsen.
These individuals and many others added comments, criticisms, and code
which helped the Numeric extension reach stability.
Jim Hugunin did not stay long as an active member of the community ---
moving on to write Jython and, later, Iron Python.
\end_layout
\begin_layout Standard
By operating in this need-it-make-it fashion I ended up with a substantial
library of extension modules that helped Python + Numeric become easier
to use in a scientific setting.
These early modules included raw input-output functions, a special function
library, an integration library, an ordinary differential equation solver,
some least-squares optimizers, and sparse matrix solvers.
While I was doing this laborious work, Pearu Peterson noticed that a lot
of the routines I was wrapping were written in Fortran, and there was no
simplified wrapping mechanism for Fortran subroutines (like SWIG for C).
He began the task of writing f2py which made it possible to easily wrap
Fortran programs into Python.
I helped him a little bit, mostly with testing and contributing early function-
call-back code, but he put forth the brunt of the work.
His result was simply amazing to me.
I've always been impressed with f2py, especially because I knew how much
effort writing and maintaining extension modules could be.
Anybody serious about scientific computing with Python will appreciate
that f2py is distributed along with NumPy.
\end_layout
\begin_layout Standard
When I finished my Ph.D.
in 2001, Eric Jones (who had recently completed his Ph.D.
at Duke) contacted me because he had a collection of Python modules he
had developed as part of his thesis work as well.
He wanted to combine his modules with mine into one super package.
Together with Pearu Peterson we joined our efforts, and SciPy was born
in 2001.
Since then, many people have contributed module code to SciPy including
Ed Schofield, Robert Cimrman, David M.
Cooke, Charles (Chuck) Harris, Prabhu Ramachandran, Gary Strangman, Jean-Sebast
ien Roy, and Fernando Perez.
Others such as Travis Vaught, David Morrill, Jeff Whitaker, and Louis Luangkeso
rn have contributed testing and build support.
\end_layout
\begin_layout Standard
At the start of 2005, SciPy was at release 0.3 and relatively stable for
an early version number.
Part of the reason it was difficult to stabilize SciPy was that the array
object upon which SciPy builds was undergoing a bit of an upheaval.
At about the same time as SciPy was being built, some Numeric users were
hitting up against the limited capabilities of Numeric.
In particular, the ability to deal with memory mapped files (and associated
alignment and swapping issues), record arrays, and altered error checking
modes were important but limited or non-existent in Numeric.
As a result, numarray was created by Perry Greenfield, Todd Miller, and
Rick White at the Space Science Telescope Institute as a replacement for
Numeric.
Numarray used a very different implementation scheme as a mix of Python
classes and C code (which led to slow downs in certain common uses).
While improving some capabilities, it was slow to pick up on the more advanced
features of Numeric's universal functions (ufuncs) --- never re-creating
the C-API that SciPy depended on.
This made it difficult for SciPy to
\begin_inset Quotes eld
\end_inset
convert
\begin_inset Quotes erd
\end_inset
to numarray.
\end_layout
\begin_layout Standard
Many newcomers to scientific computing with Python were told that numarray
was the future and started developing for it.
Very useful tools were developed that could not be used with Numeric (because
of numarray's change in C-API), and therefore could not be used easily
in SciPy.
This state of affairs was very discouraging for me personally as it left
the community fragmented.
Some developed for numarray, others developed as part of SciPy.
A few people even rejected adopting Python for scientific computing entirely
because of the split.
In addition, I estimate that quite a few Python users simply stayed away
from both SciPy and numarray, leaving the community smaller than it could
have been given the number of people that use Python for science and engineerin
g purposes.
\end_layout
\begin_layout Standard
It should be recognized that the split was not intentional, but simply an
outgrowth of the different and exacting demands of scientific computing
users.
My describing these events should not be construed as assigning blame to
anyone.
I very much admire and appreciate everyone I've met who is involved with
scientific computing and Python.
Using a stretched biological metaphor, it is only through the process of
dividing and merging that better results are born.
I think this concept applies to NumPy.
\end_layout
\begin_layout Standard
In early 2005, I decided to begin an effort to help bring the diverging
community together under a common framework if it were possible.
I first looked at numarray to see what could be done to add the missing
features to make SciPy work with it as a core array object.
After a couple of days of studying numarray, I was not enthusiastic about
this approach.
My familiarity with the Numeric code base no doubt biased my opinion, but
it seemed to me that the features of Numarray could be added back to Numeric
with a few fundamental changes to the core object.
This would make the transition of SciPy to a more enhanced array object
much easier in my mind.
\end_layout
\begin_layout Standard
Therefore, I began to construct this hybrid array object complete with an
enhanced set of universal (broadcasting) functions that could deal with
it.
Along the way, quite a few new features and significant enhancements were
added to the array object and its surrounding infrastructure.
This book describes the result of that year-and-a-half-long effort which
culminated with the release of NumPy 0.9.2 in early 2006 and NumPy 1.0 in
late 2006.
I first named the new package, SciPy Core, and used the scipy namespace.
However, after a few months of testing under that name, it became clear
that a separate namespace was needed for the new package.
As a result, a rapid search for a new name resulted in actually coming
back to the NumPy name which was the unofficial name of Numerical Python
but never the actual namespace.
Because the new package builds on the code-base of and is a successor to
Numeric, I think the NumPy name is fitting and hopefully not too confusing
to new users.
\end_layout
\begin_layout Standard
This book only briefly outlines some of the infrastructure that surrounds
the basic objects in NumPy to provide the additional functionality contained
in the older Numeric package (
\emph on
i.e.
\emph default
LinearAlgebra, RandomArray, FFT).
This infrastructure in NumPy includes basic linear algebra routines, Fourier
transform capabilities, and random number generators.
In addition, the f2py module is described in its own documentation, and
so is only briefly mentioned in the second part of the book.
There are also extensions to the standard Python distutils and testing
frameworks included with NumPy that are useful in constructing your own
packages built on top of NumPy.
The central purpose of this book, however, is to describe and document
the basic NumPy system that is available under the numpy namespace.
\end_layout
\begin_layout Note
The numpy namespace includes all names under the numpy.core and numpy.lib
namespaces as well.
Thus,
\family typewriter
import numpy
\family default
will also import the names from numpy.core and numpy.lib.
This is the recommended way to use numpy.
\end_layout
\begin_layout Standard
The following table gives a brief outline of the sub-packages contained
in numpy package.
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="9" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="1in">
<column alignment="center" valignment="top" leftline="true" width="2in">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="2in">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Package
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Purpose
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Comments
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
core
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
basic objects
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
all names exported to numpy
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
lib
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
additional utilities
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
all names exported to numpy
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
linalg
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
basic linear algebra
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
old LinearAlgebra from Numeric
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
fft
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
discrete Fourier transforms
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
old FFT from Numeric
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
random
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
random number generators
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
old RandomArray from Numeric
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
distutils
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
enhanced build and distribution
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
improvements built on standard distutils
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
testing
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
unit-testing
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
utility functions useful for testing
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
f2py
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
automatic wrapping of Fortran code
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
a useful utility needed by SciPy
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Chapter
Object Essentials
\end_layout
\begin_layout Quotation
Our programs last longer if we manage to build simple abstractions for ourselves...
\end_layout
\begin_layout Right Address
---
\emph on
Ron Jeffries
\end_layout
\begin_layout Quotation
I will tell you the truth as soon as I figure it out.
\end_layout
\begin_layout Right Address
---
\emph on
Wayne Birmingham
\end_layout
\begin_layout Standard
NumPy provides two fundamental objects: an N-dimensional array object (
\family typewriter
ndarray
\family default
) and a universal function object (
\family typewriter
ufunc
\family default
).
In addition, there are other objects that build on top of these which you
may find useful in your work, and these will be discussed later.
The current chapter will provide background information on just the
\family typewriter
ndarray
\family default
and the
\family typewriter
ufunc
\family default
that will be important for understanding the attributes and methods to
be discussed later.
\end_layout
\begin_layout Standard
An N-dimensional array is a homogeneous collection of
\begin_inset Quotes eld
\end_inset
items
\begin_inset Quotes erd
\end_inset
indexed using
\begin_inset Formula $N$
\end_inset
integers.
There are two essential pieces of information that define an
\begin_inset Formula $N$
\end_inset
-dimensional array: 1) the shape of the array, and 2) the kind of item the
array is composed of.
The shape of the array is a tuple of
\begin_inset Formula $N$
\end_inset
integers (one for each dimension) that provides information on how far
the index can vary along that dimension.
The other important information describing an array is the kind of item
the array is composed of.
Because every
\family typewriter
ndarray
\family default
is a homogeneous collection of exactly the same data-type, every item takes
up the same size block of memory, and each block of memory in the array
is interpreted in exactly the same way
\begin_inset Foot
status open
\begin_layout Standard
By using OBJECT arrays, one can effectively have heterogeneous arrays, but
the system still sees each element of the array as exactly the same thing
(a reference to a Python object).
\end_layout
\end_inset
.
\end_layout
\begin_layout Tip
All arrays in NumPy are indexed starting at 0 and ending at M-1 following
the Python convention.
\end_layout
\begin_layout Standard
For example, consider the following piece of code:
\end_layout
\begin_layout MyCode
>>> a = array([[1,2,3],[4,5,6]])
\newline
>>> a.shape
\newline
(2, 3)
\newline
>>> a.dtype
\newline
dtype('int32')
\end_layout
\begin_layout Note
for all code in this book it is assumed that you have first entered
\family typewriter
from numpy import *
\family default
.
In addition, any previously defined arrays are still defined for subsequent
examples.
\end_layout
\begin_layout Standard
This code defines an array of size
\begin_inset Formula $2\times3$
\end_inset
composed of 4-byte (little-endian) integer elements (on my 32-bit platform).
We can index into this two-dimensional array using two integers: the first
integer running from 0 to 1 inclusive and the second from 0 to 2 inclusive.
For example, index
\begin_inset Formula $\left(1,1\right)$
\end_inset
selects the element with value 5:
\end_layout
\begin_layout MyCode
>>> a[1,1]
\newline
5
\end_layout
\begin_layout Standard
All code shown in the shaded-boxes in this book has been (automatically)
executed on a particular version of NumPy.
The output of the code shown below shows which version of NumPy was used
to create all of the output in your copy of this book.
\end_layout
\begin_layout MyCode
>>> import numpy; print numpy.__version__
\newline
1.0.2.dev3478
\end_layout
\begin_layout Section
Data-Type Descriptors
\end_layout
\begin_layout Standard
In NumPy, an ndarray is an
\begin_inset Formula $N$
\end_inset
-dimensional array of items where each item takes up a fixed number of bytes.
Typically, this fixed number of bytes represents a number (
\emph on
e.g.
\emph default
integer or floating-point).
However, this fixed number of bytes could also represent an arbitrary record
made up of any collection of other data types.
NumPy achieves this flexibility through the use of a data-type (dtype)
object.
Every array has an associated dtype object which describes the layout of
the array data.
Every dtype
\begin_inset LatexCommand index
name "dtype"
\end_inset
object, in turn, has an associated Python type-object that determines exactly
what type of Python object is returned when an element of the array is
accessed.
The dtype objects are flexible enough to contain references to arrays of
other dtype objects and, therefore, can be used to define nested records.
This advanced functionality will be described in better detail later as
it is mainly useful for the recarray (record array) subclass that will
also be defined later.
However, all ndarrays can enjoy the flexibility provided by the dtype objects.
Figure
\begin_inset LatexCommand ref
reference "cap:Conceptual-diagram-showing"
\end_inset
provides a conceptual diagram showing the relationship between the ndarray,
its associated data-type object, and an array-scalar that is returned when
a single-element of the array is accessed.
Note that the data-type points to the type-object of the array scalar
\begin_inset LatexCommand index
name "array scalars"
\end_inset
.
An array scalar is returned using the type-object and a particular element
of the ndarray.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename Figures/threefundamental.eps
width 90text%
keepAspectRatio
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Conceptual-diagram-showing"
\end_inset
Conceptual diagram showing the relationship between the three fundamental
objects used to describe the data in an array: 1) the ndarray itself, 2)
the data-type object that describes the layout of a single fixed-size element
of the array, 3) the array-scalar Python object that is returned when a
single element of the array is accessed.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Every dtype object is based on one of 21 built-in dtype objects.
These built-in objects allow numeric operations on a wide-variety of integer,
floating-point, and complex data types.
Associated with each data-type is a Python type object whose instances
are array scalars.
This type-object can be obtained using the
\family typewriter
type
\family default
attribute of the dtype object.
Python typically defines only one data-type of a particular data class
(one integer type, one floating-point type, etc.).
This can be convenient for some applications that don't need to be concerned
with all the ways data can be represented in a computer.
For scientific applications, however, this is not always true.
As a result, in NumPy, their are 21 different fundamental Python data-type-desc
riptor objects built-in.
These descriptors are mostly based on the types available in the C language
that CPython is written in.
However, there are a few types that are extremely flexible, such as
\family typewriter
str_
\family default
,
\family typewriter
unicode_
\family default
, and
\family typewriter
void
\family default
.
\end_layout
\begin_layout Standard
The fundamental data-types are shown in Table
\begin_inset LatexCommand ref
reference "cap:Fundamental-Data-Types"
\end_inset
.
Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array
of the right size can always be ensured (
\emph on
e.g.
\emph default
int8, float64, complex128).
The C-like names are also accessible using a character code which is also
shown in the table (use of the character codes, however, is discouraged).
Names for the data types that would clash with standard Python object names
are followed by a trailing underscore, '_'.
These data types are so named because they use the same underlying precision
as the corresponding Python data types.
Most scientific users should be able to use the array-enhanced scalar objects
in place of the Python objects.
The array-enhanced scalars inherit from the Python objects they can replace
and should act like them under all circumstances (except for how errors
are handled in math computations).
\end_layout
\begin_layout Tip
The array types
\series bold
bool
\series default
_,
\series bold
int
\series default
_,
\series bold
complex
\series default
_,
\series bold
float
\series default
_,
\series bold
object
\series default
_,
\series bold
unicode
\series default
_, and
\series bold
str_
\series default
are enhanced-scalars.
They are very similar to the standard Python types (without the trailing
underscore) and inherit from them (except for bool_ and object_).
They can be used in place of the standard Python types whenever desired.
Whenever a data type is required, as an argument, the standard Python types
are recognized as well.
\end_layout
\begin_layout Standard
Three of the data types are flexible in that they can have items that are
of an arbitrary size: the
\family typewriter
str_
\family default
type, the
\family typewriter
unicode_
\family default
type, and the
\family typewriter
void
\family default
type.
While, you can specify an arbitrary size for these types, every item in
an array is still of that specified size.
The void type, for example, allows for arbitrary records to be defined
as elements of the array, and can be used to define exotic types built
on top of the basic
\family typewriter
ndarray
\family default
.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Fundamental-Data-Types"
\end_inset
Built-in array-scalar types corresponding to data-types for an ndarray.
The bold-face types correspond to standard Python types.
The object_ type is special because arrays with dtype='O' do not return
an array scalar on item access but instead return the actual object referenced
in the array.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="24" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Type
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Bit-Width
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Character
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
bool_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
boolXX
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'?'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
byte
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
intXX
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'b'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
short
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'h'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
intc
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'i'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
int_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'l'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
longlong
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'q'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
intp
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'p'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
ubyte
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
uintXX
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'B'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
ushort
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'H'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
uintc
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'I'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
uint
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'L'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
ulonglong
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'Q'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
uintp
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'P'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
single
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
floatXX
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'f'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
float_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'd'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
longfloat
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'g'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
csingle
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
complexXX
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'F'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
complex_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'D'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
clongfloat
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'G'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
object_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'O'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
str_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'S#'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
unicode_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'U#'
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
void
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family typewriter
'V#'
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Note
The two types
\family typewriter
intp
\family default
and
\family typewriter
uintp
\family default
are not separate types.
They are names bound to a specific integer type just large enough to hold
a memory address (a pointer) on the platform.
\end_layout
\begin_layout Warning
Numeric Compatibility: If you used old typecode characters in your Numeric
code (which was never recommended), you will need to change some of them
to the new characters.
In particular, the needed changes are 'c->'S1', 'b'->'B', '1'->'b', 's'->'h',
'w'->'H', and 'u'->'I'.
These changes make the typecharacter convention more consistent with other
Python modules such as the struct module.
\end_layout
\begin_layout Standard
The fundamental data-types are arranged into a hierarchy of Python type-objects
shown in Figure
\begin_inset LatexCommand ref
reference "cap:Hierarchy-of-type"
\end_inset
.
Each of the leaves on this hierarchy correspond to actual data-types that
arrays can have (in other words, there is a built in dtype object associated
with each of these new types).
They also correspond to new Python objects that can be created.
These new objects are
\begin_inset Quotes eld
\end_inset
scalar
\begin_inset Quotes erd
\end_inset
types corresponding to each fundamental data-type.
Their purpose is to smooth out the rough edges that result when mixing
scalar and array operations.
These scalar objects will be discussed in more detail in Chapter
\begin_inset LatexCommand ref
reference "cha:Scalar-objects"
\end_inset
.
The other types in the hierarchy define particular categories of types.
These categories can be useful for testing whether or not the object returned
by
\family typewriter
self.dtype.type
\family default
is of a particular class (using
\family typewriter
issubclass
\family default
).
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename Figures/hierarchy.eps
lyxscale 75
width 95text%
keepAspectRatio
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Hierarchy-of-type"
\end_inset
Hierarchy of type objects representing the array data types.
Not shown are the two integer types
\family typewriter
intp
\family default
and
\family typewriter
uintp
\family default
which just point to the integer type that holds a pointer for the platform.
All the number types can be obtained using bit-width names as well.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Basic indexing (slicing)
\end_layout
\begin_layout Standard
Indexing
\begin_inset LatexCommand index
name "indexing"
\end_inset
is a powerful tool in Python and NumPy takes full advantage of this power.
In fact, some of capabilities of Python's indexing were first established
by the needs of Numeric users.
\begin_inset Foot
status open
\begin_layout Standard
For example, the ability to index with a comma separated list of objects
and have it correspond to indexing with a tuple is a feature added to Python
at the request of the NumPy community.
The Ellipsis object was also added to Python explicitly for the NumPy community.
Extended slicing (wherein a step can be provided) was also a feature added
to Python because of Numeric.
\end_layout
\end_inset
Indexing is also sometimes called slicing in Python, and slicing for an
\family typewriter
ndarray
\family default
works very similarly as it does for other Python sequences.
There are three big differences: 1) slicing can be done over multiple dimension
s, 2) exactly one ellipsis object can be used to indicate several dimensions
at once, 3) slicing cannot be used to expand the size of an array (unlike
lists).
\end_layout
\begin_layout Standard
A few examples should make slicing more clear.
Suppose
\begin_inset Formula $A$
\end_inset
is a
\begin_inset Formula $10\times20$
\end_inset
array, then
\begin_inset Formula $A[3]$
\end_inset
is the same as
\begin_inset Formula $A[3,:]$
\end_inset
and represents the 4th length-20
\begin_inset Quotes eld
\end_inset
row
\begin_inset Quotes erd
\end_inset
of the array.
On the other hand,
\begin_inset Formula $A[:,3]$
\end_inset
represents the 4th length-10
\begin_inset Quotes eld
\end_inset
column
\begin_inset Quotes erd
\end_inset
of the array.
Every third element of the 4th column can be selected as
\begin_inset Formula $A[::3,3]$
\end_inset
.
Ellipses can be used to replace zero or more
\begin_inset Quotes eld
\end_inset
:
\begin_inset Quotes erd
\end_inset
terms.
In other words, an Ellipsis
\begin_inset LatexCommand index
name "Ellipsis"
\end_inset
object expands to zero or more full slice objects (
\begin_inset Quotes eld
\end_inset
:
\begin_inset Quotes erd
\end_inset
) so that the total number of dimensions in the slicing tuple matches the
number of dimensions in the array.
Thus, if
\begin_inset Formula $A$
\end_inset
is
\begin_inset Formula $10\times20\times30\times40$
\end_inset
, then
\begin_inset Formula $A[3:,...,4]$
\end_inset
is equivalent to
\begin_inset Formula $A[3:,:,:,4]$
\end_inset
while
\begin_inset Formula $A[...,3]$
\end_inset
is equivalent to
\begin_inset Formula $A[:,:,:,3].$
\end_inset
\end_layout
\begin_layout Standard
The following code illustrates some of these concepts:
\end_layout
\begin_layout MyCode
>>> a = arange(60).reshape(3,4,5); print a
\newline
[[[ 0 1 2 3 4]
\newline
[ 5 6 7
8 9]
\newline
[10 11 12 13 14]
\newline
[15 16 17 18 19]]
\newline
\newline
[[20 21 22 23 24]
\newline
[25 26 27
28 29]
\newline
[30 31 32 33 34]
\newline
[35 36 37 38 39]]
\newline
\newline
[[40 41 42 43 44]
\newline
[45 46 47
48 49]
\newline
[50 51 52 53 54]
\newline
[55 56 57 58 59]]]
\end_layout
\begin_layout Standard
\InsetSpace ~
\end_layout
\begin_layout MyCode
>>> print a[...,3]
\newline
[[ 3 8 13 18]
\newline
[23 28 33 38]
\newline
[43 48 53 58]]
\newline
>>> print a[1,...,3]
\newline
[23
28 33 38]
\newline
>>> print a[:,:,2]
\newline
[[ 2 7 12 17]
\newline
[22 27 32 37]
\newline
[42 47 52 57]]
\newline
>>>
print a[0,::2,::2]
\newline
[[ 0 2 4]
\newline
[10 12 14]]
\end_layout
\begin_layout Section
Memory Layout of
\family typewriter
ndarray
\end_layout
\begin_layout Standard
On a fundamental level, an
\begin_inset Formula $N$
\end_inset
-dimensional array object is just a one-dimensional sequence of memory with
fancy indexing code that maps an
\begin_inset Formula $N$
\end_inset
-dimensional index into a one-dimensional index.
The one-dimensional index is necessary on some level because that is how
memory is addressed in a computer.
The fancy indexing, however, can be very helpful for translating our ideas
into computer code.
This is because many concepts we wish to model on a computer have a natural
representation as an
\begin_inset Formula $N$
\end_inset
-dimensional array.
While this is especially true in science and engineering, it is also applicable
to many other arenas which can be appreciated by considering the popularity
of the spreadsheet as well as
\begin_inset Quotes eld
\end_inset
image processing
\begin_inset Quotes erd
\end_inset
applications.
\end_layout
\begin_layout Warning
Some high-level languages give pre-eminence to a particular use of 2-dimensional
arrays as Matrices.
In NumPy, however, the core object is the more general
\begin_inset Formula $N$
\end_inset
-dimensional array.
NumPy defines a matrix object as a sub-class of the N-dimensional array.
\end_layout
\begin_layout Standard
In order to more fully understand the array object along with its attributes
and methods it is important to learn more about how an
\begin_inset Formula $N$
\end_inset
-dimensional array is represented in the computer's memory.
A complete understanding of this layout is only essential for optimizing
algorithms operating on general purpose arrays.
But, even for the casual user, a general understanding of memory layout
will help to explain the use of certain array attributes that may otherwise
be mysterious.
\end_layout
\begin_layout Subsection
Contiguous Memory Layout
\end_layout
\begin_layout Standard
There is a fundamental ambiguity in how the mapping to a one-dimensional
index can take place which is illustrated for a 2-dimensional array in
Figure
\begin_inset LatexCommand ref
reference "cap:Options-for-memory"
\end_inset
.
In that figure, each block represents a chunk of memory that is needed
for representing the underlying array element.
For example, each block could represent the 8 bytes needed to represent
a double-precision floating point number.
\end_layout
\begin_layout Standard
In the figure, two arrays are shown, a
\begin_inset Formula $4x3$
\end_inset
array and a
\begin_inset Formula $3x4$
\end_inset
array.
Each of these arrays takes 12 blocks of memory shown as a single, contiguous
segment.
How this memory is used to form the abstract 2-dimensional array can vary,
however, and the
\family typewriter
ndarray
\family default
object supports both styles.
Which style is in use can be interrogated by the use of the flags attribute
which returns a dictionary of the state of array flags.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename Figures/contiguous.eps
width 85text%
keepAspectRatio
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Options-for-memory"
\end_inset
Options for memory layout of a 2-dimensional array.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In the C-style of
\begin_inset Formula $N$
\end_inset
-dimensional indexing shown on the left of Figure
\begin_inset LatexCommand ref
reference "cap:Options-for-memory"
\end_inset
the last
\begin_inset Formula $N$
\end_inset
-dimensional index
\begin_inset Quotes eld
\end_inset
varies the fastest.
\begin_inset Quotes erd
\end_inset
In other words, to move through computer memory sequentially, the last
index is incremented first, followed by the second-to-last index and so
forth.
Some of the algorithms in NumPy that deal with
\begin_inset Formula $N$
\end_inset
-dimensional arrays work best with this kind of data.
\end_layout
\begin_layout Standard
In the Fortran-style of
\begin_inset Formula $N$
\end_inset
-dimensional indexing shown on the right of Figure
\begin_inset LatexCommand ref
reference "cap:Options-for-memory"
\end_inset
, the first
\begin_inset Formula $N$
\end_inset
-dimensional index
\begin_inset Quotes eld
\end_inset
varies the fastest.
\begin_inset Quotes erd
\end_inset
Thus, to move through computer memory sequentially, the first index is
incremented first until it reaches the limit in that dimension, then the
second index is incremented and the first index is reset to zero.
While NumPy can be compiled without the use of a Fortran compiler, several
modules of SciPy (available separately) rely on underlying algorithms written
in Fortran.
Algorithms that work on
\begin_inset Formula $N$
\end_inset
-dimensional arrays that are written in Fortran typically expect Fortran-style
arrays.
\end_layout
\begin_layout Standard
The two-styles of memory layout for arrays are connected through the transpose
operation.
Thus, if
\begin_inset Formula $A$
\end_inset
is a (contiguous) C-style array, then the same block of memory can be used
to represent
\begin_inset Formula $A^{T}$
\end_inset
as a (contiguous) Fortran-style array.
This kind of understanding can be useful when trying to optimize the wrapping
of Fortran subroutines, or if a more detailed understanding of how to write
algorithms for generally-indexed arrays is desired.
But, fortunately, the casual user who does not care if an array is copied
occasionally to get it into the right orientation needed for a particular
algorithm can forget about how the array is stored in memory and just visualize
it as an
\begin_inset Formula $N$
\end_inset
-dimensional array (that is, after all, the whole point of creating the
\family typewriter
ndarray
\family default
object in the first place).
\end_layout
\begin_layout Subsection
Non-contiguous memory layout
\end_layout
\begin_layout Standard
Both of the examples presented above are
\emph on
single-segment
\begin_inset LatexCommand index
name "single-segment"
\end_inset
\emph default
arrays where the entire array is visited by sequentially marching through
memory one element at a time.
When an algorithm in C or Fortran expects an N-dimensional array, this
single segment (of a certain fundamental type) is usually what is expected
along with the shape
\begin_inset Formula $N$
\end_inset
-tuple.
With a single-segment of memory representing the array, the one-dimensional
index into computer memory can always be computed from the
\begin_inset Formula $N$
\end_inset
-dimensional index.
This concept is explored further in the following paragraphs.
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $n_{i}$
\end_inset
be the value of the
\begin_inset Formula $i^{\textrm{th}}$
\end_inset
index into an array whose shape is represented by the
\begin_inset Formula $N$
\end_inset
integers
\begin_inset Formula $d_{i}$
\end_inset
(
\begin_inset Formula $i=0\ldots N-1).$
\end_inset
Then, the one-dimensional index into a C-style contiguous array is
\begin_inset Formula \[
n^{C}=\sum_{i=0}^{N-1}n_{i}\prod_{j=i+1}^{N-1}d_{j}\]
\end_inset
while the one-dimensional index into a Fortran-style contiguous array is
\begin_inset Formula \[
n^{F}=\sum_{i=0}^{N-1}n_{i}\prod_{j=0}^{i-1}d_{j}.\]
\end_inset
In these formulas we are assuming that
\begin_inset Formula \[
\prod_{j=k}^{m}d_{j}=d_{k}d_{k+1}\cdots d_{m-1}d_{m}\]
\end_inset
so that if
\begin_inset Formula $m<k,$
\end_inset
the product is
\begin_inset Formula $1.$
\end_inset
While perfectly general, these formulas may be a bit confusing at first
glimpse.
Let's see how they expand out for determining the one-dimensional index
corresponding to the element
\begin_inset Formula $\left(1,3,2\right)$
\end_inset
of a
\begin_inset Formula $4\times5\times6$
\end_inset
array.
If the array is stored as Fortran contiguous, then
\begin_inset Formula \begin{eqnarray*}
n^{F} & = & n_{0}\cdot\left(1\right)+n_{1}\cdot(4)+n_{2}\cdot\left(4\cdot5\right)\\
& = & 1+3\cdot4+2\cdot20=53.\end{eqnarray*}
\end_inset
On the other hand, if the array is stored as C contiguous, then
\begin_inset Formula \begin{eqnarray*}
n^{C} & = & n_{0}\cdot\left(5\cdot6\right)+n_{1}\cdot\left(6\right)+n_{2}\cdot\left(1\right)\\
& = & 1\cdot30+3\cdot6+2\cdot1=50.\end{eqnarray*}
\end_inset
The general pattern should be more clear from these examples.
\end_layout
\begin_layout Standard
The formulas for the one-dimensional index of the N-dimensional arrays reveal
what results in an important generalization for memory layout.
Notice that each formula can be written as
\begin_inset Formula \[
n^{X}=\sum_{i=0}^{N-1}n_{i}s_{i}^{X}\]
\end_inset
where
\begin_inset Formula $s_{i}^{X}$
\end_inset
gives the
\emph on
stride
\begin_inset LatexCommand index
name "stride"
\end_inset
\emph default
for dimension
\begin_inset Formula $i$
\end_inset
.
\begin_inset Foot
status open
\begin_layout Standard
Our definition of stride here is an element-based stride, while the strides
attribute returns a byte-based stride.
The byte-based stride is the element itemsize multiplied by the element-based
stride.
\end_layout
\end_inset
Thus, for C and Fortran contiguous arrays respectively we have
\begin_inset Formula \begin{eqnarray*}
s_{i}^{C} & = & \prod_{j=i+1}^{N-1}d_{j}=d_{i+1}d_{i+2}\cdots d_{N-1},\\
s_{i}^{F} & = & \prod_{j=0}^{i-1}d_{j}=d_{0}d_{1}\cdots d_{i-1}.\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
The stride is how many elements in the underlying one-dimensional layout
of the array one must jump in order to get to the next array element of
a specific dimension in the N-dimensional layout.
Thus, in a C-style
\begin_inset Formula $4\times5\times6$
\end_inset
array one must jump over 30 elements to increment the first index by one,
so 30 is the stride for the first dimension (
\begin_inset Formula $s_{0}^{C}=30$
\end_inset
).
If, for each array, we define a strides tuple with
\begin_inset Formula $N$
\end_inset
integers, then we have pre-computed and stored an important piece of how
to map the
\begin_inset Formula $N$
\end_inset
-dimensional index to the one-dimensional one used by the computer.
\end_layout
\begin_layout Standard
In addition to providing a pre-computed table for index mapping, by allowing
the strides tuple to consist of arbitrary integers we have provided a more
general layout for the
\begin_inset Formula $N$
\end_inset
-dimensional array.
As long as we always use the stride information to move around in the
\begin_inset Formula $N$
\end_inset
-dimensional array, we can use any convenient layout we wish for the underlying
representation as long as it is regular enough to be defined by constant
jumps in each dimension.
The
\family typewriter
ndarray
\family default
object of NumPy uses this stride information and therefore the underlying
memory of an
\family typewriter
ndarray
\family default
can be laid out dis-contiguously.
\end_layout
\begin_layout Note
Several algorithms in NumPy work on arbitrarily strided arrays.
However, some algorithms require single-segment arrays.
When an irregularly strided array is passed in to such algorithms, a copy
is automatically made.
\end_layout
\begin_layout Standard
An important situation where irregularly strided arrays occur is array indexing.
Consider again Figure
\begin_inset LatexCommand ref
reference "cap:Options-for-memory"
\end_inset
.
In that figure a high-lighted sub-array is shown.
Define
\begin_inset Formula $C$
\end_inset
to be the
\begin_inset Formula $4\times3$
\end_inset
C contiguous array and
\begin_inset Formula $F$
\end_inset
to be the
\begin_inset Formula $3\times4$
\end_inset
Fortran contiguous array.
The highlighted areas can be written respectively as
\begin_inset Formula $C$
\end_inset
[1:3,1:3] and
\begin_inset Formula $F$
\end_inset
[1:3,1:3].
As evidenced by the corresponding highlighted region in the one-dimensional
view of the memory, these sub-arrays are neither C contiguous nor Fortran
contiguous.
However, they can still be represented by an
\family typewriter
ndarray
\family default
object using the same striding tuple as the original array used.
Therefore, a regular indexing expression on an
\family typewriter
ndarray
\family default
can always produce an
\family typewriter
ndarray
\family default
object
\emph on
without
\emph default
copying any data.
This is sometimes referred to as the
\begin_inset Quotes eld
\end_inset
view
\begin_inset Quotes erd
\end_inset
feature of array indexing, and one can see that it is enabled by the use
of striding information in the underlying
\family typewriter
ndarray
\family default
object.
The greatest benefit of this feature is that it allows indexing to be done
very rapidly and without exploding memory usage (because no copies of the
data are made).
\end_layout
\begin_layout Section
Universal Functions for arrays
\end_layout
\begin_layout Standard
NumPy provides a wealth of mathematical functions that operate on then ndarray
object.
From algebraic functions such as addition and multiplication to trigonometric
functions such as
\begin_inset Formula $\sin,$
\end_inset
and
\begin_inset Formula $\cos$
\end_inset
.
Each universal function
\begin_inset LatexCommand index
name "universal function"
\end_inset
(
\family typewriter
ufunc
\family default
\begin_inset LatexCommand index
name "ufunc"
\end_inset
) is an instance of a general class so that function behavior is the same.
All ufuncs perform element-by-element operations over an array or a set
of arrays (for multi-input functions).
The ufuncs themselves and their methods are documented in Part
\begin_inset LatexCommand ref
reference "par:The-Ufunc-Object"
\end_inset
.
\end_layout
\begin_layout Standard
One important aspect of ufunc behavior that should be introduced early,
however, is the idea of
\emph on
\begin_inset LatexCommand index
name "broadcasting"
\end_inset
broadcasting
\emph default
.
Broadcasting is used in several places throughout NumPy and is therefore
worth early exposure.
To understand the idea of broadcasting, you first have to be conscious
of the fact that all ufuncs are always element-by-element operations.
In other words, suppose we have a ufunc with two inputs and one output
(
\emph on
e.g.
\emph default
addition) and the inputs are both arrays of shape
\begin_inset Formula $4\times6\times5$
\end_inset
.
Then, the output is going to be
\begin_inset Formula $4\times6\times5$
\end_inset
, and will be the result of applying the underlying function (
\emph on
e.g.
\emph default
\begin_inset Formula $+$
\end_inset
) to each pair of inputs to produce the output at the corresponding
\begin_inset Formula $N$
\end_inset
-dimensional location.
\end_layout
\begin_layout Standard
Broadcasting allows ufuncs to deal in a meaningful way with inputs that
do not have exactly the same shape.
In particular, the first rule of broadcasting is that if all input arrays
do not have the same number of dimensions, then a
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $1$
\end_inset
\begin_inset Quotes erd
\end_inset
will be repeatedly pre-pended to the shapes of the smaller arrays until
all the arrays have the same number of dimensions.
The second rule of broadcasting ensures that arrays with a size of 1 along
a particular dimension act as if they had the size of the array with the
largest shape along that dimension.
The value of the array element is assumed to be the same along that dimension
for the
\begin_inset Quotes eld
\end_inset
broadcasted
\begin_inset Quotes erd
\end_inset
array.
After application of the broadcasting rules, the sizes of all arrays must
match.
\end_layout
\begin_layout Standard
While a little tedious to explain, the broadcasting rules are easy to pick
up by looking at a couple of examples.
Suppose there is a
\family typewriter
ufunc
\family default
with two inputs,
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
.
Now supposed that
\begin_inset Formula $A$
\end_inset
has shape
\begin_inset Formula $4\times6\times5$
\end_inset
while
\begin_inset Formula $B$
\end_inset
has shape
\begin_inset Formula $4\times6\times1$
\end_inset
.
The ufunc will proceed to compute the
\begin_inset Formula $4\times6\times5$
\end_inset
output as if
\begin_inset Formula $B$
\end_inset
had been
\begin_inset Formula $4\times6\times5$
\end_inset
by assuming that
\begin_inset Formula $B[...,k]=B[...,0]$
\end_inset
for
\begin_inset Formula $k=1,2,3,4$
\end_inset
.
\end_layout
\begin_layout Standard
Another example illustrates the idea of adding
\begin_inset Formula $1$
\end_inset
's to the beginning of the array shape-tuple.
Suppose
\begin_inset Formula $A$
\end_inset
is the same as above, but
\begin_inset Formula $B$
\end_inset
is a length
\begin_inset Formula $5$
\end_inset
array.
Because of the first rule,
\begin_inset Formula $B$
\end_inset
will be interpreted as a
\begin_inset Formula $1\times1\times5$
\end_inset
array, and then because of the second rule
\begin_inset Formula $B$
\end_inset
will be interpreted as a
\begin_inset Formula $4\times6\times5$
\end_inset
array by repeating the elements of
\begin_inset Formula $B$
\end_inset
in the obvious way.
\end_layout
\begin_layout Standard
The most common alteration needed is to route-around the automatic pre-pending
of 1's to the shape of the array.
If it is desired, to add
\begin_inset Formula $1$
\end_inset
's to the end of the array shape, then dimensions can always be added using
the
\family typewriter
newaxis
\family default
name in NumPy:
\begin_inset Formula $B[...,\textrm{newaxis, newaxis}]$
\end_inset
returns an array with 2 additional 1's appended to the shape of
\begin_inset Formula $B.$
\end_inset
\end_layout
\begin_layout Standard
One important aspect of broadcasting is the calculation of functions on
regularly spaced grids.
For example, suppose it is desired to show a portion of the multiplication
table by computing the function
\begin_inset Formula $a*b$
\end_inset
on a grid with
\begin_inset Formula $a$
\end_inset
running from 6 to 9 and
\begin_inset Formula $b$
\end_inset
running from 12 to 16.
The following code illustrates how this could be done using ufuncs and
broadcasting.
\end_layout
\begin_layout MyCode
>>> a = arange(6, 10); print a
\newline
[6 7 8 9]
\newline
>>> b = arange(12, 17); print b
\newline
[12
13 14 15 16]
\newline
>>> table = a[:,newaxis] * b
\newline
>>> print table
\newline
[[ 72 78 84 90
96]
\newline
[ 84 91 98 105 112]
\newline
[ 96 104 112 120 128]
\newline
[108 117 126 135 144]]
\end_layout
\begin_layout Section
Summary of new features
\end_layout
\begin_layout Standard
More information about using arrays in Python can be found in the old Numeric
documentation at
\begin_inset LatexCommand htmlurl
name "http://numeric.scipy.org"
target "http://numeric.scipy.org"
\end_inset
.
Quite a bit of that documentation is still accurate, especially in the
discussion of array basics.
There are significant differences, however, and this book seeks to explain
them in detail.
The following list tries to summarize the significant new features (over
Numeric) available in the
\family typewriter
ndarray
\family default
and
\family typewriter
ufunc
\family default
objects of NumPy:
\end_layout
\begin_layout Enumerate
more data types (all standard C-data types plus complex floats, Boolean,
string, unicode, and void *);
\end_layout
\begin_layout Enumerate
flexible data types where each array can have a different itemsize (but
all elements of the same array still have the same itemsize);
\end_layout
\begin_layout Enumerate
there is a true Python scalar type (contained in a hierarchy of types) for
every data-type an array can have;
\end_layout
\begin_layout Enumerate
data-type objects define the data-type with support for data-type objects
with fields and subarrays which allow record arrays with nested records;
\end_layout
\begin_layout Enumerate
many more array methods in addition to functional counterparts;
\end_layout
\begin_layout Enumerate
attributes more clearly distinguished from methods (attributes are intrinsic
parts of an array so that setting them changes the array itself);
\end_layout
\begin_layout Enumerate
array scalars covering all data types which inherit from Python scalars
when appropriate;
\end_layout
\begin_layout Enumerate
arrays can be misaligned, swapped, and in Fortran order in memory (facilitates
memory-mapped arrays);
\end_layout
\begin_layout Enumerate
arrays can be more easily read from text files and created from buffers
and iterators;
\end_layout
\begin_layout Enumerate
arrays can be quickly written to files in text and/or binary mode;
\end_layout
\begin_layout Enumerate
arrays support the removal of the 64-bit memory limitation as long as you
have Python 2.5 or later;
\end_layout
\begin_layout Enumerate
fancy indexing can be done on arrays using integer sequences and Boolean
masks;
\end_layout
\begin_layout Enumerate
coercion rules are altered for mixed scalar / array operations so that scalars
(anything that produces a 0-dimensional array internally) will not determine
the output type in such cases.
\end_layout
\begin_layout Enumerate
when coercion is needed, temporary buffer-memory allocation is limited to
a user-adjustable size;
\end_layout
\begin_layout Enumerate
errors are handled through the IEEE floating point status flags and there
is flexibility on a per-thread level for handling these errors;
\end_layout
\begin_layout Enumerate
one can register an error callback function in Python to handle errors are
set to 'call' for their error handling;
\end_layout
\begin_layout Enumerate
ufunc reduce, accumulate, and reduceat can take place using a different
type then the array type if desired (without copying the entire array);
\end_layout
\begin_layout Enumerate
ufunc output arrays passed in can be a different type than expected from
the calculation;
\end_layout
\begin_layout Enumerate
ufuncs take keyword arguments which can specify 1) the error handling explicitly
and 2) the specific 1-d loop to use by-passing the type-coercion detection.
\end_layout
\begin_layout Enumerate
arbitrary classes can be passed through ufuncs (__array_wrap__ and __array_prior
ity__ expand previous __array__ method);
\end_layout
\begin_layout Enumerate
ufuncs can be easily created from Python functions;
\end_layout
\begin_layout Enumerate
ufuncs have attributes to detail their behavior, including a dynamic doc
string that automatically generates the calling signature;
\end_layout
\begin_layout Enumerate
several new ufuncs (frexp, modf, ldexp, isnan, isfinite, isinf, signbit);
\end_layout
\begin_layout Enumerate
new types can be registered with the system so that specialized ufunc loops
can be written over new type objects;
\end_layout
\begin_layout Enumerate
new types can also register casting functions and rules for fitting into
the
\begin_inset Quotes eld
\end_inset
can-cast
\begin_inset Quotes erd
\end_inset
hierarchy;
\end_layout
\begin_layout Enumerate
C-API enhanced so that more of the functionality is available from compiled
code;
\end_layout
\begin_layout Enumerate
C-API enhanced so array structure access can take place through macros;
\end_layout
\begin_layout Enumerate
new iterator objects created for easy handling in C of non-contiguous arrays;
\end_layout
\begin_layout Enumerate
new multi-iterator object created for easy handling in C of broadcasting;
\end_layout
\begin_layout Enumerate
types have more functions associated with them (no magic function lists
in the C-code).
Any function needed is part of the type structure.
\end_layout
\begin_layout Standard
All of these enhancements will be documented more thoroughly in the remaining
portions of this book.
\end_layout
\begin_layout Section
Summary of differences with Numeric
\end_layout
\begin_layout Standard
An effort was made to retain backwards compatibility with Numeric all the
way to the C-level.
This was mostly accomplished, with a few changes that needed to be made
for consistency of the new system.
If you are just starting out with NumPy, then this section may be skipped.
\end_layout
\begin_layout Standard
There are two steps (one required and one optional) to converting code that
works with Numeric to work fully with NumPy The first step uses a compatibility
layer and requires only small changes which can be handled by the numpy.oldnumer
ic.alter_code1 module.
Code written to the compatibility layer will work and be supported.
The purpose of the compatibility layer is to make it easy to convert to
NumPy and many codes may only take this first step and work fine with NumPy.
The second step is optional as it removes dependency on the compatibility
layer and therefore requires a few more extensive changes.
Many of these changes can be performed by the numpy.oldnumeric.alter_code2
module, but you may still need to do some final tweaking by hand.
Because many users will probably be content to only use the first step,
the alter_code2 module for second-stage migration may not be as complete
as it otherwise could be.
\end_layout
\begin_layout Subsection
First-step changes
\end_layout
\begin_layout Standard
In order to use the compatibility layer there are still a few changes that
need to be made to your code.
Many of these changes can be made by running the alter_code1 module with
your code as input.
\end_layout
\begin_layout Enumerate
Importing (the alter_code1 module handles all these changes)
\end_layout
\begin_deeper
\begin_layout Enumerate
import Numeric --> import numpy.oldnumeric as Numeric
\end_layout
\begin_layout Enumerate
import Numeric as XX --> import numpy.oldnumeric as XX
\end_layout
\begin_layout Enumerate
from Numeric import <name1>,...<nameN> --> from numpy.oldnumeric import <name1>,...,<na
meN>
\end_layout
\begin_layout Enumerate
from Numeric import * --> from numpy.oldnumeric import *
\end_layout
\begin_layout Enumerate
Similar name changes need to be made for Matrix, MLab, UserArray, LinearAlgebra,
RandomArray RNG, RNG.Statistics, and FFT.
The new names are numpy.oldnumeric.<pkg> where <pkg> is matrix, mlab, user_array,
linear_algebra, random_array, rng, rng_stats, and fft.
\end_layout
\begin_layout Enumerate
multiarray and umath (if you used them directly) are now numpy.core.multiarray
and numpy.core.umath, but it is more future proof to replace usages of these
internal modules with numpy.oldnumeric.
\end_layout
\end_deeper
\begin_layout Enumerate
Method name changes and methods converted to attributes.
The alter_code1 module handles all these changes.
\end_layout
\begin_deeper
\begin_layout Enumerate
\emph on
arr
\emph default
.typecode() -->
\emph on
arr
\emph default
.dtype.char
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.iscontiguous() -->
\emph on
arr
\emph default
.flags.contiguous
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.byteswapped() -->
\emph on
arr
\emph default
.byteswap()
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.toscalar() -->
\emph on
arr
\emph default
.item()
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.itemsize() -->
\emph on
arr
\emph default
.itemsize
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.spacesaver() eliminated
\end_layout
\begin_layout Enumerate
\emph on
arr
\emph default
.savespace() eliminated
\end_layout
\end_deeper
\begin_layout Enumerate
Some of the typecode characters have changed to be more consistent with
other Python modules (array and struct).
You should only notice this change if you used the actual typecode characters
(instead of the named constants).
\newline
The alter_code1 module will change uses of 'b' to 'B' for internal Numeric
functions that it knows about because NumPy will interpret 'b' to mean
a signed byte type (instead of the old unsigned).
It will also change the character codes when they are used explicitly in
the .astype method.
In the compatibility layer (and only in the compatibility layer), typecode-requ
iring function calls (
\emph on
e.g.
\emph default
zeros, array) understand the old typecode characters.
\newline
The changes are (Numeric --> NumPy):
\end_layout
\begin_deeper
\begin_layout Enumerate
'b' --> 'B'
\end_layout
\begin_layout Enumerate
'1' --> 'b'
\end_layout
\begin_layout Enumerate
's' --> 'h'
\end_layout
\begin_layout Enumerate
'w' --> 'H'
\end_layout
\begin_layout Enumerate
'u' --> 'I'
\end_layout
\end_deeper
\begin_layout Enumerate
\emph on
arr.
\emph default
flat now returns an indexable 1-D iterator.
This behaves correctly when passed to a function, but if you expected methods
or attributes on
\emph on
arr.
\emph default
flat --- besides .copy() --- then you will need to replace
\emph on
arr
\emph default
.flat with
\emph on
arr.
\emph default
ravel() (copies only when necessary) or
\emph on
arr.
\emph default
flatten() (always copies).
The alter_code1 module will change
\emph on
arr
\emph default
.flat to
\emph on
arr
\emph default
.ravel() unless you used the construct
\emph on
arr
\emph default
.flat = obj or
\emph on
arr
\emph default
.flat[ind].
\end_layout
\begin_layout Enumerate
If you used type-equality testing on the objects returned from arrays, then
you need to change this to isinstance testing.
Thus type(a[0]) is float or type(a[0]) == float should be changed to isinstance
(a[0], float).
This is because array scalar objects are now returned from arrays.
These inherit from the Python scalars where they can, but define their
own methods and attributes.
This conversion is done by alter_code1 for the types (float, int, complex,
and ArrayType)
\end_layout
\begin_layout Enumerate
If your code should produce 0-d arrays.
These no-longer have a length as they should be interpreted similarly to
real scalars which don't have a length.
\end_layout
\begin_layout Enumerate
Arrays cannot be tested for truth value unless they are empty (returns False)
or have only one element.
This means that if Z: where Z is an array will fail (unless Z is empty
or has only one element).
Also the 'and' and 'or' operations (which test for object truth value)
will also fail on arrays of more than one element.
Use the .any() and .all() methods to test for truth value of an array.
\end_layout
\begin_layout Enumerate
Masked arrays return a special nomask object instead of None when there
is no mask on the array for the functions getmask and attribute access
\emph on
arr
\emph default
.mask
\end_layout
\begin_layout Enumerate
Masked array functions have a default axis of None (meaning ravel), make
sure to specify an axis if your masked arrays are larger than 1-d.
\end_layout
\begin_layout Enumerate
If you used the construct
\family typewriter
arr.shape=<tuple>
\family default
, this will not work for array scalars (which can be returned from array
operations).
You cannot set the shape of an array-scalar (you can read it though).
As a result, for more general code you should use
\family typewriter
arr=arr.reshape(<tuple>)
\family default
which works for both array-scalars and arrays.
\end_layout
\begin_layout Standard
The alter_code1 script should handle the changes outlined in steps 1-5 above.
The final incompatibilities in 6-9 are less common and must be modified
by hand if necessary.
\end_layout
\begin_layout Subsection
Second-step changes
\end_layout
\begin_layout Standard
During the second phase of migration (should it be necessary) the compatibility
layer is dropped.
This phase requires additional changes to your code.
There is another conversion module (alter_code2) which can help but it
is not complete.
The changes required to drop dependency on the compatibility layer are
\end_layout
\begin_layout Enumerate
Importing
\end_layout
\begin_deeper
\begin_layout Enumerate
numpy.oldnumeric --> numpy
\end_layout
\begin_layout Enumerate
from numpy.oldnumeric import * --> from numpy import * (this may clobber
more names and therefore require further fixes to your code but then you
didn't do this regularly anyway did you).
The recommended procedure if this replacement causes problems is to fix
the use of from numpy.oldnumeric import * to extract only the required names
and then continue.
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.mlab --> None, the functions come from other places.
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.linear_algebra --> numpy.lilnalg with name changes to the
functions (made lower case and shorter).
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.random_array --> numpy.random with some name changes to the
functions.
\end_layout
\begin_layout Enumerate
numpy.oldnumeic.fft --> numpy.fft with some name changes to the functions.
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.rng --> None
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.rng_stats --> None
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.user_array --> numpy.lib.user_array
\end_layout
\begin_layout Enumerate
numpy.oldnumeric.matrix --> numpy
\end_layout
\end_deeper
\begin_layout Enumerate
The typecode names are all lower-case and refer to type-objects corresponding
to array scalars.
The character codes are understood by array-creation functions but are
not given names.
All named type constants should be replaced with their lower-case equivalents.
Also, the old character codes '1', 's', 'w', and 'u' are not understood
as data-types.
It is probably easiest to manually replace these with Int8, Int16, UInt16,
and UInt32 and let the alter_code2 script convert the names to lower-case
typeobjects.
\end_layout
\begin_layout Enumerate
Keyword and argument changes
\end_layout
\begin_deeper
\begin_layout Enumerate
All
\family typewriter
typecode=
\family default
keywords must be changed to
\family typewriter
dtype=
\family default
.
\end_layout
\begin_layout Enumerate
The
\family typewriter
savespace
\family default
keyword argument has been removed from all functions where it was present
(array, sarray, asarray, ones, and zeros).
The sarray function is equivalent to asarray.
\end_layout
\end_deeper
\begin_layout Enumerate
The default data-type in NumPy is float unlike in Numeric (and numpy.oldnumeric)
where it was int.
There are several functions affected by this so that if your code was relying
on the default data-type, then it must be changed to explicitly add dtype=int.
\end_layout
\begin_layout Enumerate
The nonzero function in NumPy returns a tuple of index arrays just like
the corresponding method.
There is a flatnonzero function that first ravels the array and then returns
a single index array.
This function should be interchangeable with the old use of nonzero.
\end_layout
\begin_layout Enumerate
The default axis is None (instead of 0) to match the methods for the functions
take, repeat, sum, average, product, sometrue, alltrue, cumsum, and cumproduct
(from Numeric) and also for the functions average, max, min, ptp, prod,
std, and mean (from MLab).
\end_layout
\begin_layout Enumerate
The default axis is None (instead of -1) to match the methods for the functions
argmin, argmax, compress
\end_layout
\begin_layout Subsection
Updating code that uses Numeric using alter_codeN
\end_layout
\begin_layout Standard
Despite the long list of changes that might be needed given above, it is
likely that your code does not use any of the incompatible corners and
it should not be too difficult to convert from Numeric to NumPy.
For example all of SciPy was converted in about 2-3 days.
The needed changes are largely search-and replace type changes, and the
alter_codeN modules can help.
The modules have two functions which help the process:
\end_layout
\begin_layout Description
convertfile (filename, orig=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert the file with the given filename to use NumPy.
If orig is True, then a backup is first made and given the name filename.orig.
Then, the file is converted and the updated code written over the top of
the old file.
\end_layout
\begin_layout Description
convertall (direc=os.path.curdir, orig=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Converts all the
\begin_inset Quotes eld
\end_inset
.py
\begin_inset Quotes erd
\end_inset
files in the given directory to use NumPy.
Backups of all the files are first made if orig is True as explained for
the convertfile function.
\end_layout
\begin_layout Description
convertsrc (direc=os.path.curdir, ext=None, orig=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Replace
\family typewriter
''Numeric/arrayobject.h
\begin_inset Quotes erd
\end_inset
\family default
with
\family typewriter
''numpy/oldnumeric.h
\begin_inset Quotes erd
\end_inset
\family default
in all files ending in the list of extensions given by ext (if ext is None,
then all files are updated).
If orig is True, then first make a backup file with
\begin_inset Quotes eld
\end_inset
.orig
\begin_inset Quotes erd
\end_inset
as the extension.
\end_layout
\begin_layout Description
converttree (direc=os.path.curdir)
\end_layout
\begin_layout Description
\InsetSpace ~
Walks the tree pointed to by direc and converts all
\begin_inset Quotes eld
\end_inset
.py
\begin_inset Quotes erd
\end_inset
modules in each sub-directory to use NumPy.
No backups of the files are made.
Also, converts all .h and .c files to replace
\family typewriter
''Numeric/arrayobject.h
\begin_inset Quotes erd
\end_inset
\family default
with
\family typewriter
''numpy/oldnumeric.h
\begin_inset Quotes erd
\end_inset
\family default
so that NumPy is used.
\end_layout
\begin_layout Subsection
Changes to think about
\end_layout
\begin_layout Standard
Even if you don't make changes to your old code.
If you are used to coding in Numeric, then you may need to adjust your
coding style a bit.
This list provides some helpful things to remember.
\end_layout
\begin_layout Enumerate
Switch from using typecode characters to bitwidth type names or c-type names
\end_layout
\begin_layout Enumerate
Convert use of uppercase type-names Int32, Float, etc., to lower case int32,
float, etc.
\end_layout
\begin_layout Enumerate
Convert use of functions to method calls where appropriate but explicitly
specify any axis arguments for arrays greater than 1-d.
\end_layout
\begin_layout Enumerate
The names for standard computations like Fourier transforms, linear algebra,
and random-number generation have changed to conform to the standard of
lower-case names possibly separated by an underscore.
\end_layout
\begin_layout Enumerate
Look for ways to take advantage of advanced slicing, but remember it always
returns a copy and may be slower at times.
\end_layout
\begin_layout Enumerate
Remove any kludges you inserted to eliminate problems with Numeric that
are now gone.
\end_layout
\begin_layout Enumerate
Look for ways to take advantage of new features like expanded data-types
(record-arrays).
\end_layout
\begin_layout Enumerate
See if you can inherit from the ndarray directly, rather than using user_array.co
ntainer (UserArray).
However, if you were using UserArray in a multiple-inheritance hierarchy
this is going to be more difficult and you can continue to use the standard
container class in user_array (but notice the name change).
\end_layout
\begin_layout Enumerate
Watch your usage of scalars extracted from arrays.
Treating Numeric arrays like lists and then doing math on the elements
1 by 1 was always about 2x slower than using real lists in Python.
This can now be 3x-6x slower than using lists in NumPy because of the increased
complexity of both the indexing of ndarrays and the math of array scalars.
If you must select individual scalars from NumPy, you can get some speed
increases by using the item method to get a standard Python scalar from
an N-d array and by using the itemset method to place a scalar into a particula
r location in the N-d array.
This complicates the appearance of the code, however.
Also, when using these methods inside a loop, be sure to assign the methods
to a local variable to avoid the attribute look-up at each loop iteration.
\end_layout
\begin_layout Standard
Throughout this book, warnings are inserted when compatibility issues with
old Numeric are raised.
While you may not need to make any changes to get code to run with the
ndarray object, you will likely want to make changes to take advantage
of the new features of NumPy.
If you get into a jam during the conversion process, you should be aware
that Numeric and NumPy can both be used together and they will not interfere
with each other.
In addition, if you have Numeric 24.0 or newer, they can even share the
same memory.
This makes it easy to use NumPy as well as third-party tools that have
not made the switch from Numeric yet.
\end_layout
\begin_layout Section
Summary of differences with Numarray
\end_layout
\begin_layout Standard
Conversion from Numarray can also be relatively painless, depending on how
dependent your code is on the specific structure of the Numarray ufuncs,
cfuncs, and various array-like objects.
The internals of Numarray can be quite different and so depending on how
intimately you used those internals adapting to NumPy can be more or less
difficult.
C-code that used the Numarray C-API can be easily adapted because NumPy
includes a Numarray-compatible C-API module.
All you need to do is replace usage of
\begin_inset Quotes eld
\end_inset
numarray/libnumarray.h
\begin_inset Quotes erd
\end_inset
with
\begin_inset Quotes eld
\end_inset
numpy/libnumarray.h
\begin_inset Quotes erd
\end_inset
and be sure the directory returned from the Python command numpy.get_numarray_in
clude() is included in the list of directories used for compilation.
\end_layout
\begin_layout Standard
On the Python-side the largest number of differences are in the methods
and attributes of the array and the way array data-types are represented.
In addition, arrays containing Python Objects, strings, and records are
an integral part of the array object and not handled using a separate class
(although enhanced separate classes do exist for the case of character
arrays and record arrays).
\end_layout
\begin_layout Standard
As is the case with Numeric, there is a two-step process available for migrating
code written for Numarray to work with NumPy.
This process involves running functions in the modules alter_code1 and
alter_code2 located in the numarray sub-package of NumPy.
These modules have interfaces identical to the ones that convert Numeric
code, but they work to convert code written for numarray.
The first module will convert your code to use the numarray compatibility
module (numpy.numarray), while the second will try and help convert code
to move away from dependency on the compatibility module.
Because many users will probably be content to only use the first step,
the alter_code2 module for second-stage migration may not be as complete
as it otherwise could be.
\end_layout
\begin_layout Standard
Also, the alter_code1 module is not guaranteed to convert every piece of
working numarray code to use NumPy.
If your code relied on the internal module structure of numarray or on
how the class hierarchy was laid out, then it will need to be changed manually
to run with NumPy.
Of course you can still use your code with Numarray installed side-by-side
and the two array objects should be able to exchange data without copying.
\end_layout
\begin_layout Subsection
First-step changes
\end_layout
\begin_layout Standard
The alter_code1 script makes the following import and attribute/method changes
\end_layout
\begin_layout Subsubsection
Import changes
\end_layout
\begin_layout Itemize
import numarray --> import numpy.numarray as numarray
\end_layout
\begin_layout Itemize
import numarray.package --> import numpy.numarray.package as numarray_package
with all usages of numarray.package in the code replaced by numarray_package
\end_layout
\begin_layout Itemize
import numarray as <name> --> import numpy.numarray s <name>
\end_layout
\begin_layout Itemize
import numarray.package as <name> --> import numpy.numarray.package as <name>
\end_layout
\begin_layout Itemize
from numarray import <names> --> from numpy.numarray import <names>
\end_layout
\begin_layout Itemize
from numarray.package import <names> --> from numpy.numarray.package import
<names>
\end_layout
\begin_layout Subsubsection
Attribute and method changes
\end_layout
\begin_layout Itemize
.imaginary --> .imag
\end_layout
\begin_layout Itemize
.flat --> probably .ravel() (Many usages will still work correctly because
you can index and assign to self.flat)
\end_layout
\begin_layout Itemize
.byteswapped() --> .byteswap(False)
\end_layout
\begin_layout Itemize
.byteswap() --> .byteswap(True) (Returns a reference to self instead of None).
\end_layout
\begin_layout Itemize
self.info() --> numarray.info(self)
\end_layout
\begin_layout Itemize
.isaligned() --> .flags.aligned
\end_layout
\begin_layout Itemize
.isbyteswapped() --> not .dtype.isnative (the byte-order is a property of the
data-type object not the array itself in NumPy).
\end_layout
\begin_layout Itemize
.iscontiguous() --> .flags.c_contiguous
\end_layout
\begin_layout Itemize
.is_c_array() --> .dtype.isnative and .flags.carray
\end_layout
\begin_layout Itemize
.is_fortran_contiguous() --> .flags.f_contiguous
\end_layout
\begin_layout Itemize
.is_f_array() --> .dtype.isnative and .flags.farray
\end_layout
\begin_layout Itemize
.itemsize() --> .itemsize
\end_layout
\begin_layout Itemize
.nelements() --> .size
\end_layout
\begin_layout Itemize
self.new(type) --> numarray.newobj(self, type)
\end_layout
\begin_layout Itemize
.repeat(r) --> .repeat(r, axis=0)
\end_layout
\begin_layout Itemize
.size() --> .size
\end_layout
\begin_layout Itemize
.type() --> numarray.typefrom(self)
\end_layout
\begin_layout Itemize
.typecode() --> .dtype.char
\end_layout
\begin_layout Itemize
.stddev() --> .std()
\end_layout
\begin_layout Itemize
.togglebyteorder() --> numarray.togglebyteorder(self)
\end_layout
\begin_layout Itemize
.getshape() --> .shape
\end_layout
\begin_layout Itemize
.setshape(obj) --> .shape = obj
\end_layout
\begin_layout Itemize
.getflat() --> .ravel()
\end_layout
\begin_layout Itemize
.getreal() --> .real
\end_layout
\begin_layout Itemize
.setreal(obj) --> .real = obj
\end_layout
\begin_layout Itemize
.getimag() --> .imag
\end_layout
\begin_layout Itemize
.setimag(obj) --> .imag = obj
\end_layout
\begin_layout Itemize
.getimaginary() --> .imag
\end_layout
\begin_layout Itemize
.setimaginary(obj) --> .imag = obj
\end_layout
\begin_layout Subsection
Second-step changes
\end_layout
\begin_layout Standard
One of the notable differences is that several functions (array, arange,
fromfile, and fromstring) do not take the shape= keyword argument.
Instead you simply reshape the result using the reshape method.
Another notable difference is that instead of allowing typecode=, type=,
and dtype= variants for specifying the data-types, you must use the dtype=
keyword.
Other differences include
\end_layout
\begin_layout Itemize
matrixmultiply(a,b) --> dot(a,b)
\end_layout
\begin_layout Itemize
innerproduct(a,b) --> inner(a,b)
\end_layout
\begin_layout Itemize
outerproduct(a,b) --> outer(a,b)
\end_layout
\begin_layout Itemize
kroneckerproduct(a,b) --> kron(a,b)
\end_layout
\begin_layout Itemize
tensormultiply(a,b) --> None
\end_layout
\begin_layout Subsection
Additional Extension modules
\end_layout
\begin_layout Standard
There are three extension packages that come included with numarray which
are now downloaded separately.
Stubs for these packages exist in numpy.numarray but they try and find the
actual code by looking at what is currently installed.
These packages are available in SciPy but can be installed separately as
well:
\end_layout
\begin_layout Itemize
nd_image --> scipy.ndimage
\end_layout
\begin_layout Itemize
convolve --> scipy.stsci.convolve
\end_layout
\begin_layout Itemize
image --> scipy.stsci.image
\end_layout
\begin_layout Standard
If you don't want to install all of scipy, you can grab just these packages
from SVN using
\end_layout
\begin_layout LyX-Code
svn co http://svn.scipy.org/svn/scipy/trunk/Lib/ndimage ndimage
\end_layout
\begin_layout LyX-Code
svn co http://svn.scipy.org/svn/scipy/trunk/Lib/stsci stsci
\end_layout
\begin_layout Standard
and then run
\end_layout
\begin_layout LyX-Code
cd ndimage; sudo python setup.py install
\end_layout
\begin_layout LyX-Code
cd stsci; sudo python setup.py install
\end_layout
\begin_layout Standard
On a Windows system, you can use the Tortoise SVN client which is integrated
into the Windows Explorer.
It can be downloaded from http://tortoisesvn.tigris.org.
Instructions on how to use it are also provided on that site.
After downloading the packages from SVN, installation will still require
a C-compiler (the mingw32 compiler works fine even with MSVC-compiled Python
as long as you specify --compiler=mingw32).
Alternatively you can download binary releases of scipy from http://www.scipy.org
to get the needed functionality or use the Enthon edition of Python.
\end_layout
\begin_layout Chapter
The Array Object
\end_layout
\begin_layout Quotation
Don't worry about people stealing your ideas.
If your ideas are any good, you'll have to ram them down people's throats.
\end_layout
\begin_layout Right Address
---
\emph on
Howard Aiken, IBM engineer
\end_layout
\begin_layout Quotation
No idea is so antiquated that it was not once modern; no idea is so modern
that it will not someday be antiquated.
\end_layout
\begin_layout Right Address
---
\emph on
Ellen Glasgow
\end_layout
\begin_layout Section
\family typewriter
ndarray
\family default
Attributes
\end_layout
\begin_layout Standard
Array
\begin_inset LatexCommand index
name "ndarray|("
\end_inset
attributes reflect information that is intrinsic to the array itself.
Generally, accessing an array through its attributes allows you to get
and sometimes set intrinsic properties of the array without creating a
new array.
The exposed attributes are the core parts of an array and only some of
them can be reset meaningfully without creating a new array.
Table
\begin_inset LatexCommand ref
reference "cap:ndarray-attributes"
\end_inset
shows all the attributes
\begin_inset LatexCommand index
name "ndarray!attributes|("
\end_inset
with a brief description.
Detailed information on each attribute is given below.
\end_layout
\begin_layout Warning
Numeric Compatibility: you should check your old use of the .flat attribute.
This attribute now returns an iterator object which acts like a 1-d array
in terms of indexing.
while it does not share all the attributes or methods of an array, it will
be interpreted as an array in functions that take objects and convert them
to arrays.
Furthermore, Any changes in an array converted from a 1-d iterator will
be reflected back in the original array when the converted array is deleted.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:ndarray-attributes"
\end_inset
Attributes of the
\family typewriter
ndarray
\family default
.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
vspace*{-0.2in}
\backslash
setlength{
\backslash
extrarowheight}{0.25eM}
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="18" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="1in">
<column alignment="center" valignment="top" leftline="true" width="1in">
<column alignment="block" valignment="top" leftline="true" rightline="true" width="3in">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Attribute
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Settable
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Description
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
flags
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
special array-connected dictionary-like object with attributes showing the
state of flags in this array; only the flags WRITEABLE, ALIGNED, and UPDATEIFCO
PY can be modified by setting attributes of this object
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
shape
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
tuple showing the array shape; setting this attribute re-shapes the array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
strides
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
tuple showing how many
\emph on
bytes
\emph default
must be jumped in the data segment to get from one entry to the next
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
ndim
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
number of dimensions in array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
data
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
buffer object loosely wrapping the array data (only works for single-segment
arrays)
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
size
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
total number of elements
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
itemsize
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
size (in bytes) of each element
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
nbytes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
total number of bytes used
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
base
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
object this array is using for its data buffer, or None if it owns its own
memory
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
dtype
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
data-type object for this array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
real
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
real part of the array; setting copies data to real part of current array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
imag
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
imaginary part, or read-only zero array if type is not complex; setting
works only if type is complex
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
flat
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Yes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
one-dimensional, indexable iterator object that acts somewhat like a 1-d
array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
ctypes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
object to simplify the interaction of this array with the ctypes module
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
__array_interface__
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
dictionary with keys (data, typestr, descr, shape, strides) for compliance
with Python side of array protocol
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
__array_struct__
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
array interface on C-level
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
__array_priority__
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
No
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
always 0.0 for base type
\family typewriter
ndarray
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Memory Layout attributes
\end_layout
\begin_layout Description
flags
\begin_inset LatexCommand index
name "ndarray!attributes!flags"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Array flags
\begin_inset LatexCommand index
name "ndarray!flags|("
\end_inset
provide information about how the memory area used for the array is to
be interpreted.
There are 6 Boolean flags in use which govern whether or not:
\end_layout
\begin_deeper
\begin_layout Description
C_CONTIGUOUS\InsetSpace ~
(C) the data is in a single, C-style contiguous segment;
\end_layout
\begin_layout Description
F_CONTIGUOUS\InsetSpace ~
(F) the data is in a single, Fortran-style contiguous segment;
\end_layout
\begin_layout Description
OWNDATA\InsetSpace ~
(O) the array owns the memory it uses or if it borrows it from another
object (if this is False, the base attribute retrieves a reference to the
object this array obtained its data from);
\end_layout
\begin_layout Description
WRITEABLE\InsetSpace ~
(W) the data area can be written to;
\end_layout
\begin_layout Description
ALIGNED\InsetSpace ~
(A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);
\end_layout
\begin_layout Description
UPDATEIFCOPY\InsetSpace ~
(U) this array is a copy of some other array (referenced by
\family typewriter
.base
\family default
).
When this array is deallocated, the base array will be updated with the
contents of this array.
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
Only the
\series bold
UPDATEIFCOPY
\series default
,
\series bold
WRITEABLE
\series default
, and
\series bold
ALIGNED
\series default
flags can be changed by the user.
This can be done using the special array-connected, dictionary-like object
that the flags attribute returns.
By setting elements in this dictionary, the underlying array obect's flags
are altered.
Flags can also be changed using the method
\family typewriter
setflags
\family default
(...).
All flags in the dictionary can be accessed using their first (upper case)
letter as well as the full name.
\end_layout
\begin_layout Description
\InsetSpace ~
Certain logical combinations of flags can also be read using named keys
to the special flags dictionary.
These combinations are
\end_layout
\begin_deeper
\begin_layout Description
FNC Returns F_CONTIGUOUS and not C_CONTIGUOUS
\end_layout
\begin_layout Description
FORC Returns F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
\end_layout
\begin_layout Description
BEHAVED\InsetSpace ~
(B) Returns ALIGNED and WRITEABLE
\end_layout
\begin_layout Description
CARRAY\InsetSpace ~
(CA) Returns BEHAVED and C_CONTIGUOUS
\end_layout
\begin_layout Description
FARRAY_(FA) Returns BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS
\end_layout
\end_deeper
\begin_layout Note
The array flags cannot be set arbitrarily.
UPDATEIFCOPY can only be set False.
the ALIGNED flag can only be set True if the data is truly aligned.
The flag WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer interface
(or is a string).
The exception for string is made so that unpickling can be done without
copying memory.
\end_layout
\begin_layout Description
\InsetSpace ~
Flags can also be set and read using attribute access with the lower-case
key equivalent (without first letter support).
Thus, for example, self.flags.c_contiguous returns whether or not the array
is C-style contiguous, and self.flags.writeable=True changes the array to
be writeable (if possible)
\begin_inset LatexCommand index
name "ndarray!flags|)"
\end_inset
.
\end_layout
\begin_layout Description
shape
\begin_inset LatexCommand index
name "ndarray!attributes!shape"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The shape of the array is a tuple giving the number of elements in each
dimension.
The shape can be reset for single-segment arrays by setting this attribute
to another tuple.
The total number of elements cannot change.
However, a -1 may be used in a dimension entry to indicate that the array
length in that dimension should be computed so that the total number of
elements does not change.
\family typewriter
a.shape=x
\family default
is equivalent to
\family typewriter
a=a.reshape(x)
\family default
except the latter can be used even if the array is not single-segment and
even if
\begin_inset Formula $a$
\end_inset
is an array scalar.
\end_layout
\begin_layout Note
Setting the shape attribute to () for a 1-element array will turn self into
a 0-dimensional array.
This is one of the few ways to get a 0-dimensional array in Python.
Most other operations will return an array scalar.
Other ways to get a 0-dimensional array in Python include calling array
with a scalar argument and calling the squeeze method of an array whose
shape is all 1's.
\end_layout
\begin_layout Description
strides
\begin_inset LatexCommand index
name "ndarray!attributes!strides"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The strides of an array is a tuple showing for each dimension how many
\emph on
bytes
\emph default
must be skipped to get to the next element in that dimension.
Setting this attribute to another tuple will change the way the memory
is viewed.
This attribute can only be set to a tuple that will not cause the array
to access unavailable memory.
If an attempt is made to do so, ValueError is raised.
\end_layout
\begin_layout Description
ndim
\begin_inset LatexCommand index
name "ndarray!attributes!ndim"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The number of dimensions of an array is sometimes called the rank of the
array.
Getting this attribute reveals the length of the shape tuple and the strides
tuple.
\end_layout
\begin_layout Description
data
\begin_inset LatexCommand index
name "ndarray!attributes!data"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
A buffer object referencing the actual data for this array if this array
is single-segment.
If the array is not single-segment, then an AttributeError is raised.
The buffer object is writeable depending on the status of self.flags.writeable.
\end_layout
\begin_layout Description
size
\begin_inset LatexCommand index
name "ndarray!attributes!size"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The total number of elements in the array.
\end_layout
\begin_layout Description
itemsize
\begin_inset LatexCommand index
name "ndarray!attributes!itemsize"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The number of bytes each element of the array requires.
\end_layout
\begin_layout Description
nbytes
\begin_inset LatexCommand index
name "ndarray!attributes!nbytes"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The total number of bytes used by the array.
This is equal to
\family typewriter
self.itemsize*self.size
\family default
.
\end_layout
\begin_layout Description
base
\begin_inset LatexCommand index
name "ndarray!attributes!base"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
If the array does not own its own memory, then this attribute returns the
object whose memory this array is referencing.
The returned object may not be the original allocator of the memory, but
may be borrowing it from still another object.
If this array does own its own memory, then None is returned unless the
UPDATEIFCOPY flag is True in which case self.base is the array that will
be updated when self is deleted.
UPDATEIFCOPY gets set for an array that is created as a behaved copy of
a general array.
The intent is for the misaligned array to get any changes that occur to
the copy.
\end_layout
\begin_layout Subsection
Data Type attributes
\end_layout
\begin_layout Standard
There are several ways to specify the kind of data that the array is composed
of.
The fullest description that preserves field information is always obtained
using an actual dtype object.
See Chapter
\begin_inset LatexCommand ref
reference "cha:Data-descriptor-objects"
\end_inset
for more discussion on data-type objects and acceptable arguments to construct
data-type objects.
Three commonly-used attributes of the data-type object returned are also
documented here.
\end_layout
\begin_layout Description
dtype
\begin_inset LatexCommand index
name "ndarray!attributes!dtype"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
A data-type object that fully describes (including any defined fields)
each fixed-length item in the array.
Whether or not the data is in machine byte-order is also determined by
the data-type.
The data-type attribute can be set to anything that can be interpreted
as a data-type (see Chapter
\begin_inset LatexCommand ref
reference "cha:Data-descriptor-objects"
\end_inset
for more information).
Setting this attribute allows you to change the interpretation of the data
in the array.
The new data-type must be compatible with the array's current data-type.
The new data-type is compatible if it has the same itemsize as the current
data-type descriptor, or (if the array is a single-segment array) if the
the array with the new data-type fits in the memory already consumed by
the array.
\end_layout
\begin_layout Description
dtype.type
\end_layout
\begin_layout Description
\InsetSpace ~
A Python type object gives the typeobject whose instances represent elements
of the array.
This type object can be used to instantiate a scalar of that type.
\end_layout
\begin_layout Description
dtype.char
\end_layout
\begin_layout Description
\InsetSpace ~
A typecode character unique to each of the 21 built-in types.
\end_layout
\begin_layout Description
dtype.str
\end_layout
\begin_layout Description
\InsetSpace ~
This string consists of a required first character giving the
\begin_inset Quotes eld
\end_inset
endianness
\begin_inset Quotes erd
\end_inset
of the data (
\begin_inset Quotes eld
\end_inset
<
\begin_inset Quotes erd
\end_inset
for little endian,
\begin_inset Quotes eld
\end_inset
>
\begin_inset Quotes erd
\end_inset
for big endian, and
\begin_inset Quotes eld
\end_inset
|
\begin_inset Quotes erd
\end_inset
for irrelevant), the second character is a code for the kind of data ('b'
for Boolean, 'i' for signed integer, 'u' for unsigned integer, 'f' for
floating-point, 'c' for complex floating point, 'O' for object, 'S' for
ASCII string, 'U' for unicode, and 'V' for void), the final characters
give the number of bytes each element uses.
\end_layout
\begin_layout Subsection
Other attributes
\end_layout
\begin_layout Description
T
\begin_inset LatexCommand index
name "ndarray!attributes!T"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to self.transpose().
For self.ndim < 2, it returns a view of self.
\end_layout
\begin_layout Warning
If arr is 0- or 1-dimensional, then arr.T will return a new ndarray which
refers to the same data as arr.
This is because transpose has the effect of reversing the shape attribute
of an array (whose 0-d and 1-d equivalent is to return the same array).
This may be surprising if you are thinking of your 1-d array as a
\begin_inset Quotes eld
\end_inset
row
\begin_inset Quotes erd
\end_inset
or a
\begin_inset Quotes eld
\end_inset
column
\begin_inset Quotes erd
\end_inset
vector and expected the .T attribute to return the other convention.
\end_layout
\begin_layout Description
real
\begin_inset LatexCommand index
name "ndarray!attributes!real"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The real part of an array.
For arrays that are not complex this attribute returns the array itself.
Setting this attribute allows setting just the real part of an array.
If the array is already real then setting this attribute is equivalent
to self[...] = values.
\end_layout
\begin_layout Description
imag
\begin_inset LatexCommand index
name "ndarray!attributes!imag"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
A view of the imaginary part of an array.
For arrays that are not complex, this returns a read-only array of zeros.
Setting this array allows in-place alteration of the complex part of an
imaginary array.
If the array is not complex, then trying to set this attribute raises an
Error.
\end_layout
\begin_layout Description
flat
\begin_inset LatexCommand index
name "ndarray!attributes!flat"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Return an iterator object (numpy.flatiter) that acts like a 1-d version
of the array.
1-d indexing works on this array and it can be passed in to most routines
as an array wherein a 1-d array will be constructed from it.
The new 1-d array will reference this array's data if this array is C-style
contiguous, otherwise, new memory will be allocated for the 1-d array,
the UPDATEIFCOPY flag will be set for the new array, and this array will
have its WRITEABLE flag set FALSE until the the last reference to the new
array disappears.
When the last reference to the new 1-d array disappears, the data will
be copied over to this non-contiguous array.
This is done so that a.flat effectively references the current array regardless
of whether or not it is contiguous or non-contiguous.
As an example, consider the following code:
\end_layout
\begin_layout MyCode
>>> a = zeros((4,5))
\newline
>>> b = ones(6)
\newline
>>> add(b,b,a[1:3,0:3].flat)
\newline
array([[ 2.,
2., 2.],
\newline
[ 2., 2., 2.]])
\newline
>>> print a
\newline
[[ 0.
0.
0.
0.
0.]
\newline
[ 2.
2.
2.
0.
0.]
\newline
[ 2.
2.
2.
0.
0.]
\newline
[ 0.
0.
0.
0.
0.]]
\end_layout
\begin_layout Description
\InsetSpace ~
The numpy.flatiter object has two methods:
\series bold
__array__()
\series default
and
\series bold
copy()
\series default
and one attribute:
\series bold
base
\series default
.
The base attribute returns a reference to the underlying array.
\end_layout
\begin_layout Description
__array_priority__
\begin_inset LatexCommand index
name "ndarray!attributes!\\_\\_array\\_priority\\_\\_"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The array priority attribute is a floating point number useful in mixed
operations involving two subtypes to decide which subtype is returned.
The base ndarray object has priority 0.0 and 1.0 is the default subtype priority.
\end_layout
\begin_layout Subsection
Array Interface attributes
\end_layout
\begin_layout Standard
The array interface
\begin_inset LatexCommand index
name "array interface"
\end_inset
(sometimes called array protocol) was created in 2005 as a means for array-like
Python objects to re-use each other's data buffers intelligently whenever
possible.
The ndarray object supports both the Python-side and the C-side of the
array interface.
The system is able to consume objects that expose the array interface,
and array objects can expose their inner workings to other objects that
support the array interface.
\end_layout
\begin_layout Description
__array_interface__
\begin_inset LatexCommand index
name "ndarray!attributes!\\_\\_array\\_interface\\_\\_"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The python-side of the array interface.
It is a dictionary with the following attributes:
\end_layout
\begin_deeper
\begin_layout Description
data A 2-tuple (dataptr, read-only flag).
The dataptr is a string giving the address (in hexadecimal format) of the
array data.
The read-only flag is True if the array memory is read-only.
\end_layout
\begin_layout Description
strides The strides tuple.
Same as
\series bold
strides
\series default
attribute except None is returned if the array is C-style contiguous.
\end_layout
\begin_layout Description
shape The shape tuple.
Same as
\series bold
shape
\series default
attribute.
\end_layout
\begin_layout Description
typestr A string giving the format of the data.
Same as
\series bold
dtype.str
\series default
attribute.
\end_layout
\begin_layout Description
descr A list of tuples providing the detailed description of this data type.
This information is obtained from the arrdescr attribute of the dtypedescr
object associated with each array.
For arrays with fields, this will return a valid array-protocol descriptor
list.
For arrays without defined fields, this returns [('',typestr)].
\end_layout
\end_deeper
\begin_layout Description
__array_struct__
\begin_inset LatexCommand index
name "ndarray!attributes!\\_\\_array\\_struct\\_\\_"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
A PyCObject that wraps a pointer to a PyArrayInterface structure.
This is only useful on the C-level for rapid implementation of the array
interface, using a single attribute lookup.
\end_layout
\begin_layout Description
ctypes
\begin_inset LatexCommand index
name "ndarray!attributes!ctypes|("
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
This attribute creates an object that makes it easier to use arrays when
calling out to shared libraries with the ctypes module.
The returned object has data, shape, and strides attributes which return
ctypes
\begin_inset LatexCommand index
name "ctypes"
\end_inset
objects that can be used as arguments to a shared library.
These attributes are:
\end_layout
\begin_deeper
\begin_layout Description
data A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order.
The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing
this attribute to arbitrary C-code to avoid trouble that can include Python
crashing.
User Beware! The value of this attribute is exactly the same as
\family typewriter
self.__array_interface__['data'][0]
\family default
.
\end_layout
\begin_layout Description
shape (c_intp*self.ndim) A ctypes array of length self.ndim where the base-type
is the C-integer corresponding to dtype('p') on this platform.
This base-type could be c_int, c_long, or c_longlong depending on the platform.
The c_intp type is defined accordingly in numpy.ctypeslib.
The ctypes array contains the shape of the underlying array.
\end_layout
\begin_layout Description
strides (c_intp*self.ndim) A ctypes array of length self.ndim where the base-type
is the same as for the shape attribute.
This ctypes array contains the strides information from the underlying
array.
This strides information is important for showing how many bytes must be
jumped to get to the next element in the array.
\end_layout
\begin_layout Description
_as_parameter_ (c_void_p) Returns the data-pointer to the array as a ctypes
object.
Among other possible uses, this enables this ctypes object to be used directly
in a ctypes-loaded call to an arbitrary function.
Be sure to respect the flags on the array and the size and strides of the
array so as not to use this memory in-appropriately (see the
\series bold
ndpointer
\series default
function for how to return a class that can be used with the argtypes attribute
of ctypes functions).
\end_layout
\end_deeper
\begin_layout Warning
Be careful using the ctypes attribute --- especially on temporary arrays
or arrays constructed on the fly.
For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer
to memory that is invalid because the array created as (a+b) is deallocated
before the next Python statement.
You can avoid this problem using either c=a+b or ct=(a+b).ctypes.
In the latter case, ct will hold a reference to the array until ct is deleted
or re-assigned.
\end_layout
\begin_layout Description
\InsetSpace ~
The ctypes object also has several methods which can alter how the shape,
strides, and data of the underlying object is returned.
\end_layout
\begin_deeper
\begin_layout Description
data_as (obj) Return the data pointer cast-to a particular c-types object.
For example, calling
\family typewriter
self._as_parameter_
\family default
is equivalent to
\family typewriter
self.data_as(ctypes.c_void_p)
\family default
.
Perhaps you want to use the data as a pointer to a ctypes array of floating-poi
nt data:
\family typewriter
self.data_as(ctypes.POINTER(ctypes.c_double))
\family default
.
\end_layout
\begin_layout Description
shape_as (obj) Return the shape tuple as an array of some other c-types
type.
For example:
\family typewriter
self.shape_as(ctypes.c_short)
\family default
.
\end_layout
\begin_layout Description
strides_as (obj) Return the strides tuple as an array of some other c-types
type.
For example:
\family typewriter
self.strides_as(ctypes.c_longlong)
\family default
.
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
If the ctypes module is not available, then the ctypes attribute of array
objects still returns something useful, but ctypes objects are not returned
and errors may be raised instead.
In particular, the object will still have the _as_parameter_ attribute
which will return an integer equal to the data
\begin_inset LatexCommand index
name "ndarray!attributes!ctypes|)"
\end_inset
attribute
\begin_inset LatexCommand index
name "ndarray!attributes|)"
\end_inset
.
\end_layout
\begin_layout Section
\family typewriter
ndarray
\family default
Methods
\end_layout
\begin_layout Standard
In NumPy, the
\family typewriter
ndarray
\family default
object has many methods
\begin_inset LatexCommand index
name "ndarray!methods|("
\end_inset
which operate on or with the array in some fashion, typically returning
an array result.
In Numeric, many of these methods were only library calls.
These methods are explained in this chapter.
Whenever the array whose method is being called needs to be referenced
it will be referred to as
\emph on
this array
\emph default
, or
\emph on
self
\emph default
.
Keyword arguments will be shown.
Methods that only take one argument do not have keyword arguments.
Default values for one argument methods will be shown in braces {default}.
\end_layout
\begin_layout Warning
If you are converting code from Numeric, then you will need to make the
following (search and replace) conversions:
\family typewriter
.typecode() --> .dtype.char
\family default
;
\family typewriter
.iscontiguous() --> .flags.contiguous
\family default
;
\family typewriter
.byteswapped() --> .byteswap()
\family default
;
\family typewriter
.toscalar() --> .item()
\family default
; and
\family typewriter
.itemsize() --> .itemsize
\family default
.
The numpy.oldnumeric.alter_code1 module can automate this for you.
\end_layout
\begin_layout Subsection
Array conversion
\end_layout
\begin_layout Description
tolist
\begin_inset LatexCommand index
name "ndarray!methods!tolist"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
The contents of self as a nested list.
\end_layout
\begin_layout MyCode
>>> a = array([[1,2,3],[4,5,6]]); print a.tolist()
\newline
[[1, 2, 3], [4, 5, 6]]
\end_layout
\begin_layout Description
item
\begin_inset LatexCommand index
name "ndarray!methods!item"
\end_inset
(*args)
\end_layout
\begin_layout Description
\InsetSpace ~
If no arguments are passed in, then this method only works for arrays with
one element (a.size == 1).
In this case, it returns a standard Python scalar object (if possible)
copied from the first element of self.
When the data type of self is longdouble or clongdouble, this returns a
scalar array object because there is no available Python scalar that would
not lose information.
Void arrays return a buffer object for item() unless fields are defined
in which case a tuple is returned.
\end_layout
\begin_layout MyCode
>>> asc = a[0,0].item()
\newline
>>> type(asc)
\newline
<type 'int'>
\newline
>>> asc
\newline
1
\newline
>>> type(a[0,0])
\newline
<type
'numpy.int32'>
\end_layout
\begin_layout Description
\InsetSpace ~
If arguments are provided, then they indicate indices into the array (either
a flat index or an nd-index).
A standard Python scalar corresponding to the item at the given location
is then returned.
This is very similar to self[args] except instead of an array scalar, a
standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and
doing arithmetic on elements of the array using Python's optimized math.
\end_layout
\begin_layout Description
itemset
\begin_inset LatexCommand index
name "ndarray!methods!itemset"
\end_inset
(*args)
\end_layout
\begin_layout Description
\InsetSpace ~
There must be at least 1 argument and define the last argument as item.
Then, this is equivalent to but faster than self[args] = item.
The item should be a scalar value and args must select a single item in
the array.
\end_layout
\begin_layout Description
tostring
\begin_inset LatexCommand index
name "ndarray!methods!tostring"
\end_inset
(order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
A Python string showing a copy of the raw contents of data memory.
The string can be produced in either 'C' or 'Fortran', or 'Any' order (the
default is 'C'-order).
'Any' order means C-order unless the F_CONTIGUOUS flag in the array is
set, then 'Fortran' order.
\end_layout
\begin_layout Description
tofile
\begin_inset LatexCommand index
name "ndarray!methods!tofile"
\end_inset
(file=, sep='', format='')
\end_layout
\begin_layout Description
\InsetSpace ~
Write the contents of self to the open file object.
If file is a string, then open a file of that name first.
If sep is the empty string, then write the file in binary mode.
If sep is any other string, write the array in simple text mode separating
each element with the value of the sep string.
When the file is written in text mode, the format string can be used to
alter the appearance of each entry.
If format is the empty string, then it is equivalent to
\family typewriter
\begin_inset Quotes eld
\end_inset
%s
\begin_inset Quotes erd
\end_inset
\family default
.
Each element of the array will be converted to a Python scalar,
\family typewriter
o
\family default
, and written to the file as
\family typewriter
\begin_inset Quotes eld
\end_inset
format
\begin_inset Quotes erd
\end_inset
% o
\family default
.
Note that writing an array to a file does not store any information about
the shape, type, or endianness of an array.
When written in binary mode, tofile is functionally equivalent to
\family typewriter
fid.write(self.tostring())
\family default
.
\end_layout
\begin_layout MyCode
>>> a.tofile('myfile.txt',sep=':',format='%03d')
\end_layout
\begin_layout MyCode
Contents of myfile.txt
\end_layout
\begin_layout MyCode
001:002:003:004:005:006
\end_layout
\begin_layout Description
dump
\begin_inset LatexCommand index
name "ndarray!methods!dump"
\end_inset
(file)
\end_layout
\begin_layout Description
\InsetSpace ~
Pickle the contents of self to the file object represented by file.
Equivalent to cPickle.dump(self, file, 2)
\end_layout
\begin_layout Description
dumps
\begin_inset LatexCommand index
name "ndarray!methods!dumps"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Return pickled representation of self as a string.
Equivalent to cPickle.dumps(self, 2)
\end_layout
\begin_layout Description
astype
\begin_inset LatexCommand index
name "ndarray!methods!astype"
\end_inset
({None})
\end_layout
\begin_layout Description
\InsetSpace ~
Force conversion of this array to an array with the data type provided
as the argument.
If the argument is None, or equal to the data type of self, then return
a copy of the array.
\end_layout
\begin_layout Description
byteswap
\begin_inset LatexCommand index
name "ndarray!methods!byteswap"
\end_inset
({False})
\end_layout
\begin_layout Description
\InsetSpace ~
Byteswap the elements of the array and return the byteswapped array.
If the argument is True, then byteswap in-place and return a reference
to self.
Otherwise, return a copy of the array with the elements byteswapped.
The data-type descriptor is not changed so the array will have changed
numbers.
\end_layout
\begin_layout Description
copy
\begin_inset LatexCommand index
name "ndarray!methods!copy"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Return a copy of the array (which is always single-segment, and ALIGNED).
However, the data-type is preserved (including whether or not the data
is byteswapped).
\end_layout
\begin_layout Description
view
\begin_inset LatexCommand index
name "ndarray!methods!view"
\end_inset
({None})
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array using the same memory area as self.
If the optional argument is given, it can be either a typeobject that is
a sub-type of the ndarray or an object that can be converted to a data-type
descriptor.
If the argument is a typeobject then a new array of that Python type is
returned that uses the information from self.
If the argument is a data-type descriptor, then a new array of the same
Python type as self is returned using the given data-type.
\end_layout
\begin_layout MyCode
>>> print a.view(single)
\newline
[[ 1.40129846e-45 2.80259693e-45 4.20389539e-45]
\newline
[ 5.60519386e-45 7.00649232e-45 8.40779079e-45]]
\newline
>>> a.view(ubyte)
\newline
array([[1,
0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0],
\newline
[4, 0, 0, 0, 5, 0, 0, 0, 6, 0,
0, 0]], dtype=uint8)
\end_layout
\begin_layout Description
getfield
\begin_inset LatexCommand index
name "ndarray!methods!getfield"
\end_inset
(dtype=, offset=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a
\emph on
field
\emph default
of the given array as an array of the given data type.
A field is a view of the array's data at a certain byte offset interpreted
as a given data type.
The returned array is a reference into self, therefore changes made to
the returned array will be reflected in self.
This method is particularly useful for record arrays that use a void data
type, but it can also be used to extract the low (high)-order bytes of
other array types as well.
For example, using getfield, you could extract fixed-length substrings
from an array of strings.
\end_layout
\begin_layout MyCode
>>> a = array(['Hello','World','NumPy'])
\newline
>>> a.getfield('S2',1)
\newline
array(['el',
'or', 'um'],
\newline
dtype='|S2')
\end_layout
\begin_layout Description
setflags
\begin_inset LatexCommand index
name "ndarray!methods!setflags"
\end_inset
(write=None, align=None, uic=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
The ALIGNED flag can only be set to True if the data is actually aligned
according to the type.
The UPDATEIFCOPY flag can never be set to True.
The flag WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer interface
(or is a string).
The exception for string is made so that unpickling can be done without
copying memory.
\end_layout
\begin_layout Description
fill
\begin_inset LatexCommand index
name "ndarray!methods!fill"
\end_inset
(scalar)
\end_layout
\begin_layout Description
\InsetSpace ~
Fill an array with the scalar value (appropriately converted to the type
of self).
If the scalar value is an array or a sequence, then only the first element
is used.
This method is usually faster than a[...]=scalar or self.flat=scalar, and always
interprets its argument as a scalar.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Array conversion methods
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
setlength{
\backslash
extrarowheight}{0.1eM}
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="15" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="30text%">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Method
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Arguments
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Description
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
astype
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(dtype {None})
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Cast to another data type
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
byteswap
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(inplace {False})
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Byteswap array elements
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
copy
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Copy array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
dump
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(file)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Pickle to stream or file
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
dumps
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Get pickled string
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
fill
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(scalar)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Fill an array with scalar value
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
getfield
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(dtype=, offset=0)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Return a field of the array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
setflags
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(write=None, align=None, uic=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Set array flags
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
tofile
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(file=, sep='', format='')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Raw write to file
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
tolist
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Array as a nested list
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
item
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(*args)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Python scalar extraction
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
itemset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(*args)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Insert scalar (last argument) into array
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
tostring
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(order='C')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
String of raw memory
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
view
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(obj)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
View as another data type or class
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Array shape manipulation
\end_layout
\begin_layout Standard
For reshape, resize, and transpose, the single tuple argument may be replaced
with
\begin_inset Formula $n$
\end_inset
integers which will be interpreted as an
\begin_inset Formula $n$
\end_inset
-tuple.
\end_layout
\begin_layout Description
reshape
\begin_inset LatexCommand index
name "ndarray!methods!reshape"
\end_inset
(newshape, order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array that uses the same data as this array but has a new shape
given by the newshape tuple (or a scalar to reshape as 1-d).
The new shape must define an array with the same total number of elements.
If one of the elements of the new shape tuple is -1, then that dimension
will be determined such that the overall number of items in the array stays
constant.
If possible, the new array will reference the data of the old one.
If the data must be moved in order to accomplish the reshape, then then
the new array will contain a copy of the data in self.
The order argument specifies how the array data should be viewed during
the reshape (either in 'C' or 'FORTRAN' order).
This order argument specifies both how the intrinsic raveling to a 1-d
array should occur as well as how that 1-d array should be used to fill-up
the new output array.
\end_layout
\begin_layout Description
resize
\begin_inset LatexCommand index
name "ndarray!methods!resize"
\end_inset
(newshape, refcheck=1, order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Resize an array in-place.
This changes self (in-place) to be an array with the new shape, reallocating
space for the data area if necessary.
If the data memory must be changed because the number of new elements is
different than self.size, then an error will occur if this array does not
own its data or if another object is referencing this one.
Only a single-segment array can be resized.
The method returns None.
To bypass the reference count check, then set refcheck=0.
The purpose of the reference count check is to make sure you don't use
this array as a buffer for another Python object and then reallocate the
memory.
However, reference counts can increase in other ways so if you are sure
that you have not shared the memory for this array to another Python object,
then you may safely set refcheck=0.
\end_layout
\begin_layout Description
transpose
\begin_inset LatexCommand index
name "ndarray!methods!transpose"
\end_inset
(<None>)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array view with the shape transposed according to the argument.
An argument of None is equivalent to range(self.ndim)[::-1].
The argument can either be a tuple or multiple integer arguments.
This method returns a new array with permuted shape and strides attributes
using the same data as self.
\end_layout
\begin_layout MyCode
>>> a = arange(40).reshape((2,4,5))
\newline
>>> b = a.transpose(2,0,1)
\newline
>>> print a.shape,
b.shape
\newline
(2, 4, 5) (5, 2, 4)
\newline
>>> print a.strides, b.strides
\newline
(80, 20, 4) (4, 80,
20)
\newline
>>> print a
\newline
[[[ 0 1 2 3 4]
\newline
[ 5 6 7 8 9]
\newline
[10 11 12 13 14]
\newline
[15
16 17 18 19]]
\newline
\newline
[[20 21 22 23 24]
\newline
[25 26 27 28 29]
\newline
[30 31 32 33 34]
\newline
[35
36 37 38 39]]]
\newline
>>> print b
\newline
[[[ 0 5 10 15]
\newline
[20 25 30 35]]
\newline
\newline
[[ 1 6 11 16]
\newline
[21 26 31 36]]
\newline
\newline
[[ 2 7 12 17]
\newline
[22 27 32 37]]
\newline
\newline
[[ 3 8 13 18]
\newline
[23 28 33
38]]
\newline
\newline
[[ 4 9 14 19]
\newline
[24 29 34 39]]]
\end_layout
\begin_layout Description
swapaxes
\begin_inset LatexCommand index
name "ndarray!methods!swapaxes"
\end_inset
(axis1, axis2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array view with axis1 and axis2 swapped.
This is a special case of the transpose method with argument equal to arg=range
(self.ndim); arg[axis1], arg[axis2] = arg[axis2], arg[axis1].
See the
\series bold
rollaxis
\series default
function for a routine that transposes the array with the axes rolled instead
of swapped.
\end_layout
\begin_layout Description
flatten
\begin_inset LatexCommand index
name "ndarray!methods!flatten"
\end_inset
(order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new 1-d array with data copied from self.
Equivalent to but slightly faster then a.flat.copy().
\end_layout
\begin_layout Description
ravel
\begin_inset LatexCommand index
name "ndarray!methods!ravel"
\end_inset
(order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 1-d version of self.
If self is single-segment, then the new array references self, otherwise,
a copy is made.
\end_layout
\begin_layout Description
squeeze
\begin_inset LatexCommand index
name "ndarray!methods!squeeze"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array with all unit-length dimensions squeezed out.
\end_layout
\begin_layout Subsection
Array item selection and manipulation
\end_layout
\begin_layout Standard
For array methods that take an axis keyword, it defaults to None.
If axis is None, then the array is treated as a 1-D array.
Any other value for axis represents the dimension along which the operation
should proceed.
\end_layout
\begin_layout Description
take
\begin_inset LatexCommand index
name "ndarray!methods!take"
\end_inset
(indices=, axis=None, out=None, mode='raise')
\end_layout
\begin_layout Description
\InsetSpace ~
The functionality of this method is available using the advanced indexing
ability of the
\family typewriter
ndarray
\family default
object.
However, for doing selection along a single axis it is usually faster to
use take.
If axis is not None, this method is equivalent to
\family typewriter
self[indxobj]
\family default
preceeded by
\family typewriter
indxobj=[slice(None)]*self.ndim; indxobj[
\series bold
axis
\series default
] =
\family default
\family typewriter
\series bold
indices
\family default
\series default
.
It returns the elements or sub-arrays from self indicated by the index
numbers in indices.
If axis is None, then this method is equivalent to
\family typewriter
self.flat[indices]
\family default
.
The out and mode arguments allow for specification of the output array
and how out-of-bounds indices will be handled ('raise': raise an error,
'wrap': wrap around, 'clip': clip to range)
\end_layout
\begin_layout Description
put
\begin_inset LatexCommand index
name "ndarray!methods!put"
\end_inset
(indices=, values=, mode='raise')
\end_layout
\begin_layout Description
\InsetSpace ~
Performs the equivalent of
\end_layout
\begin_layout LyX-Code
for n in
\series bold
indices
\series default
:
\end_layout
\begin_layout LyX-Code
self.flat[n] =
\series bold
values
\series default
[n]
\end_layout
\begin_layout Description
\InsetSpace ~
Values is repeated if it is too short.
The mode argument specifies what to do if n is too large.
\end_layout
\begin_layout Description
repeat
\begin_inset LatexCommand index
name "ndarray!methods!repeat"
\end_inset
(repeats=, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Copy elements (or sub-arrays selected along axis) of self
\series bold
repeats
\series default
times.
The repeats argument must be a sequence of length self.shape[axis] or a
scalar.
The repeats argument dictates how many times the element (or sub-array)
will be repeated in the result array.
\end_layout
\begin_layout Description
choose
\begin_inset LatexCommand index
name "ndarray!methods!choose"
\end_inset
(choices, out=None, mode='raise')
\end_layout
\begin_layout Description
\InsetSpace ~
The array must be an integer (or bool) array with entries from
\begin_inset Formula $0$
\end_inset
to
\begin_inset Formula $n$
\end_inset
.
Choices is a tuple of
\begin_inset Formula $n$
\end_inset
choice arrays:
\begin_inset Formula $b0,\, b1,\,\ldots\,,\, bn$
\end_inset
.
(Alternatively, choices can be replaced with
\begin_inset Formula $n$
\end_inset
arguments where each argument is a choice array).
The return array will be formed from the elements of the choice arrays
according to the value of the elements of self.
In other words, the output array will merge the choice arrays together
by using the value of self at a particular position to select which choice
array should be used for the output at a particular position.
The out keyword allows specification of an output array and the clip keyword
allows different behavior when self contains entries outside the number
of choices.
The acceptable arguments to mode are 'raise' (RAISE), 'wrap' (WRAP), and
'clip' (CLIP) ('raise' produces an error, 'wrap' converts the number into
range by periodic wrapping so that numbers <0 have
\begin_inset Formula $n$
\end_inset
repeatedly added and numbers >=
\begin_inset Formula $n$
\end_inset
have
\begin_inset Formula $n$
\end_inset
repeatedly subtracted, and 'clip' will clip all entries to be within the
range [0,
\begin_inset Formula $n$
\end_inset
).
\end_layout
\begin_layout MyCode
>>> a = array([0,3,2,1])
\newline
>>> a.choose([0,1,2,3],[10,11,12,13],
\newline
...
[20,21,22,23],[30,31,32,33])
\newline
array([ 0, 31, 22, 13])
\end_layout
\begin_layout Description
sort
\begin_inset LatexCommand index
name "ndarray!methods!sort"
\end_inset
(axis=-1, kind='quick', order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Sort the array in-place and return None.
The sort takes place over the given axis using an underlying sort algorithm
specified by kind.
The sorting algorithms available are 'quick', 'heap', and 'merge'.
For flexible types only the quicksort algorithm is available.
For arrays with fields defined, the order keyword allows specification
of the order in which to use the field names in the sort.
If order is a string then it is the field name to use to define the sort.
If order is a list (or tuple) of strings, then it specifies a lexicographic
ordering so that the first listed field name is compared first if that
results in equality, the second listed field name is used for the comparison
and so on.
If order is None, then arrays with fields use the first field for comparison.
\end_layout
\begin_layout MyCode
>>> a=array([[0.2,1.3,2.5],[1.5,0.1,1.4]]);
\newline
>>> b=a.copy(); b.sort(0); print b
\newline
[[
0.2 0.1 1.4]
\newline
[ 1.5 1.3 2.5]]
\newline
>>> b=a.copy(); b.sort(1); print b
\newline
[[ 0.2 1.3 2.5]
\newline
[ 0.1 1.4 1.5]]
\end_layout
\begin_layout Description
argsort
\begin_inset LatexCommand index
name "ndarray!methods!argsort"
\end_inset
(axis=-1, kind='quick', order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an index array of the same size as self showing which indices along
the given axis should be selected to sort self along that axis.
Uses an underlying sort algorithm specified by kind.
The sorting algorithms available are 'quick', 'heap', and 'merge'.
For arrays with fields defined, the order keyword allows specification
of the order in which to use the field names in the sort.
If order is a string then it is the field name to use to define the sort.
If order is a list (or tuple) of strings, then it specifies a lexicographic
ordering so that the first listed field name is compared first if that
results in equality, the second listed field name is used for the comparison
and so on.
If order is None, then arrays with fields use the first field for comparison.
\end_layout
\begin_layout MyCode
>>> b=a.copy(); print b.argsort(0)
\newline
[[0 1 1]
\newline
[1 0 0]]
\newline
>>> b=a.copy(); print b.argsort(1
)
\newline
[[0 1 2]
\newline
[1 2 0]]
\end_layout
\begin_layout Tip
Complex valued arrays sort lexicographically by comparing first the real
parts and then the imaginary parts if the real parts are the same.
\end_layout
\begin_layout Description
searchsorted
\begin_inset LatexCommand index
name "ndarray!methods!searchsorted"
\end_inset
(values, side='left')
\end_layout
\begin_layout Description
\InsetSpace ~
Return an index array (dtype=intp) of the same shape as values showing
the index where the value would fit in self.
The index is such that self[index-1]
\begin_inset Formula $<$
\end_inset
value
\begin_inset Formula $\le$
\end_inset
self[index] when side is 'left'.
In this formula self[self.size]=
\begin_inset Formula $\infty$
\end_inset
and self[-1]=
\begin_inset Formula $-\infty$
\end_inset
.
Therefore, if value is larger than all elements of self, then index is
self.size.
If value is smaller than all elements of self, then index is 0.
Self must be a sorted 1-d array.
If elements of self are repeated, the index of the first occurrence is
used.
If side is 'right', then the search rule is switched so that the
\begin_inset Formula $<$
\end_inset
sign is on the
\begin_inset Quotes eld
\end_inset
right
\begin_inset Quotes erd
\end_inset
instead of the left in the search rule.
In other words, the index returned is such that self[index-1]
\begin_inset Formula $\le$
\end_inset
value
\begin_inset Formula $<$
\end_inset
self[index].
\end_layout
\begin_layout MyCode
>>> b=a.ravel(); b.sort()
\newline
>>> b.searchsorted([0.0, 1.35, 2.0, 3.0])
\newline
array([0, 3,
5, 6])
\end_layout
\begin_layout Description
nonzero
\begin_inset LatexCommand index
name "ndarray!methods!nonzero"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the
\begin_inset Formula $n$
\end_inset
-dimensional indices for elements of the
\begin_inset Formula $n$
\end_inset
-dimensional array self that are nonzero into an
\begin_inset Formula $n$
\end_inset
-tuple of equal-length index arrays.
In particular, notice that a 0-dimensional array always returns an empty
tuple.
\end_layout
\begin_layout MyCode
>>> x = arange(15); y=x.reshape(3,5)
\newline
>>> (x>8).nonzero()
\newline
(array([ 9, 10, 11,
12, 13, 14]),)
\newline
>>> (y>8).nonzero()
\newline
(array([1, 2, 2, 2, 2, 2]), array([4, 0,
1, 2, 3, 4]))
\end_layout
\begin_layout Description
compress
\begin_inset LatexCommand index
name "ndarray!methods!compress"
\end_inset
(condition=, axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This method expects condition to be a one-dimensional mask array of the
same length as self.shape[axis].
If the array is less than self.shape[axis], then False is assumed for the
missing elements.
The method returns the elements (or sub-arrays along the given axis) of
self where condition is true.
The shape of the return array is self.shape with the axis dimension replaced
by the number of True elements of condition.
The same effect can often be accomplished using array indexing.
\end_layout
\begin_layout MyCode
>>> x=array([0,1,2,3])
\newline
>>> x.compress(x > 2)
\newline
array([3])
\newline
>>> x[x>2]
\newline
array([3])
\end_layout
\begin_layout Description
diagonal
\begin_inset LatexCommand index
name "ndarray!methods!diagonal"
\end_inset
(offset=0, axis1=0, axis2=1)
\end_layout
\begin_layout Description
\InsetSpace ~
If self is 2-d, return the
\series bold
offset
\series default
(from the main diagonal) diagonal of self.
If self is larger than 2-d, then return an array constructed from all the
diagonals created from all the 2-d sub-arrays formed using all of axis1
and axis2.
The offset parameter is with respect to axis2.
The shape of the returned array is found by removing the axis1 and axis2
entries from self.shape and then appending the length of the offset diagonal
of each 2-d sub-array.
\end_layout
\begin_layout MyCode
>>> a=arange(25).reshape(5,5); print a
\newline
[[ 0 1 2 3 4]
\newline
[ 5 6 7 8 9]
\newline
[10 11 12 13 14]
\newline
[15 16 17 18 19]
\newline
[20 21 22 23 24]]
\newline
>>> print a.diagonal()
\newline
[
0 6 12 18 24]
\newline
>>> print a.diagonal(1)
\newline
[ 1 7 13 19]
\newline
>>> print a.diagonal(-1)
\newline
[
5 11 17 23]
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Array item selection and shape manipulation methods.
If axis is an argument, then the calculation is performed along that axis.
An axis value of None means the array is flattened before calculation proceeds.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
setlength{
\backslash
extrarowheight}{0.25eM}
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="18" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="50text%">
<column alignment="block" valignment="top" leftline="true" rightline="true" width="30text%">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Method
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Arguments
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Description
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
argsort
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
argsort (axis=None, kind='quick')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Indices showing how to sort array.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
choose
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
choose (c0, c1 , ..., cn, out=None, clip='raise')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Choose from different arrays based on value of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
compress
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(condition=, axis=None, out=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Elements of self where condition is true.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
diagonal
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(offset=0, axis1=0, axis2=1)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Return a diagonal from self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
flatten
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(order='C')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
A 1-d copy of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
nonzero
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
True where self is not zero.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
put
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(indices=, values=, mode='raise')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Place values at 1-d index locations of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
ravel
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(order='C')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
1-d version of self (no data copy if self is C-style contiguous).
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
repeat
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(repeats=, axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Repeat elements of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
reshape
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(d1,d2,...,dn, order='C')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Return reshaped version of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
resize
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(d1,d2,...,dn, refcheck=1, order='Any')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Resize self in-place.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
searchsorted
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(values)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Show where values would be placed in self (assumed sorted).
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
sort
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, kind='quick')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Copy of self sorted along axis.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
squeeze
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Squeeze out all length-1 dimensions.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
swapaxes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis1, axis2)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Swap two dimensions of self.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
take
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(indices=, axis=None, out=None, mode='raise')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Select elements of self along axis according to indices.
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
transpose
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(permute <None>)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Rearrange shape of self according to permute.
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Array calculation
\end_layout
\begin_layout Standard
Many of these methods take an argument named axis.
In such cases, if axis is None (the default), the array is treated as a
1-d array and the operation is performed over the entire array.
This behavior is also the default if self is a 0-dimensional array or array
scalar.
If axis is an integer, then the operation is done over the given axis (for
each 1-d subarray that can be created along the given axis).
The parameter dtype specifies the data type over which a reduction operation
(like summing) should take place.
The default reduce data type is the same as the data type of self.
To avoid overflow, it can be useful to perform the reduction using a larger
data type.
For several methods, an optional out argument can be provided and the result
will be placed into the output array given.
The out argument must be an ndarray and have the same number of elements.
It can be of a different type in which case casting will be performed.
\end_layout
\begin_layout Description
max
\begin_inset LatexCommand index
name "ndarray!methods!max"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the largest value in self.
This is a better way to compute the maximum over an array, than using max(self).
The latter uses the generic sequence interface to self.
This will be slower, and will try to get an answer by comparing whole sub-array
s of self.
This will be incorrect for arrays larger than 1-d.
\end_layout
\begin_layout Description
argmax
\begin_inset LatexCommand index
name "ndarray!methods!argmax"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (first, 1-d) index of the largest value in self.
\end_layout
\begin_layout Description
min
\begin_inset LatexCommand index
name "ndarray!methods!min"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the smallest value in self.
This is a better way to compute the minimum over an array, than using min(self).
The latter uses the generic sequence interface to self.
This will be slower, and will try to get an answer by comparing whole sub-array
s of self.
This will be incorrect for arrays larger than 1-d.
\end_layout
\begin_layout Description
argmin
\begin_inset LatexCommand index
name "ndarray!methods!argmin"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (first, 1-d) index of the smallest value in self.
\end_layout
\begin_layout Description
ptp
\begin_inset LatexCommand index
name "ndarray!methods!ptp"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the difference of the largest to the smallest value in self.
Equivalent to self.max(axis) - self.min(axis)
\end_layout
\begin_layout Description
clip
\begin_inset LatexCommand index
name "ndarray!methods!clip"
\end_inset
(min=,max=, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array where any element in self less than min is set to min
and any element less than max is set to max.
Equivalent to self[self<min]=min; self[self>max]=max.
\end_layout
\begin_layout Description
conj
\begin_inset LatexCommand index
name "ndarray!methods!conj"
\end_inset
(out=None)
\end_layout
\begin_layout Description
conjugate
\begin_inset LatexCommand index
name "ndarray!methods!conjugate"
\end_inset
(out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the conjugate of elements of the array.
\end_layout
\begin_layout Description
round
\begin_inset LatexCommand index
name "ndarray!methods!round"
\end_inset
(decimals=0, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Round the elements of the array to the nearest decimal.
For decimals < 0, the rounding is done to the nearest tens, hundreds, etc.
Rounding of exactly the half-interval is to the nearest even integer.
This is the only difference with standard Python rounding.
\end_layout
\begin_layout Description
trace
\begin_inset LatexCommand index
name "ndarray!methods!trace"
\end_inset
(offset=0, axis1=0, axis2=1, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Perform a summation along each diagonal specified by offset, axis1, and
axis2.
Equivalent to diagonal(offset,axis1,axis2).sum(axis=-1, dtype=dtype)
\end_layout
\begin_layout Description
sum
\begin_inset LatexCommand index
name "ndarray!methods!sum"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the sum
\begin_inset Formula \[
\sum_{i=0}^{N-1}\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i]\]
\end_inset
where axis ':' objects are placed before the
\begin_inset Formula $i.$
\end_inset
\end_layout
\begin_layout Description
cumsum
\begin_inset LatexCommand index
name "ndarray!methods!cumsum"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the cumulative sum.
If ret is the return array of the same shape as
\begin_inset Formula $\textrm{self},$
\end_inset
then
\begin_inset Formula \[
\textrm{ret}[\underbrace{:,\ldots,:}_{\textrm{axis}},j]=\sum_{i=0}^{j}\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i].\]
\end_inset
\end_layout
\begin_layout Description
mean
\begin_inset LatexCommand index
name "ndarray!methods!mean"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the average value caculated as
\begin_inset Formula \[
\frac{1}{N}\sum_{i=0}^{N-1}\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i]\]
\end_inset
where
\begin_inset Formula $N$
\end_inset
is self.shape[axis] and axis ':' objects are placed before the
\begin_inset Formula $i.$
\end_inset
The sum is done in the data-type of self unless self is an integer or Boolean
data-type and then it is done over the float data-type.
\end_layout
\begin_layout Description
var
\begin_inset LatexCommand index
name "ndarray!methods!var"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the variance of the data calculated as
\begin_inset Formula \[
\frac{1}{N}\sum_{i=0}^{N-1}\left(\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i]-\mu\right)^{2}\]
\end_inset
where
\begin_inset Formula $N$
\end_inset
is self.shape[axis] and
\begin_inset Formula $\mu$
\end_inset
is the mean (restored to the same number of dimensions as self with
\begin_inset Formula $\mu$
\end_inset
copied along the axis dimension).
This is equivalent to (self**2).mean - self.mean()**2 and ((self-self.mean())**2).m
ean().
The value of
\begin_inset Formula $N-1$
\end_inset
was not chosen for normalization because while it gives an
\begin_inset Quotes eld
\end_inset
unbiased
\begin_inset Quotes erd
\end_inset
estimate, it is not always prudent to return unbiased estimates as they
may have larger mean-square error.
The sum is done using a float data-type if self has integer or Boolean
data-type, otherwise it is done using the same data-type as self.
\end_layout
\begin_layout Description
std
\begin_inset LatexCommand index
name "ndarray!methods!std"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the standard deviation calculated as
\begin_inset Formula \[
\sqrt{\frac{1}{N}\sum_{i=0}^{N-1}\left(\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i]-\mu\right)^{2}}\]
\end_inset
where
\begin_inset Formula $N$
\end_inset
is self.shape[axis] and
\begin_inset Formula $\mu$
\end_inset
is the mean (restored to the same number of dimensions as self with
\begin_inset Formula $\mu$
\end_inset
copied along the axis dimension).
The sum is done using the same data-type as self unless self is an integer
or Boolean data-type and then it is done using a float data-type.
\end_layout
\begin_layout Description
prod
\begin_inset LatexCommand index
name "ndarray!methods!prod"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the product calculated as
\begin_inset Formula \[
\prod_{i=0}^{N-1}\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i].\]
\end_inset
\end_layout
\begin_layout Description
cumprod
\begin_inset LatexCommand index
name "ndarray!methods!cumprod"
\end_inset
(axis=None, dtype=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the cumulative product so that the return array, ret, is the same
shape as self and
\begin_inset Formula \[
\textrm{ret}[\underbrace{:,\ldots,:}_{\textrm{axis}},j]=\prod_{i=0}^{j}\textrm{self}[\underbrace{:,\ldots,:}_{\textrm{axis}},i].\]
\end_inset
\end_layout
\begin_layout Description
all
\begin_inset LatexCommand index
name "ndarray!methods!all"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if all entries along axis evaluate True, otherwise return False.
\end_layout
\begin_layout Description
any
\begin_inset LatexCommand index
name "ndarray!methods!any"
\end_inset
(axis=None, out=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if any entries along axis evaluate True, otherwise return False
\begin_inset LatexCommand index
name "ndarray!methods|)"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Array object calculation methods.
If axis is an argument, then the calculation is performed along that axis.
An axis value of None means the array is flattened before calculation proceeds.
All of these methods can take an optional out= argument which can specify
the output array to write the results into.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
setlength{
\backslash
extrarowheight}{0.5eM}
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="18" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="30text%">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Method
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Arguments
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\family sans
\series bold
\size large
Description
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
all
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
true if all entries are true.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
any
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
true if any entries are true.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
argmax
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
index of largest value.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
argmin
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
index of smallest value.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
clip
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(min=, max=)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
self[self>max]=max; self[self<min]=min
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
conj
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
()
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
complex conjugate
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
cumprod
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
cumulative product
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
cumsum
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
cumulative sum
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
max
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
maximum of self
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
mean
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
mean of self
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
min
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
minimum of self
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
prod
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
multiply elements of self together
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
ptp
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
self.max(axis)-self.min(axis)
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
var
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
variance of self
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
std
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
standard deviation of self
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
sum
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(axis=None, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
add elements of self together
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\series bold
trace
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
(offset, axis1=0, axis2=0, dtype=None)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
sum along a diagonal
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Array Special Methods
\end_layout
\begin_layout Standard
Methods
\begin_inset LatexCommand index
name "ndarray!special methods|("
\end_inset
in this chapter are not generally meant to be called directly by the user.
They are called by Python and are used to customize behavior of the ndarray
object as it interacts with the Python language and standard library.
\end_layout
\begin_layout Subsection
Methods for standard library functions
\end_layout
\begin_layout Description
__copy__
\begin_inset LatexCommand index
name "ndarray!special methods!copy"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
To allow copy.copy(a) to perform a shallow copy of an array.
Exactly the same as self.copy() (contents of object arrays are not copied).
\end_layout
\begin_layout Description
__deepcopy__
\begin_inset LatexCommand index
name "ndarray!special methods!deepcopy"
\end_inset
(memodict)
\end_layout
\begin_layout Description
\InsetSpace ~
To allow copy.deepcopy(a) to perform a deep copy.
This is the same as a shallow copy unless self is an object array.
Then, after the shallow copy is made, a copy.deepcopy(item) is called for
every item in the object array.
\end_layout
\begin_layout Description
__reduce__
\begin_inset LatexCommand index
name "ndarray!special methods!reduce"
\end_inset
()
\end_layout
\begin_layout Description
__setstate__
\begin_inset LatexCommand index
name "ndarray!special methods!setstate"
\end_inset
(shape, typestr, isfortran, data)
\end_layout
\begin_layout Description
\InsetSpace ~
Pickling support for arrays is provided by these two methods.
When an array needs to be pickled, the __reduce__() method is called to
provide a 3-tuple of already-pickleable objects.
To construct a new object from the pickle, the first two elements of the
3-tuple are used to construct a new (0-length) array of the correct type
and the last element of the 3-tuple, which is itself a 4-tuple of (shape,
typestr, isfortran, data) is passed to the __setstate__ method of the newly
created array to restore its contents.
\end_layout
\begin_layout Description
\InsetSpace ~
The reduce method returns a 3-tuple consisting of (callable, args, state)
where callable is a simple constructor function that handles subclasses
of the ndarray.
Also, args is a 3-tuple of arguments to pass to this constructor function
(type(self), (0,), self.dtypechar), and state is a 4-tuple of information
giving the object's state (self.shape, self.dtypedescr, isfortran, string_or_list
).
In this tuple, isfortran is a Bool stating whether the following flattened
data is in Fortran order or not, and string_or_list is a string formed
by self.tostring() if the data type is not object.
If the data type of self is an object array, then string_or_list is a flat
list equivalent to self.ravel().tolist().
\end_layout
\begin_layout Description
\InsetSpace ~
On load from a pickle, the pickling code uses the first two elements from
the tuple returned by reduce to construct an empty 0-dimensional subclass
of the correct type.
The last element is then passed to the __setstate__ method of the newly
created array to restore its contents.
\end_layout
\begin_layout Note
When data is a string, the __setstate__ method will directly use the string
memory as the array memory (new.base will point to the string).
The typestr contains enough information to decode how the memory should
be interpreted.
\end_layout
\begin_layout Subsection
Basic customization
\end_layout
\begin_layout Description
__new__
\begin_inset LatexCommand index
name "ndarray!special methods!new"
\end_inset
(subtype, shape=, dtype=long_, buffer=None, offset=0, strides=None, order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This method creates a new ndarray.
It is typically only used in the __new__ method of a subclass.
This method is called to construct a new array whenever the object name
is called,
\family typewriter
a=ndarray(...)
\family default
.
It supports two basic modes of array creation:
\end_layout
\begin_layout Enumerate
a single-segment array of the specified shape and data-type from newly allocated
memory;
\end_layout
\begin_deeper
\begin_layout Enumerate
uses shape, dtype, strides, and order arguments; others are ignored;
\end_layout
\begin_layout Enumerate
The order argument allows specification of a Fortran-style contiguous memory
segment (order='Fortran');
\end_layout
\begin_layout Enumerate
If strides is given, then it specifies the new strides of the array (and
the order keyword is ignored).
The strides will be checked for consistency with the dimension size so
that steps outside of the memory won't occur.
\end_layout
\end_deeper
\begin_layout Enumerate
an array of the given shape and data type using the provided object, buffer,
which must export the buffer interface.
\end_layout
\begin_deeper
\begin_layout Enumerate
all arguments can be used;
\end_layout
\begin_layout Enumerate
strides can be given and will be checked for consistency with the shape,
data type, and available memory in buffer;
\end_layout
\begin_layout Enumerate
order indicates whether the data buffer should be interpreted as Fortran-style
contiguous (order='Fortran') or not;
\end_layout
\begin_layout Enumerate
offset can be used to start the array data at some offset in the buffer.
\end_layout
\end_deeper
\begin_layout Note
The ndarray uses the default no-op __init__
\begin_inset LatexCommand index
name "ndarray!special methods!init"
\end_inset
function because the array is completely initialized after __new__ is called.
\end_layout
\begin_layout Description
__array__
\begin_inset LatexCommand index
name "ndarray!special methods!array"
\end_inset
(dtype {None})
\end_layout
\begin_layout Description
\InsetSpace ~
This is a special method that should always return an object of type ndarray.
Useful for subclasses that need to get to the ndarray object.
\end_layout
\begin_layout Description
__array_wrap__
\begin_inset LatexCommand index
name "ndarray!special methods!array\\_wrap"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
This is a special method that always returns an object of the same Python
type as self using the array passed as an argument.
This is mainly useful for subclasses as it is an easy way to get the subclass
back from an ndarray.
\end_layout
\begin_layout Description
__lt__
\begin_inset LatexCommand index
name "ndarray!special methods!lt"
\end_inset
(other)
\end_layout
\begin_layout Description
__le__
\begin_inset LatexCommand index
name "ndarray!special methods!le"
\end_inset
(other)
\end_layout
\begin_layout Description
__gt__
\begin_inset LatexCommand index
name "ndarray!special methods!gt"
\end_inset
(other)
\end_layout
\begin_layout Description
__ge__
\begin_inset LatexCommand index
name "ndarray!special methods!ge"
\end_inset
(other)
\end_layout
\begin_layout Description
__eq__
\begin_inset LatexCommand index
name "ndarray!special methods!eq"
\end_inset
(other)
\end_layout
\begin_layout Description
__ne__
\begin_inset LatexCommand index
name "ndarray!special methods!ne"
\end_inset
(other)
\end_layout
\begin_layout Description
\InsetSpace ~
Defined to support rich comparisons (<, <=, >, >=, ==, !=) on ndarrays
using universal functions.
\end_layout
\begin_layout Description
__str__
\begin_inset LatexCommand index
name "ndarray!special methods!str"
\end_inset
()
\end_layout
\begin_layout Description
__repr__
\begin_inset LatexCommand index
name "ndarray!special methods!repr"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
These functions print the array when called by str(self) and repr(self)
respectively.
Array printing can be changed using set_string_function(..).
Default array printing has been borrowed from numarray whose printing code
was written by Perry Greenfield and J.
Todd Miller.
By default, arrays print such that
\end_layout
\begin_layout Enumerate
The last axis is always printed left to right.
\end_layout
\begin_layout Enumerate
The next-to-last axis is printed top to bottom.
\end_layout
\begin_layout Enumerate
Remaining axes are printed top to bottom with increasing numbers of separators.
\end_layout
\begin_layout Description
\InsetSpace ~
Five parameters of the printing can be set using keyword arguments with
\family typewriter
set_printoptions(...)
\family default
.
The parameters
\begin_inset LatexCommand index
name "set\\_printoptions"
\end_inset
can all be retrieved using
\family typewriter
get_printoptions()
\family default
.
These printing options
\begin_inset LatexCommand index
name "get\\_printoptions"
\end_inset
are
\end_layout
\begin_deeper
\begin_layout Description
precision the number of digits of precision for floating point output (default
8);
\end_layout
\begin_layout Description
threshold total number of array elements which triggers summarization rather
than full representation (default 1000);
\end_layout
\begin_layout Description
edgeitems number of array items in summary at beginning an end of each dimension
(default 3);
\end_layout
\begin_layout Description
linewidth the number of characters per line for the purpose of inserting
line breaks (default 71);
\end_layout
\begin_layout Description
suppress Boolean indicating whether or not to suppress printing of small
floating point values using scientific notation (default False).
\end_layout
\end_deeper
\begin_layout Description
__nonzero__
\begin_inset LatexCommand index
name "ndarray!special methods!nonzero"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Truth-value testing for the array as a whole.
It is called whenever the truth value of the ndarray as a whole object
is required.
This raises an error if the number of elements in the the array is larger
than 1 because the truth value of such arrays is ambiguous.
Use .any() and .all() instead to be clear about what is meant in such cases.
If the number of elements is 0 then False is returned.
If there is one element in the array, then the truth-value of this element
is returned.
\end_layout
\begin_layout Subsection
Container customization
\end_layout
\begin_layout Description
__len__
\begin_inset LatexCommand index
name "ndarray!special methods!len"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Returns self.shape[0].
It is called in response to len(self).
Use self.size to get the total number of elements in the array.
\end_layout
\begin_layout Description
\InsetSpace ~
Notice that the default Python iterator for sequences is used when arrays
are used in places that expect an iterator.
This iterator returns successively self[0], self[1], ..., self[self.__len__()].
Use self.flat to get an iterator that walks through the entire array one
element at a time.
\end_layout
\begin_layout Description
__getitem__
\begin_inset LatexCommand index
name "ndarray!special methods!getitem"
\end_inset
(key)
\end_layout
\begin_layout Description
\InsetSpace ~
Called when evaluating self[key] construct.
Items from the array can be selected using this customization.
This construct has both standard and extended indexing abilities which
are explained in Section
\begin_inset LatexCommand ref
reference "sec:Array-indexing"
\end_inset
.
A named field can be retrieved if key is a string and fields are defined
in the dtypedescr object associated with this array.
\end_layout
\begin_layout Description
__setitem__
\begin_inset LatexCommand index
name "ndarray!special methods!setitem"
\end_inset
(key, value)
\end_layout
\begin_layout Description
\InsetSpace ~
Called when evaluating self[key]=value.
Items in the array can be set using this construct.
This construct is explained in Section
\begin_inset LatexCommand ref
reference "sec:Array-indexing"
\end_inset
.
A named field can be set if key is a string and fields are defined in the
dtypedescr object associated with this array.
\end_layout
\begin_layout Description
__getslice__
\begin_inset LatexCommand index
name "ndarray!special methods!getslice"
\end_inset
(i, j)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to self.__getitem__(slice(i,j)) but defined mainly so that C
code can use the sequence interface.
Called to evaluate self[i:j]
\end_layout
\begin_layout Description
__setslice__
\begin_inset LatexCommand index
name "ndarray!special methods!setslice"
\end_inset
(i, j, value)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to self.__setitem__(slice(i,j), value) but defined mainly so
C code can use the sequence interface.
Called to evaluate self[i:j] = value.
\end_layout
\begin_layout Description
__contains__
\begin_inset LatexCommand index
name "ndarray!special methods!contains"
\end_inset
(item)
\end_layout
\begin_layout Description
\InsetSpace ~
Called to determine truth value of the
\family typewriter
item in self
\family default
construct.
Returns the equivalent of (self==item).any()
\end_layout
\begin_layout Subsection
Arithmetic customization
\end_layout
\begin_layout Subsubsection
Binary
\end_layout
\begin_layout Description
__add__
\begin_inset LatexCommand index
name "ndarray!special methods!add"
\end_inset
(other)
\end_layout
\begin_layout Description
__sub__
\begin_inset LatexCommand index
name "ndarray!special methods!sub"
\end_inset
(other)
\end_layout
\begin_layout Description
__mul__
\begin_inset LatexCommand index
name "ndarray!special methods!mul"
\end_inset
(self, other)
\end_layout
\begin_layout Description
__div__
\begin_inset LatexCommand index
name "ndarray!special methods!div"
\end_inset
(other)
\end_layout
\begin_layout Description
__truediv__
\begin_inset LatexCommand index
name "ndarray!special methods!truediv"
\end_inset
(other)
\end_layout
\begin_layout Description
__floordiv__
\begin_inset LatexCommand index
name "ndarray!special methods!floordiv"
\end_inset
(other)
\end_layout
\begin_layout Description
__mod__
\begin_inset LatexCommand index
name "ndarray!special methods!mod"
\end_inset
(other)
\end_layout
\begin_layout Description
__divmod__
\begin_inset LatexCommand index
name "ndarray!special methods!divmod"
\end_inset
(other)
\end_layout
\begin_layout Description
__pow__
\begin_inset LatexCommand index
name "ndarray!special methods!pow"
\end_inset
(other[,modulo])
\end_layout
\begin_layout Description
__lshift__
\begin_inset LatexCommand index
name "ndarray!special methods!lshift"
\end_inset
(other)
\end_layout
\begin_layout Description
__rshift__
\begin_inset LatexCommand index
name "ndarray!special methods!rshift"
\end_inset
(other)
\end_layout
\begin_layout Description
__and__
\begin_inset LatexCommand index
name "ndarray!special methods!and"
\end_inset
(other)
\end_layout
\begin_layout Description
__or__
\begin_inset LatexCommand index
name "ndarray!special methods!or"
\end_inset
(other)
\end_layout
\begin_layout Description
__xor__
\begin_inset LatexCommand index
name "ndarray!special methods!xor"
\end_inset
(other)
\end_layout
\begin_layout Description
\InsetSpace ~
These methods are defined for ndarrays to implement the operations (
\family typewriter
+
\family default
,
\family typewriter
-
\family default
,
\family typewriter
*
\family default
,
\family typewriter
/,
\family default
\family typewriter
/,
\family default
\family typewriter
//
\family default
,
\family typewriter
%
\family default
,
\family typewriter
divmod()
\family default
,
\family typewriter
**
\family default
or
\family typewriter
pow()
\family default
,
\family typewriter
<<,
\family default
\family typewriter
>>
\family default
,
\family typewriter
&
\family default
,
\family typewriter
^
\family default
,
\family typewriter
|
\family default
).
This is done using calls to the corresponding universal function object
(add, subtract, multiply, divide, true_divide, floor_divide, remainder,
divide and remainder, power, left_shift, right_shift, bitwise_and, bitwise_xor,
bitwise_or).
These implement element-by-element operations for arrays that are broadcastable
to the same shape.
\end_layout
\begin_layout Itemize
any third argument to
\family typewriter
pow()
\family default
is silently ignored as the underlying ufunc (power) only takes two arguments.
\end_layout
\begin_layout Itemize
the three division operators are all defined, div is active by default,
truediv is active when __future__.division is in effect.
\end_layout
\begin_layout Note
Because it is a built-in type (written in C), the __r<op>__ special methods
are not directly defined for the ndarray.
\end_layout
\begin_layout Subsubsection
In-place
\end_layout
\begin_layout Description
__iadd__
\begin_inset LatexCommand index
name "ndarray!special methods!iadd"
\end_inset
(other)
\end_layout
\begin_layout Description
__isub__
\begin_inset LatexCommand index
name "ndarray!special methods!isub"
\end_inset
(other)
\end_layout
\begin_layout Description
__imul__
\begin_inset LatexCommand index
name "ndarray!special methods!imul"
\end_inset
(other)
\end_layout
\begin_layout Description
__idiv__
\begin_inset LatexCommand index
name "ndarray!special methods!idiv"
\end_inset
(other)
\end_layout
\begin_layout Description
__itruediv__
\begin_inset LatexCommand index
name "ndarray!special methods!itruediv"
\end_inset
(other)
\end_layout
\begin_layout Description
__ifloordiv__
\begin_inset LatexCommand index
name "ndarray!special methods!ifloordiv"
\end_inset
(other)
\end_layout
\begin_layout Description
__imod__
\begin_inset LatexCommand index
name "ndarray!special methods!imod"
\end_inset
(other)
\end_layout
\begin_layout Description
__ipow__
\begin_inset LatexCommand index
name "ndarray!special methods!ipow"
\end_inset
(other)
\end_layout
\begin_layout Description
__ilshift__
\begin_inset LatexCommand index
name "ndarray!special methods!ilshift"
\end_inset
(other)
\end_layout
\begin_layout Description
__irshift__
\begin_inset LatexCommand index
name "ndarray!special methods!irshift"
\end_inset
(other)
\end_layout
\begin_layout Description
__iand__
\begin_inset LatexCommand index
name "ndarray!special methods!iand"
\end_inset
(other)
\end_layout
\begin_layout Description
__ixor__
\begin_inset LatexCommand index
name "ndarray!special methods!ixor"
\end_inset
(other)
\end_layout
\begin_layout Description
__ior__
\begin_inset LatexCommand index
name "ndarray!special methods!ior"
\end_inset
(other)
\end_layout
\begin_layout Description
\InsetSpace ~
These methods are implemented to handle the inplace operatiors (
\family typewriter
+=
\family default
,
\family typewriter
-=
\family default
,
\family typewriter
*=
\family default
,
\family typewriter
/=
\family default
,
\family typewriter
/=
\family default
,
\family typewriter
//=
\family default
,
\family typewriter
%=
\family default
,
\family typewriter
**
\family default
=,
\family typewriter
<<
\family default
=,
\family typewriter
>>=
\family default
,
\family typewriter
&=
\family default
,
\family typewriter
^=
\family default
,
\family typewriter
|=
\family default
).
The inplace operators are implemented using the corresponding ufunc and
its ability to take an output argument (which is set as self).
Using inplace operations can save space and time and is therefore encouraged
whenever appropriate.
\end_layout
\begin_layout Warning
In place operations will perform the calculation using the precision decided
by the data type of the two operands, but will silently downcast the result
(if necessary) so it can fit back into the array.
Therefore, for mixed precision calculations, a <op>= B can be different
than a = a <op> B.
For example, suppose a=ones((3,3)).
Then a+=3j is different than a=a+3j While they both perform the same computatio
n, a+=3j casts the result to fit back in a, while a=a+3j re-binds the name
a to the result.
\end_layout
\begin_layout Subsubsection
Unary operations
\end_layout
\begin_layout Description
__neg__
\begin_inset LatexCommand index
name "ndarray!special methods!neg"
\end_inset
(self)
\end_layout
\begin_layout Description
__pos__
\begin_inset LatexCommand index
name "ndarray!special methods!pos"
\end_inset
(self)
\end_layout
\begin_layout Description
__abs__
\begin_inset LatexCommand index
name "ndarray!special methods!abs"
\end_inset
(self)
\end_layout
\begin_layout Description
__invert__
\begin_inset LatexCommand index
name "ndarray!special methods!invert"
\end_inset
(self)
\end_layout
\begin_layout Description
\InsetSpace ~
These functions are called in response to the unary operations (
\family typewriter
-
\family default
,
\family typewriter
+
\family default
,
\family typewriter
abs()
\family default
,
\family typewriter
~
\family default
).
With the exception of __pos__, these are implemented using ufuncs (negative,
absolute, invert).
The unary
\family typewriter
+
\family default
operator, however simply calls self.copy(), and can therefore be used to
get a copy of an array.
\end_layout
\begin_layout Description
__complex__
\begin_inset LatexCommand index
name "ndarray!special methods!complex"
\end_inset
(self)
\end_layout
\begin_layout Description
__int__
\begin_inset LatexCommand index
name "ndarray!special methods!int"
\end_inset
(self)
\end_layout
\begin_layout Description
__long__
\begin_inset LatexCommand index
name "ndarray!special methods!long"
\end_inset
(self)
\end_layout
\begin_layout Description
__float__
\begin_inset LatexCommand index
name "ndarray!special methods!float"
\end_inset
(self)
\end_layout
\begin_layout Description
__oct__
\begin_inset LatexCommand index
name "ndarray!special methods!oct"
\end_inset
(self)
\end_layout
\begin_layout Description
__hex__
\begin_inset LatexCommand index
name "ndarray!special methods!hex"
\end_inset
(self)
\end_layout
\begin_layout Description
\InsetSpace ~
These functions are also defined for the
\family typewriter
ndarray
\family default
object to handle the operations
\family typewriter
complex()
\family default
,
\family typewriter
int()
\family default
,
\family typewriter
long()
\family default
,
\family typewriter
float()
\family default
,
\family typewriter
oct()
\family default
, and
\family typewriter
hex()
\family default
.
They work only on arrays that have one element in them and return the appropria
te scalar
\begin_inset LatexCommand index
name "ndarray!special methods|)"
\end_inset
.
\end_layout
\begin_layout Tip
The function called to implement many arithmetic special methods for arrays
can be modified using the function set_numeric_ops.
This function is called with keyword arguments indicating which operation(s)
to replace.
A dictionary is returned containing showing the old functions.
By default, these functions are set to the corresponding ufunc.
\end_layout
\begin_layout Section
Array indexing
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "sec:Array-indexing"
\end_inset
\end_layout
\begin_layout Standard
More powerful array
\begin_inset LatexCommand index
name "indexing|("
\end_inset
indexing
\begin_inset LatexCommand index
name "ndarray!special methods!getitem"
\end_inset
was an important extension introduced by numarray, and was therefore an
important part of the development of NumPy.
In particular, the desire to select arbitrary elements based on their position
in the array, and according to a mask was desirable.
\end_layout
\begin_layout Standard
There are two kinds of indexing available using the
\family typewriter
X[obj]
\family default
syntax: basic slicing, and advanced indexing
\begin_inset LatexCommand index
name "ndarray!special methods!setitem"
\end_inset
.
For the description of this syntax given below, X is the array to-be-sliced
and obj is the
\emph on
selection
\emph default
object.
Furthermore, define
\begin_inset Formula $N\equiv$
\end_inset
X.ndim.
These two methods of slicing have different behavior and are triggered
depending on obj.
Adding additional functionality yet remaining compatible with old uses
of slicing complicated the rules a little.
Hopefully, after studying this section, you will have a firm grasp of what
kind of selection will be initiated depending on the selection object.
\end_layout
\begin_layout Tip
in Python X[(exp1, exp2, ..., expN)] is equivalent to X[exp1, exp2, ..., expN]
as the latter is just syntactic sugar for the former.
\end_layout
\begin_layout Subsection
Basic Slicing
\end_layout
\begin_layout Standard
Basic slicing
\begin_inset LatexCommand index
name "ndarray!special methods!getslice"
\end_inset
extends Python's basic concept of slicing
\begin_inset LatexCommand index
name "ndarray!special methods!setslice"
\end_inset
to N dimensions.
Basic slicing occurs when obj is a slice object (constructed by start:stop:step
notation inside of brackets), an integer, or a tuple of slice objects and
integers.
Ellipsis and newaxis objects can be interspersed with these as well.
In order to remain backward compatible with a common usage in Numeric,
basic slicing is also initiated if the selection object is any sequence
(such as a list) containing slice objects, the ellipsis
\begin_inset LatexCommand index
name "ellipsis"
\end_inset
object, or the newaxis
\begin_inset LatexCommand index
name "newaxis"
\end_inset
object, but no integer arrays or other embedded sequences.
\end_layout
\begin_layout Standard
The standard rules of sequence slicing apply to basic slicing on a per-dimension
basis (including using a step index).
Some useful concepts to remember include:
\end_layout
\begin_layout Itemize
The basic slice syntax is '
\begin_inset Formula $i:j:k$
\end_inset
' where
\begin_inset Formula $i$
\end_inset
is the starting index,
\begin_inset Formula $j$
\end_inset
is the stopping index, and
\begin_inset Formula $k$
\end_inset
is the step (
\begin_inset Formula $k\neq0$
\end_inset
).
This selects the
\begin_inset Formula $m$
\end_inset
elements (in the corresponding dimension) with index values
\begin_inset Formula $i,\, i+k,\,\ldots,\, i+(m-1)k$
\end_inset
where
\begin_inset Formula $m=q+(r\neq0)$
\end_inset
where
\begin_inset Formula $q$
\end_inset
and
\begin_inset Formula $r$
\end_inset
are the quotient and remainder obtained by dividing
\begin_inset Formula $j-i$
\end_inset
by
\begin_inset Formula $k$
\end_inset
:
\begin_inset Formula $j-i=qk+r$
\end_inset
, so that
\begin_inset Formula $i+\left(m-1\right)k<j.$
\end_inset
\end_layout
\begin_layout Itemize
Assume
\begin_inset Formula $n$
\end_inset
is the number of elements in the dimension being sliced.
Then, if
\begin_inset Formula $i$
\end_inset
is not given it defaults to 0 for
\begin_inset Formula $k>0$
\end_inset
and
\begin_inset Formula $n$
\end_inset
for
\begin_inset Formula $k<0$
\end_inset
.
If
\begin_inset Formula $j$
\end_inset
is not given it defaults to
\begin_inset Formula $n$
\end_inset
for
\begin_inset Formula $k>0$
\end_inset
and
\begin_inset Formula $-1$
\end_inset
for
\begin_inset Formula $k<0$
\end_inset
.
If
\begin_inset Formula $k$
\end_inset
is not given it defaults to 1.
Note that '::' is the same as ':' and means select all indices along this
axis.
\end_layout
\begin_layout Itemize
If the number of objects in the selection tuple is less than
\begin_inset Formula $N$
\end_inset
, then ':' is assumed for any remaining dimensions.
\end_layout
\begin_layout Itemize
Ellipsis expand to the number of ':' objects needed to make a selection
tuple of the same length as X.ndim.
Only one ellipsis is expanded, any others are interpreted as more ':'
\end_layout
\begin_layout Itemize
Each newaxis object in the selection tuple serves to expand the dimensions
of the resulting selection by one unit-length dimension.
The added dimension is the position of the newaxis object in the selection
tuple.
\end_layout
\begin_layout Itemize
An integer,
\begin_inset Formula $i$
\end_inset
, returns the same values as
\begin_inset Formula $i:i+1$
\end_inset
\series bold
except
\series default
the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the
\begin_inset Formula $p^{\textrm{th}}$
\end_inset
element an integer (and all other entries ':') returns the corresponding
sub-array with dimension
\begin_inset Formula $N-1$
\end_inset
.
If
\begin_inset Formula $N=1,$
\end_inset
then the returned object is an Array Scalar.
These objects are explained in Chapter
\begin_inset LatexCommand ref
reference "cha:Scalar-objects"
\end_inset
.
\end_layout
\begin_layout Itemize
If the selection tuple has all entries ':' except the
\begin_inset Formula $p^{\textrm{th}}$
\end_inset
entry which is a slice object
\begin_inset Formula $i:j:k$
\end_inset
, then the returned array has dimension
\begin_inset Formula $N$
\end_inset
formed by concatenating the sub-arrays returned by integer indexing of
elements
\begin_inset Formula $i$
\end_inset
,
\begin_inset Formula $i+k$
\end_inset
,
\begin_inset Formula $i+(m-1)k<j$
\end_inset
,
\end_layout
\begin_layout Itemize
Basic slicing with more than one non-':' entry in the slicing tuple, acts
like repeated application of slicing using a single non-':' entry, where
the non-':' entries are successively taken (with all other non-':' entries
replaced by ':').
Thus, X[ind1,...,ind2,:] acts like X[ind1][...,ind2,:] under basic slicing.
Note this is NOT true for advanced slicing.
\end_layout
\begin_layout Itemize
You may use slicing to set values in the array, but (unlike lists) you can
never grow the array.
The size of the value to be set in X[obj] = value must be (broadcastable)
to the same shape as X[obj].
\end_layout
\begin_layout Standard
Basic slicing always returns another
\emph on
view
\begin_inset LatexCommand index
name "ndarray!view"
\end_inset
\emph default
of the array.
In other words, the returned array from a basic slicing operation uses
the same data as the original array.
This can be confusing at first, but it is faster and can save memory.
A copy can always be obtained if needed using the unary + operator (which
has lower precedence than slicing) or the .copy() method.
\end_layout
\begin_layout Tip
Remember that a slicing tuple can always be constructed as obj and used
in the x[obj] notation.
Slice objects can be used in the construction in place of the [start:stop:step]
notation.
For example,
\family typewriter
x[1:10:5,::-1]
\family default
can also be implemented as
\family typewriter
obj=(slice(1,10,5), slice(None,None,-1)); X[obj]
\family default
.
This can be useful for constructing generic code that works on arrays of
arbitrary dimension.
\end_layout
\begin_layout Subsection
Advanced selection
\end_layout
\begin_layout Standard
Advanced selection is triggered when the selection object, obj, is a non-tuple
sequence object, an ndarray (of data type integer or bool), or a tuple
with at least one sequence object or ndarray (of data type integer or bool).
There are two types of advanced indexing: integer and Boolean.
Advanced selection always returns a copy of the data (contrast with basic
slicing that returns a view).
\end_layout
\begin_layout Subsubsection
Integer
\end_layout
\begin_layout Standard
Integer indexing allows selection of arbitrary items in the array based
on their
\begin_inset Formula $N$
\end_inset
-dimensional index.
This kind of selection occurs when advanced selection is triggered and
the selection object is not an array of data type bool.
For the discussion below, when the selection object is not a tuple, it
will be referred to as if it had been promoted to a 1-tuple, which will
be called the selection tuple.
The rules of advanced integer-style indexing are:
\end_layout
\begin_layout Itemize
if the length of the selection tuple is larger than
\begin_inset Formula $N$
\end_inset
(=X.ndim) an error is raised.
\end_layout
\begin_layout Itemize
all sequences and scalars in the selection tuple are converted to intp indexing
arrays.
\end_layout
\begin_layout Itemize
all selection tuple objects must be convertible to intp arrays, or slice
objects, or the Ellipsis (...) object.
\end_layout
\begin_layout Itemize
Exactly one Ellipsis object will be expanded, any other Ellipsis objects
will be treated as full slice (':') objects.
The Ellipsis object is replaced with as many full slice (':') objects as
needed to make the length of the selection tuple
\begin_inset Formula $N$
\end_inset
.
\end_layout
\begin_layout Itemize
If the selection tuple is smaller than
\begin_inset Formula $N$
\end_inset
, then as many ':' objects as needed are added to the end of the selection
tuple so that the modified selection tuple has length
\begin_inset Formula $N$
\end_inset
.
\end_layout
\begin_layout Itemize
The shape of all the integer indexing arrays must be broadcastable to the
same shape.
Arrays are broadcastable if any of the following are satisfied
\end_layout
\begin_deeper
\begin_layout Enumerate
The arrays all have exactly the same shape.
\end_layout
\begin_layout Enumerate
The arrays all have the same number of dimensions and the length of each
dimensions is either a common length or 1.
\end_layout
\begin_layout Enumerate
The arrays that have too few dimensions can have their shapes pre-pended
with a dimension of length 1 to satisfy property 2.
\end_layout
\end_deeper
\begin_layout Itemize
The shape of the output (or the needed shape of the object to be used for
setting) is the broadcasted shape.
\end_layout
\begin_deeper
\begin_layout Description
Example: If a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape
is () so that d is a scalar, then a, b, c, and d are all broadcastable
to dimension (5,6).
The array
\begin_inset Quotes eld
\end_inset
a
\begin_inset Quotes erd
\end_inset
acts like a (5,6) array where a[:,0] is broadcast to the other columns,
\begin_inset Quotes eld
\end_inset
b
\begin_inset Quotes erd
\end_inset
acts like a (5,6) array where b[0,:] is broadcast to the other rows,
\begin_inset Quotes eld
\end_inset
c
\begin_inset Quotes erd
\end_inset
acts like a (1,6) array and therefore a (5,6) where c[:] is broadcast to
every row, and finally
\begin_inset Quotes eld
\end_inset
d
\begin_inset Quotes erd
\end_inset
acts like a (5,6) array where the single values is repeated.
\end_layout
\end_deeper
\begin_layout Itemize
After expanding any ellipses and filling out any missing (':') objects in
the selection tuple, then let
\begin_inset Formula $N_{t}$
\end_inset
be the number of indexing arrays, and let
\begin_inset Formula $N_{s}=N-N_{t}$
\end_inset
be the number of slice objects.
Note that
\begin_inset Formula $N_{t}>0$
\end_inset
(or we wouldn't be doing advanced integer indexing).
\end_layout
\begin_layout Itemize
If
\begin_inset Formula $N_{s}=0$
\end_inset
then the
\begin_inset Formula $M$
\end_inset
-dimensional result is constructed by varying the index tuple
\begin_inset Formula $\left(i_{1},\ldots,i_{M}\right)$
\end_inset
over the range of the result shape and for each value of the index tuple
setting:
\begin_inset Formula \[
\textrm{result[$i_{1},\ldots,i_{M}$]=X[ind$_{1}$[$i_{1},\ldots i_{M}$], ind$_{2}$[$i_{1},\ldots,i_{M}$], \, etc.,\, ind$_{N}$[$i_{1},\ldots,i_{M}$]}.\]
\end_inset
\end_layout
\begin_deeper
\begin_layout Description
Example: Suppose the shape of the broadcasted indexing arrays is 3-dimensional
and
\begin_inset Formula $N$
\end_inset
is 2.
Then the result is found by letting
\begin_inset Formula $i,j,k$
\end_inset
run over the shape found by broadcasting
\begin_inset Formula $\textrm{ind}_{1},$
\end_inset
and
\begin_inset Formula $\textrm{ind}_{2},$
\end_inset
and for each
\begin_inset Formula $i,j,k$
\end_inset
setting result[
\begin_inset Formula $i,j,k$
\end_inset
] = X[
\begin_inset Formula $\textrm{ind}_{1}[i,j,k]$
\end_inset
,
\begin_inset Formula $\textrm{ind}_{2}[i,j,k]$
\end_inset
].
\end_layout
\end_deeper
\begin_layout Itemize
If
\begin_inset Formula $N_{s}>0$
\end_inset
, then partial indexing is done.
This can be somewhat mind-boggling to understand, but if you think in terms
of the shapes of the arrays involved, it can be easier to grasp what happens.
In simple cases (
\emph on
i.e.
\emph default
one indexing array and
\begin_inset Formula $N-1$
\end_inset
slice objects) it does exactly what you would expect (concatenation of
repeated application of basic slicing).
The rule for partial indexing is that the shape of the result (or the interpret
ed shape of the object to be used in setting) is the shape of X with the
indexed subspace replaced with the broadcasted indexing subspace.
If the index subspaces are right next to each other, then the broadcasted
indexing space directly replaces all of the indexed subspaces in X.
If the indexing subspaces are separated (by slice objects), then the broadcaste
d indexing space is first, followed by the sliced subspace of X.
\end_layout
\begin_deeper
\begin_layout Description
Example\InsetSpace ~
1: Suppose X.shape is (10,20,30) and ind is a (2,3,4) indexing intp
array, then result=X[...,ind,:] has shape (10,2,3,4,30) because the (20,)-shaped
subspace has been replaced with a (2,3,4)-shaped broadcasted indexing subspace.
If we let
\begin_inset Formula $i,j,k$
\end_inset
loop over the (2,3,4)-shaped subspace then result[...,i,j,k,:] = X[...,ind[i,j,k],:].
This example produces the same result as X.take(ind,axis=-2).
\end_layout
\begin_layout Description
Example\InsetSpace ~
2: Now let X.shape be (10,20,30,40,50) and suppose
\begin_inset Formula $\textrm{ind}_{1}$
\end_inset
and
\begin_inset Formula $\textrm{ind}_{2}$
\end_inset
are broadcastable to the shape (2,3,4).
Then X[:,ind
\begin_inset Formula $_{1}$
\end_inset
,ind
\begin_inset Formula $_{2}$
\end_inset
] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X
has been replaced with the (2,3,4) subspace from the indices.
However, X[:,ind
\begin_inset Formula $_{1}$
\end_inset
,:,ind
\begin_inset Formula $_{2}$
\end_inset
,:] has shape (2,3,4,10,30,50) because there is no unambiguous place to
drop in the indexing subspace, thus it is tacked-on to the beginning.
It is always possible to use .transpose() to move the sups pace anywhere
desired.
This example cannot be replicated using take.
\end_layout
\end_deeper
\begin_layout Subsubsection
Boolean
\end_layout
\begin_layout Standard
This advanced selection occurs when obj is an array object of Boolean type
(such as may be returned from comparison operators).
It is always equivalent to (but faster than) X[obj.nonzero()] where as described
above obj.nonzero() returns a tuple (of length obj.ndim) of integer index
arrays showing the True elements of obj.
\end_layout
\begin_layout Standard
The special case when obj.ndim == X.ndim is worth mentioning.
In this case X[obj] returns a 1-dimensional array filled with the elements
of X corresponding to the True values of obj.
It The search order will be C-style (last index varies the fastest).
If obj has True values at entries that are outside of the bounds of X,
then an index error will be raised.
\end_layout
\begin_layout Standard
You can also use Boolean arrays as element of the selection tuple.
In such instances, they will always be interpreted as nonzero(obj) and
the equivalent integer indexing will be done.
In general you can think of indexing with Boolean arrays as indexing with
nonzero(<Boolean>).
\end_layout
\begin_layout Warning
the definition of advanced selection means that X[(1,2,3),] is fundamentally
different than X[(1,2,3)].
The latter is equivalent to X[1,2,3] which will trigger basic selection
while the former will trigger advanced selection.
Be sure to understand why this is True.
You should also recognize that x[[1,2,3]] will trigger advanced selection,
but X[[1,2,slice(None)]] will trigger basic selection.
\end_layout
\begin_layout Subsection
Flat Iterator indexing
\end_layout
\begin_layout Standard
As mentioned previously, X.flat returns an iterator that will iterate over
the entire array (in C-contiguous style with the last index varying the
fastest).
This iterator object can also be indexed using basic slicing or advanced
indexing as long as the selection object is not a tuple.
This should be clear from the fact that X.flat is a 1-dimensional view.
X.flat can be used for integer indexing using 1-dimensional C-style-flat
indices.
The shape of any returned array is therefore the shape of the integer indexing
\begin_inset LatexCommand index
name "indexing|)"
\end_inset
object
\begin_inset LatexCommand index
name "ndarray|)"
\end_inset
.
\end_layout
\begin_layout Chapter
Basic Routines
\end_layout
\begin_layout Quotation
Do not pray for tasks equal to your powers; pray for powers equal to your
tasks.
Then the doing of your work shall be no miracle, but you shall be the miracle.
\end_layout
\begin_layout Right Address
---
\emph on
Phillips Brooks
\end_layout
\begin_layout Quote
Education isn't how much you have committed to memory, or even how much
you know.
It's being able to differentiate between what you do know and what you
don't.
\end_layout
\begin_layout Right Address
---
\emph on
Anatole France
\end_layout
\begin_layout Section
Creating arrays
\end_layout
\begin_layout Description
array
\begin_inset LatexCommand index
name "array"
\end_inset
(object=, dtype=None, copy=True, order=None, subok=False, ndmin=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new ndarray of data type, dtype (or determined from object if
dtype is None).
The shape of the new array will be determined from object.
If copy is True, then ensure a copy of the object is made.
If copy is False, then the returned object is a copy of the array only
if dtype is not equivalent to the data type of object.
If order is 'Fortran' then the resulting array will be in Fortran order,
otherwise it is in C order.
If subok (subclasses are O.K.) is True then pass through subclasses of the
array object if possible.
If subok is False then only ndarray objects may be returned.
The ndmin parameter specifies that the returned array must have at least
the given number of dimensions.
\end_layout
\begin_layout Description
asarray
\begin_inset LatexCommand index
name "asarray"
\end_inset
(object=, dtype=None, order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Exactly the same as array(...) except the default copy argument is False,
and subok is always False.
Using this function always returns the base class ndarray.
\end_layout
\begin_layout Description
asanyarray
\begin_inset LatexCommand index
name "asanyarray"
\end_inset
(object, dtype=None, order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Thin wrapper around array(...) with subok=1.
You should use this routine if you are only making use of the array attributes,
and believe the calculations that will follow would work with any subclass
of the array.
Use of this routine increases the chance that array subclasses will interact
seamlessly with your function --- returning the same subclasses.
\end_layout
\begin_layout Description
require
\begin_inset LatexCommand index
name "require"
\end_inset
(object, dtype=None, requirements=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Require a Python object to be an ndarray (or a sub-class) of the given
data-type if it can be cast safely, otherwise raise an error.
The requirements, if given, are a sequence containing the requested combination
of the flags 'C_CONTIGUOUS' ('C'), 'F_CONTIGUOUS' ('F'), 'ALIGNED' ('A'),
'WRITEABLE' ('W'), 'OWNDATA' ('O'), and the special directive 'ENSUREARRAY'
('E').
These strings dictate which flags should be set on the return array (note
only one of 'F_CONTIGUOUS' or 'C_CONTIGUOUS' should be used and 'F_CONTIGUOUS'
over-rides 'C_CONTIGUOUS').
The special directive 'ENSUREARRAY' makes sure that a base-class ndarray
is returned instead of allowing sub-classes to pass through.
This function is particularly useful in a Python interface to C-code (say
called using ctypes
\begin_inset LatexCommand index
name "ctypes"
\end_inset
).
\end_layout
\begin_layout Description
arange
\begin_inset LatexCommand index
name "arange"
\end_inset
(start=, stop=None, step=1, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Function similar to Python's built-in range() function except it returns
an ndarray object.
Return a 1-d array of data type, dtype (or determined from the start, stop,
and step objects if None), that starts at start, ends
\emph on
before
\emph default
stop and is incremented by step.
The returned array has length
\begin_inset Formula $n$
\end_inset
where
\begin_inset Formula \[
n=\left\lceil \frac{\textrm{stop}-\textrm{start}}{\textrm{step}}\right\rceil \]
\end_inset
with element
\begin_inset Formula $i$
\end_inset
equal to
\begin_inset Formula $\textrm{start}+i\cdot\textrm{step}.$
\end_inset
If stop is None, then the first argument is interpreted as stop and start
is 0.
\end_layout
\begin_layout Note
By definition of the ceiling function (denoted by
\begin_inset Formula $\left\lceil x\right\rceil $
\end_inset
), we know that
\begin_inset Formula $x\leq\left\lceil x\right\rceil <x+1$
\end_inset
, therefore this definition of the length of arange guarantees that
\begin_inset Formula $\textrm{start}+n\cdot\textrm{step}\geq\textrm{stop}$
\end_inset
as well as
\begin_inset Formula $\textrm{start}+(n-1)\cdot\textrm{step}<\textrm{stop}$
\end_inset
.
\end_layout
\begin_layout Description
isfortran
\begin_inset LatexCommand index
name "isfortran"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to
\family typewriter
arr.flags.fnc
\family default
and therefore returns True only if arr is Fortran-contiguous but not also
C-contiguous.
\end_layout
\begin_layout Description
empty
\begin_inset LatexCommand index
name "empty"
\end_inset
(shape=, dtype=int, order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Return an uninitialized array of data type, dtype, and given shape.
The memory layout defaults to C-style contiguous, but can be made Fortran-style
contiguous with a 'Fortran' order keyword.
\end_layout
\begin_layout Description
empty_like
\begin_inset LatexCommand index
name "empty\\_like"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Syntactic sugar for empty(a.shape, a.dtype, isfortran(arr))
\end_layout
\begin_layout Description
zeros
\begin_inset LatexCommand index
name "zeros"
\end_inset
(shape=, dtype=int, order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of data type dtype and given shape filled with zeros.
The memory layout may be altered from the default C-style contiguous with
the order keyword.
\end_layout
\begin_layout Description
zeros_like
\begin_inset LatexCommand index
name "zeros\\_like"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Syntactic sugar for zeros(a.shape, a.dtype, isfortran(arr))
\end_layout
\begin_layout Description
ones
\begin_inset LatexCommand index
name "ones"
\end_inset
(shape=, dtype=int, order='C')
\end_layout
\begin_layout Description
\InsetSpace ~
Syntactic sugar for a = zeros(shape, dtype, order); a+= 1.
\end_layout
\begin_layout Description
fromstring
\begin_inset LatexCommand index
name "fromstring"
\end_inset
(string=,dtype=int, count=-1, sep='')
\end_layout
\begin_layout Description
\InsetSpace ~
If sep is '', then return a new 1-d array with data-type descriptor given
by dtype and with memory initialized (copied) from the raw binary data
in string.
If count is non-negative, the new array will have count elements (with
a
\family typewriter
ValueError
\family default
raised if count requires more data than the string offers), otherwise the
size of the string must be a multiple of the itemsize implied by dtype,
and count will be the length of the string divided by the itemsize.
\end_layout
\begin_layout Description
\InsetSpace ~
If sep is not '', then interpret the string in ASCII mode with the provided
separator and convert the string to an array of numbers.
Any additional white-space will be ignored.
\end_layout
\begin_layout Description
fromfile
\begin_inset LatexCommand index
name "fromfile"
\end_inset
(file=, dtype=int, count=-1, sep='')
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 1-d array of data type, dtype, from a file (open file object or
string with the name of a file to read).
The file will be read in binary mode if sep is the empty string.
Otherwise, the file will be read in text mode with sep providing the separator
string between the entries.
If count is -1, then the size will be determined from the file, otherwise,
up to count items will be read from the file.
If fewer than count items are read, then a RunTimeWarning is issued indicating
the number of items read.
\end_layout
\begin_layout Description
frombuffer
\begin_inset LatexCommand index
name "frombuffer"
\end_inset
(buffer, dtype=intp, count=-1, offset=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Very similar to (binary-mode) fromstring in interpretation of the arguments,
except buffer can be any object exposing the buffer interface (or any object
with a __buffer__ attribute that returns a buffer exposing the buffer protocol).
The new array shares memory with the buffer object.
The new array will be read-only if the buffer does not expose a writeable
buffer.
\end_layout
\begin_layout Description
fromiter
\begin_inset LatexCommand index
name "fromiter"
\end_inset
(iterator_or_generator, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an array from an iterator or a generator.
Only handles 1-dimensional cases.
By default the data-type is determined from the objects returned from the
iterator.
\end_layout
\begin_layout Description
load
\begin_inset LatexCommand index
name "load"
\end_inset
(file)
\end_layout
\begin_layout Description
\InsetSpace ~
Load a NumPy binary file (.npy), a NumPy binary zipfile (.npz), or a pickled
Python object from an open file.
If file is a string, then open a file with that name first.
Which kind of file should be loaded is determined by the magic bytes at
the front of the file (not by filename extension).
See
\shape italic
save
\shape default
and
\shape italic
savez
\shape default
for functions which write .npy and .npz files from NumPy arrays.
If file is a binary zipfile, then an instance of NpzObj is returned.
This object is a simple wrapper around the zip-file which allows extraction
of the arrays stored within it.
The .files attribute of the NpzObj returns a list of all arrays in the archive.
These arrays are accessible through a dictionary-like interface (obj['name'])
or through attribute lookup through the .f attribute of the returned object
(obj.f.name).
If the file is a NumPy binary file (.npy), then the array itself is returned
from this function.
If the file contains a pickled object, then that object is returned.
\end_layout
\begin_layout Description
loads
\begin_inset LatexCommand index
name "loads"
\end_inset
(str)
\end_layout
\begin_layout Description
\InsetSpace ~
Load a pickled array from a string.
Equivalent to cPickle.loads(str).
This function will likely be deprecated in the future.
Use cPickle instead.
\end_layout
\begin_layout Description
save
\begin_inset LatexCommand index
name "save"
\end_inset
(file, arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Save the array into a file which can be a string or an open file-like object.
If the file is given as a string, then it will have .npy appended if it
does not already end with that extension.
The .npy file format is NumPy-specific and is documented in the numpy.lib.format
module.
It only stores a single array.
\end_layout
\begin_layout Description
savez
\begin_inset LatexCommand index
name "savez"
\end_inset
(file, *args, **kwds)
\end_layout
\begin_layout Description
\InsetSpace ~
Save a sequence of arrays into a NumPy binary zipfile (.npz).
An .npz file is a regular zip-file containing multiple .npy files.
If keywords are given, then the keyword names are used as filenames (with
the .npy extension added) in the zip-file with the corresponding values
being converted to arrays and stored in the specified filename.
Any non-keyword arguments that are passed in results in the names arr_0,
arr_1, etc.
being used in the zip-file (if a keyword by one of those names also exists,
then a ValueError is raised).
\end_layout
\begin_layout Description
loadtxt
\end_layout
\begin_layout Description
savetxt
\end_layout
\begin_layout Description
DataSource
\end_layout
\begin_layout Description
indices
\begin_inset LatexCommand index
name "indices"
\end_inset
(dimensions, dtype=intp)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of dtype representing
\begin_inset Formula $n$
\end_inset
(=len(dimensions)) grids of indices each with variation in a single direction.
The returned array has shape (
\begin_inset Formula $n$
\end_inset
,)+dimensions.
Compare with mgrid.
\end_layout
\begin_layout MyCode
>>> indices((2,3))
\newline
array([[[0, 0, 0],
\newline
[1, 1, 1]],
\newline
\newline
[[0, 1, 2],
\newline
[0, 1, 2]]])
\end_layout
\begin_layout Description
fromfunction
\begin_inset LatexCommand index
name "fromfunction"
\end_inset
(function, dimensions, **kwargs)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an array from a function called on a tuple of index grids.
The function should be able to take array arguments and process them like
ufuncs (use vectorize if it doesn't).
The function should accept as many arguments as there are dimensions which
is a sequence of numbers indicating the length of the desired output for
each axis.
Keyword arguments to function may also be passed in as keywords to fromfunction.
\end_layout
\begin_layout MyCode
>>> print fromfunction(lambda i,j: i+j, (2,3))
\newline
[[ 0.
1.
2.]
\newline
[ 1.
2.
3.]]
\end_layout
\begin_layout Description
identity
\begin_inset LatexCommand index
name "identity"
\end_inset
(n, dtype=intp)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 2-d array of shape (n,n) and data type, dtype with ones along
the main diagonal.
\end_layout
\begin_layout Description
where
\begin_inset LatexCommand index
name "where"
\end_inset
(condition[, x, y])
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an array shaped like condition, that has the elements of x and
y respectively where condition is respectively true or false.
If x and y are not given, then it is equivalent to nonzero(condition).
\end_layout
\begin_layout Description
flatnonzero
\begin_inset LatexCommand index
name "flatnonzero"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Return indices that are non-zero in a flattened version of arr.
Equivalent to a.ravel().nonzero()[0].
\end_layout
\begin_layout Description
putmask
\begin_inset LatexCommand index
name "putmask"
\end_inset
(arr=, mask=, values=)
\end_layout
\begin_layout Description
\InsetSpace ~
Performs the equivalent of
\end_layout
\begin_layout LyX-Code
for n, obj in enumerate(
\series bold
mask
\series default
.flat):
\end_layout
\begin_layout LyX-Code
if obj:
\end_layout
\begin_layout LyX-Code
self.flat[n] =
\series bold
values
\series default
[n]
\end_layout
\begin_layout Description
\InsetSpace ~
The values array is repeated if it is too short.
In particular, this means that indexing on the values array is modular
it's length, which might be surprising you are expecting putmask to work
the same as arr[mask]=values.
\end_layout
\begin_layout Description
lexsort
\begin_inset LatexCommand index
name "lexsort"
\end_inset
(keys=, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of indices similar to argsort except sorting is done using
all of the provided keys.
First a sort is computed using key[0], then the indices are further altered
by sorting on key[1].
This is repeated until sorting has been performed on all of the keys.
This is a useful function for multiple-field sorting.
\end_layout
\begin_layout MyCode
>>> a = [1,2,1,3,1,5]; b = [0,4,5,6,2,3]
\newline
>>> ind = lexsort((b,a))
\newline
>>> print
take(a,ind)
\newline
[1 1 1 2 3 5]
\newline
>>> print take(b,ind)
\newline
[0 2 5 4 6 3]
\end_layout
\begin_layout Description
\InsetSpace ~
Notice the order the keys had to be used in order to get a lexicographical
sorting order.
To clarify, suppose three equal-length sequences are fields of an underlying
data-type: (f1,f2,f3).
If we want to sort first on f1 and then on f2 and then on f3, the indices
that would accomplish that sort are obtained as lexsort((f3,f2,f1)).
\end_layout
\begin_layout Section
Operations on two or more arrays
\end_layout
\begin_layout Description
concatenate
\begin_inset LatexCommand index
name "concatenate"
\end_inset
(seq=, axis=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new array from elements of the sequence object seq concatenated
along the given axis.
The elements of the sequence object must have compatible types and be the
same shape.
If axis is None, then flatten each element of seq before concatenating
together to construct a 1-d array.
\end_layout
\begin_layout Description
correlate
\begin_inset LatexCommand index
name "correlate"
\end_inset
(x, y, mode='valid')
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the 1-d cross correlation of x and y keeping portions determined
by mode which may be 'valid' (0), 'same' (1), or 'full' (2).
The 'full' cross-correlation between two 1-d arrays is computed as
\begin_inset Formula \[
z\left[n\right]=\sum_{i=\max\left(n-M,0\right)}^{\min\left(n,K\right)}x\left[i\right]y\left[n+i\right],\]
\end_inset
for
\begin_inset Formula $n=0\ldots K+M$
\end_inset
where
\begin_inset Formula $K$
\end_inset
=len(
\begin_inset Formula $x$
\end_inset
)-1 and
\begin_inset Formula $M$
\end_inset
=len(
\begin_inset Formula $y$
\end_inset
)-1, and we assume
\begin_inset Formula $K\geq M$
\end_inset
(without loss of generality because we can interchange the roles of
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $y$
\end_inset
without effect).
For this formula to work, we assume that
\begin_inset Formula $x[i]=0$
\end_inset
when
\begin_inset Formula $i\notin\left[0,K-1\right]$
\end_inset
and
\begin_inset Formula $y[j]=0$
\end_inset
when
\begin_inset Formula $j\neq[0,M-1]$
\end_inset
.
\end_layout
\begin_layout Description
\InsetSpace ~
If mode is 'same' then only the
\begin_inset Formula $K$
\end_inset
middle values are returned starting at
\begin_inset Formula $n=\left\lfloor \frac{M-1}{2}\right\rfloor $
\end_inset
.
If the flag has a value of 'valid' then only the middle
\begin_inset Formula $K-M+1=\left(K+1\right)-\left(M+1\right)+1$
\end_inset
output values are returned starting at
\begin_inset Formula $n=M.$
\end_inset
\end_layout
\begin_layout Description
convolve
\begin_inset LatexCommand index
name "convolve"
\end_inset
(x, y, mode='valid')
\end_layout
\begin_layout Description
\InsetSpace ~
Convolution is very similar to correlation except it is defined with one
sequence reversed:
\begin_inset Formula \[
z\left[n\right]=\sum_{i}x[i]y[n-i].\]
\end_inset
The mode keyword has the same effect as it does for correlation.
Convolution ('full') between two 1-d arrays implements polynomial multiplicatio
n where the array entries are viewed as coefficients for polynomials.
\end_layout
\begin_deeper
\begin_layout Description
Example: Consider that
\begin_inset Formula $(x^{3}+4x^{2}+2)$
\end_inset
\begin_inset Formula $\left(x^{4}+3x+1\right)$
\end_inset
=
\begin_inset Formula $x^{7}+4x^{6}+5x^{4}+13x^{3}+4x^{2}+6x+2.$
\end_inset
This can be determined by using the code
\family typewriter
convolve([1,4,0,2], [1,0,0,3,1])
\family default
which returns
\family typewriter
[1,4,0,5,13,4,6,2].
\family default
Notice the one-to-one alignment between the elements of the arrays and
the coefficients on powers of
\begin_inset Formula $x$
\end_inset
in the polynomial.
\end_layout
\end_deeper
\begin_layout Description
outer
\begin_inset LatexCommand index
name "outer"
\end_inset
(a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
compute an outerproduct which is syntactic sugar for a.ravel() [:,newaxis]
* b.ravel() [newaxis,:] (after first converting a and b to ndarrays).
\end_layout
\begin_layout MyCode
>>> print outer([1,2,3],[10,100,1000])
\newline
[[ 10 100 1000]
\newline
[ 20 200 2000]
\newline
[ 30 300 3000]]
\end_layout
\begin_layout Description
inner
\begin_inset LatexCommand index
name "inner"
\end_inset
(a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
Computes the inner product between two arrays.
This is an array that has shape a.shape[:-1] + b.shape[:-1] with elements
computed as the sum of the product of the elements from the last dimensions
of a and b.
In particular, let
\begin_inset Formula $I$
\end_inset
and
\begin_inset Formula $J$
\end_inset
be the super
\begin_inset Foot
status open
\begin_layout Standard
A super index is 0 or more integer indices used to index into an N-dimensional
array.
How many indices a super index represents should be implied by context.
\end_layout
\end_inset
indices selecting the 1-dimensional arrays
\begin_inset Formula $a[I,:]$
\end_inset
and
\begin_inset Formula $b[J,:]$
\end_inset
, then the resulting array,
\begin_inset Formula $r$
\end_inset
, is
\begin_inset Formula \[
r[I,J]=\sum_{k}a[I,k]b[J,k].\]
\end_inset
\end_layout
\begin_layout Description
dot
\begin_inset LatexCommand index
name "dot"
\end_inset
(a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
Computes the dot (matrix) product between two arrays.
The product-sum is over the last dimension of
\begin_inset Formula $a$
\end_inset
and the second-to-last dimension of
\begin_inset Formula $b$
\end_inset
.
Specifically, if
\begin_inset Formula $I$
\end_inset
and
\begin_inset Formula $J$
\end_inset
are super indices for
\begin_inset Formula $a[I,:]$
\end_inset
and
\begin_inset Formula $b[J,:,j]$
\end_inset
so that
\begin_inset Formula $j$
\end_inset
is the index of the last dimension of
\begin_inset Formula $b$
\end_inset
.
Then, the shape of the resulting array is a.shape[:-1] + b.shape[:-2] + (b.shape[-
1],) with elements.
\begin_inset Formula \[
r[I,J,j]=\sum_{k}a[I,k]b[J,k,j],\]
\end_inset
\end_layout
\begin_layout Description
\begin_inset LatexCommand index
name "vdot"
\end_inset
vdot (a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
Computes the dot product between two arrays (flattened into one-dimensional
vectors) after conjugating the first vector.
This is an inner-product following the physicists convention of conjugating
the first argument.
\begin_inset Formula \[
r=\sum_{k}\overline{\textrm{a.flat}[k]}\textrm{b.flat}[k].\]
\end_inset
\end_layout
\begin_layout Description
tensordot
\begin_inset LatexCommand index
name "tensordot"
\end_inset
(a, b, axes=(-1,0))
\end_layout
\begin_layout Description
\InsetSpace ~
Computes a dot-product between two arrays where the sum is taken over the
axes specified by the 2-sequence which can have either scalar or sequence
entries.
The axes specified are summed over and the remaining axes are used to construct
the result.
So, for example, if
\begin_inset Formula $a$
\end_inset
is
\begin_inset Formula $3\times4\times5$
\end_inset
and
\begin_inset Formula $b$
\end_inset
is
\begin_inset Formula $4\times3\times2$
\end_inset
then if axes=([1,0],[0,1]) (or axes=([0,1],[1,0])) the result will be
\begin_inset Formula $5\times2$
\end_inset
.
Let
\begin_inset Formula $I$
\end_inset
represent the indices of the un-summed axes in
\begin_inset Formula $a$
\end_inset
, let
\begin_inset Formula $J$
\end_inset
represent the indices of the un-summed axes in
\begin_inset Formula $b$
\end_inset
and let
\begin_inset Formula $K$
\end_inset
represent the the indices of the axes summed over in both
\begin_inset Formula $a$
\end_inset
and
\begin_inset Formula $b$
\end_inset
.
Also, let
\begin_inset Formula $a_{t}$
\end_inset
represent a transposed version of
\begin_inset Formula $a$
\end_inset
where the axes to be summed over are pushed to the end, and let
\begin_inset Formula $b_{t}$
\end_inset
represent a transposed version of
\begin_inset Formula $b$
\end_inset
where the axes to be summed over are pushed to the front.
Then, using
\begin_inset Formula $\sum_{K}$
\end_inset
to represent a multi-index sum, the result can be written as
\end_layout
\begin_layout Standard
\begin_inset Formula \[
r[I,J]=\sum_{K}a_{t}[I,K]b_{t}[K,J]\]
\end_inset
\end_layout
\begin_layout Description
cross
\begin_inset LatexCommand index
name "cross"
\end_inset
(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the cross product of two (arrays of) vectors.
The cross product is performed over the axes of the input arrays indicated
by the axisa, and axisb arguments.
For both arrays, the axis used must have dimension either 2 or 3.
If both axes used have dimension 2, then only the z-component of the equivalent
3-d cross product is returned.
Otherwise, the entire vector is returned.
The axisc argument gives the axis of the vectors in the returned cross-product
result.
If axis is not None, then it is assumed that axisa=axisb=axisc=axis (regardless
of what else is specified).
\end_layout
\begin_layout Description
allclose
\begin_inset LatexCommand index
name "allclose"
\end_inset
(a, b, rtol=
\begin_inset Formula $10^{-5}$
\end_inset
, atol=
\begin_inset Formula $10^{-8}$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns true if all components of a and b are equal subject to the given
relative and absolute tolerances.
This returns true if every element of a and b satisfy
\begin_inset Formula \[
\left|a-b\right|<\textrm{atol}+\textrm{rtol}\left|b\right|.\]
\end_inset
\end_layout
\begin_layout Section
Printing arrays
\end_layout
\begin_layout Description
array2string
\begin_inset LatexCommand index
name "array2string"
\end_inset
(a)
\end_layout
\begin_layout Description
\InsetSpace ~
The default printing mechanism uses this function to produce a string from
an array.
\end_layout
\begin_layout Description
set_printoptions
\begin_inset LatexCommand index
name "set\\_printoptions"
\end_inset
(precision=None, theshold=None, edgeitems=None, linewidth=None, suppress=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Set options associated with representing an array.
\end_layout
\begin_deeper
\begin_layout Description
precision the default number of digits of precision for floating point output
(default 8);
\end_layout
\begin_layout Description
threshold total number of array elements which triggers printing only the
\begin_inset Quotes eld
\end_inset
ends
\begin_inset Quotes erd
\end_inset
of the array rather than a full representation (default 1000);
\end_layout
\begin_layout Description
edgeitems number of array elements in summary at beginning and end of each
dimension (default 3);
\end_layout
\begin_layout Description
linewidth the number of characters per line (default 75);
\end_layout
\begin_layout Description
suppress Boolean value indicating whether or not to suppress printing of
small floating point values using scientific notation (default False).
\end_layout
\end_deeper
\begin_layout Description
get_printoptions
\begin_inset LatexCommand index
name "get\\_printoptions"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the values of precision, threshold, edgeitems, linewidth, and suppress
that control printing of arrays.
\end_layout
\begin_layout Description
set_string_function
\begin_inset LatexCommand index
name "set\\_string\\_function"
\end_inset
(func, repr=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Set the function to use in response to str(array) or repr(array).
By default this function is array2string.
The function passed in must take an array argument and return a string.
If func is None, then the print function is reset to a simple internal
function.
\end_layout
\begin_layout Section
Functions redundant with methods
\end_layout
\begin_layout Standard
Several functions are available primarily for purposes of backward compatibility
with old Numeric, and are therefore redundant.
The functions are all simple wrappers for asarray(a).<function>(*args, **kwds),
or are replaceable by attribute access.
The following list documents them.
It is not recommended that these functions be used in new programs, but
there are no plans for removing them as in functional form they work with
arbitrary sequences which is sometimes desirable.
The functions that mirror methods and attributes are:
\series bold
take
\series default
\begin_inset LatexCommand index
name "take"
\end_inset
,
\series bold
reshape
\series default
\begin_inset LatexCommand index
name "reshape"
\end_inset
,
\series bold
squeeze
\series default
\begin_inset LatexCommand index
name "squeeze"
\end_inset
,
\series bold
choose
\series default
\begin_inset LatexCommand index
name "choose"
\end_inset
,
\series bold
repeat
\series default
\begin_inset LatexCommand index
name "repeat"
\end_inset
,
\series bold
put
\series default
\begin_inset LatexCommand index
name "put"
\end_inset
,
\series bold
swapaxes
\series default
\begin_inset LatexCommand index
name "swapaxes"
\end_inset
,
\series bold
transpose
\series default
\begin_inset LatexCommand index
name "transpose"
\end_inset
,
\series bold
real
\series default
\begin_inset LatexCommand index
name "real"
\end_inset
,
\series bold
imag
\series default
\begin_inset LatexCommand index
name "imag"
\end_inset
,
\series bold
sort
\series default
\begin_inset LatexCommand index
name "sort"
\end_inset
,
\series bold
argsort
\series default
\begin_inset LatexCommand index
name "argsort"
\end_inset
,
\series bold
amax
\begin_inset LatexCommand index
name "amax"
\end_inset
, argmax
\series default
\begin_inset LatexCommand index
name "argmax"
\end_inset
,
\series bold
amin
\begin_inset LatexCommand index
name "amin"
\end_inset
\series default
,
\series bold
argmin
\series default
\begin_inset LatexCommand index
name "argmin"
\end_inset
,
\series bold
ptp
\series default
\begin_inset LatexCommand index
name "ptp"
\end_inset
,
\series bold
alen
\series default
\begin_inset LatexCommand index
name "alen"
\end_inset
,
\series bold
searchsorted
\series default
\begin_inset LatexCommand index
name "searchsorted"
\end_inset
,
\series bold
diagonal
\series default
\begin_inset LatexCommand index
name "diagonal"
\end_inset
,
\series bold
trace
\series default
\begin_inset LatexCommand index
name "trace"
\end_inset
,
\series bold
ravel
\series default
\begin_inset LatexCommand index
name "ravel"
\end_inset
,
\series bold
nonzero
\series default
\begin_inset LatexCommand index
name "nonzero"
\end_inset
,
\series bold
shape
\series default
\begin_inset LatexCommand index
name "shape"
\end_inset
,
\series bold
compress
\series default
\begin_inset LatexCommand index
name "compress"
\end_inset
,
\series bold
clip
\series default
\begin_inset LatexCommand index
name "clip"
\end_inset
,
\series bold
std
\series default
\begin_inset LatexCommand index
name "std"
\end_inset
,
\series bold
var
\series default
\begin_inset LatexCommand index
name "var"
\end_inset
,
\series bold
mean
\series default
\begin_inset LatexCommand index
name "mean"
\end_inset
,
\series bold
sum
\series default
\begin_inset LatexCommand index
name "sum"
\end_inset
,
\series bold
cumsum
\series default
\begin_inset LatexCommand index
name "cumsum"
\end_inset
,
\series bold
product
\series default
\begin_inset LatexCommand index
name "product"
\end_inset
,
\series bold
cumproduct
\series default
\begin_inset LatexCommand index
name "cumproduct"
\end_inset
,
\series bold
sometrue
\begin_inset LatexCommand index
name "sometrue"
\end_inset
\series default
(method is .any),
\series bold
alltrue
\begin_inset LatexCommand index
name "alltrue"
\end_inset
\series default
(method is .all),
\series bold
around
\begin_inset LatexCommand index
name "around"
\end_inset
\series default
(method is .round),
\series bold
rank
\begin_inset LatexCommand index
name "rank"
\end_inset
\series default
(attribute is .ndim),
\series bold
shape
\series default
\begin_inset LatexCommand index
name "shape"
\end_inset
,
\series bold
size
\begin_inset LatexCommand index
name "size"
\end_inset
\series default
(.size or .shape[axis]), and
\series bold
copy
\series default
\begin_inset LatexCommand index
name "copy"
\end_inset
.
\end_layout
\begin_layout Section
Dealing with data types
\end_layout
\begin_layout Description
dtype (obj, align=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a data-type object from any object.
See Chapter
\begin_inset LatexCommand ref
reference "cha:Data-descriptor-objects"
\end_inset
for a more detailed explanation of what can be interpreted as a data-type
object and the meaning of the align keyword.
\end_layout
\begin_layout Description
maximum_sctype (arg)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the array-scalar type of highest precision of the same general
kind as arg which can be any recognized form for describing a data-type.
\end_layout
\begin_layout Description
issctype (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns True if obj is an array data type (or a recognized alias for one)
\end_layout
\begin_layout Description
obj2sctype (obj, default=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the array type object corresponding to obj which can be an array
type already, a python type object, an actual array, or any recognized
alias for an array type object.
If no suitable data type object can be determined, return default.
\end_layout
\begin_layout Description
sctype2char (sctype)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the typecode character associated with an array-scalar type dtype.
The first argument is first converted to a dtype if it needs to be.
\end_layout
\begin_layout Tip
the type attribute of data-type objects are actual Python type objects subclasse
d in a hierarchy of types.
This can often be useful to check data types generically.
For example, issubclass(dtype.type, integer) can check to see if the data
type is one of the 10 different integer types.
The issubclass function, however, raises an error if either argument is
not an actual type object.
NumPy defines _(arg1, arg2) that will return false instead of raise an
error.
Alternatively, dtype.kind is a character describing the class of the data-type
so dtype.kind in 'iu' would also check to see if the data-type is an integer
type.
\end_layout
\begin_layout Description
can_cast (from=d1, to=d2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return Boolean value indicating whether or not data type d1 can be cast
to data type d2 safely (without losing precision or information).
\end_layout
\begin_layout Chapter
Additional Convenience Routines
\end_layout
\begin_layout Quotation
A committee is twelve men doing the work of one.
\end_layout
\begin_layout Right Address
---
\emph on
John F.
Kennedy
\end_layout
\begin_layout Quotation
Your mind can only hold one thought at a time.
Make it a positive and constructive one.
\end_layout
\begin_layout Right Address
---
\emph on
H.
Jackson Brown Jr.
\end_layout
\begin_layout Section
Shape functions
\end_layout
\begin_layout Description
atleast_1d
\begin_inset LatexCommand index
name "atleast\\_1d"
\end_inset
(a1,a2,...,an)
\end_layout
\begin_layout Description
\InsetSpace ~
Force a sequence of arrays (including array scalars) to each be at least
1-d.
\end_layout
\begin_layout Description
atleast_2d
\begin_inset LatexCommand index
name "atleast\\_2d"
\end_inset
(a1,a2,...,an)
\end_layout
\begin_layout Description
\InsetSpace ~
Force a sequence of arrays (including array scalars) to each be at least
2-d.
Dimensions of length 1 are pre-pended to reach a two-dimensional array.
\end_layout
\begin_layout Description
atleast_3d
\begin_inset LatexCommand index
name "atleast\\_3d"
\end_inset
(a1,a2,...,an)
\end_layout
\begin_layout Description
\InsetSpace ~
Force a sequence of arrays (including array_scalars) to each be at least
3-d.
Dimensions of length 1 are pre-pended to reach a two-dimensional array.
\end_layout
\begin_layout Description
roll
\begin_inset LatexCommand index
name "roll"
\end_inset
(arr, shift, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array with the contents of arr shifted (rolled) by the amount
given in the integer argument shift along the axis specified.
If axis is None, then the shift takes place in the ravelled array (but
the returned array has the same shape as arr).
Elements that shift outside the array are rolled back into the array from
the opposite side.
\end_layout
\begin_layout Description
rollaxis
\begin_inset LatexCommand index
name "rollaxis"
\end_inset
(arr, axis, start)
\end_layout
\begin_layout Description
\InsetSpace ~
Return arr transposed so that the provided axis is inserted into the shape
before start with the other dimensions rolled.
Thus, if arr.shape is (i,j,k,l) then rollaxis(arr, 2, 0) has shape (k,i,j,l)
and rollaxis(arr, 1, 3) has shape (i,k,j,l).
\end_layout
\begin_layout Description
vstack
\begin_inset LatexCommand index
name "vstack"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Stack a sequence of arrays along the first axis (row wise).
Arrays in seq must have the same shape along all dimensions but the first.
Rebuilds array divided by vsplit.
All 1-d arrays will be stacked row-wise.
\end_layout
\begin_layout Description
hstack
\begin_inset LatexCommand index
name "hstack"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Stack a sequence of arrays along the second axis (column wise).
Arrays in seq must have the same shape along all dimensions but the second.
Rebuilds array divided by hsplit.
Notice that 1-d arrays will be appended into a new 1-d array.
Use column_stack to get a 2-d array from 1-d arrays.
If some arrays are already 2-d, then the 1-d arrays need to have a dimension
added to the end (
\emph on
e.g.
\emph default
\family typewriter
y[:,newaxis]
\family default
) in order to stack correctly.
\end_layout
\begin_layout Description
column_stack
\begin_inset LatexCommand index
name "column\\_stack"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Stack a sequence of arrays as columns into a 2-d array.
1-d arrays are converted to 2-d arrays and transposed.
All arrays must have shapes so that the resulting array is well defined.
Compare with
\series bold
hstack
\series default
.
\end_layout
\begin_layout Description
row_stack
\begin_inset LatexCommand index
name "row\\_stack"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Stack a sequence of 1-d arrays as rows into a 2-d array (alias for
\series bold
vstack
\series default
).
\end_layout
\begin_layout Description
dstack
\begin_inset LatexCommand index
name "dstack"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Stack a sequence of arrays along the third axis (depth wise).
Arrays in seq must have the same shape along all dimensions but the third.
Rebuilds array divided by vsplit.
\end_layout
\begin_layout Description
array_split
\begin_inset LatexCommand index
name "array\\_split"
\end_inset
(ary, i_or_s, axis=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Divide ary into a list of sub-arrays along the specified axis.
The i_or_s argument stands for indices_or_sections.
If i_or_s is an integer, ary is divided into that many equally-sized arrays.
If it is impossible to make an even split, each of the leading arrays in
the returned list have one additional member.
If i_or_s is a list of sorted integer, its entries define the indexes where
ary is split.
An empty list for i_or_s results in a single sub-array equal to the original
array.
\end_layout
\begin_layout Description
split
\begin_inset LatexCommand index
name "split"
\end_inset
(ary, i_or_s, axis=0)
\end_layout
\begin_layout Description
\InsetSpace ~
The same as array_split() except if i_or_s is an integer and it is impossible
to make an even split, an error is raised.
\end_layout
\begin_layout Description
hsplit
\begin_inset LatexCommand index
name "hsplit"
\end_inset
(ary, i_or_s)
\end_layout
\begin_layout Description
\InsetSpace ~
Split a single array into multiple columns of sub-arrays (along the first
axis if 1-d or along the second second if >1-d).
Only works on arrays of 1 or more dimension.
\end_layout
\begin_layout Description
vsplit
\begin_inset LatexCommand index
name "vsplit"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Split a single array into multiple rows of sub-arrays (along the first
axis).
Only works on arrays of 2 or more dimensions.
\end_layout
\begin_layout Description
dsplit
\begin_inset LatexCommand index
name "dsplit"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Split a single array into multiple sub-arrays along the third axis (depth).
Only works on arrays of 3 or more dimensions.
\end_layout
\begin_layout Description
apply_along_axis
\begin_inset LatexCommand index
name "apply\\_along\\_axis"
\end_inset
(func1d, axis, arr, *args)
\end_layout
\begin_layout Description
\InsetSpace ~
Execute func1d(arr[sel_i], *args) where func1d takes 1-d arrays and arr
is an N-d array, where sel_i is a selection object sufficient to select
a 1-d sub-array along the given axis.
The function is executed for all 1-d arrays along axis in arr.
\end_layout
\begin_layout Description
apply_over_axes
\begin_inset LatexCommand index
name "apply\\_over\\_axes"
\end_inset
(func, a, axes)
\end_layout
\begin_layout Description
\InsetSpace ~
For each axis in the axes sequence, call func as
\family typewriter
res=func(a, axis)
\family default
.
If res is the same shape as a then set
\family typewriter
a=res
\family default
and continue.
if
\family typewriter
res.ndim = a.ndim -1
\family default
, then insert a dimension before axis and continue.
\end_layout
\begin_layout Description
expand_dims
\begin_inset LatexCommand index
name "expand\\_dims"
\end_inset
(a, axis)
\end_layout
\begin_layout Description
\InsetSpace ~
Expand the shape of array a by including newaxis
\series bold
before
\series default
the given axis.
\end_layout
\begin_layout Description
resize
\begin_inset LatexCommand index
name "resize"
\end_inset
(a, new_shape)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a new array with the specified shape which can be any size.
The new array is filled with repeated copies of a.
This function is similar in spirit to a.resize(new_shape) except that it
fills in the new array with repeated copies and returns a new array.
\end_layout
\begin_layout Description
kron
\begin_inset LatexCommand index
name "kron"
\end_inset
(a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a composite array with blocks from
\emph on
b
\emph default
scaled by elements of
\emph on
a
\emph default
.
The number of dimensions of
\emph on
a
\emph default
and
\emph on
b
\emph default
should be the same.
If not, then the input with fewer dimensions is pre-pended with ones (broadcast
) to the same shape as the input with more dimensions.
The return array has this same number of dimensions with shape given by
the product of the shape of
\emph on
a
\emph default
and the shape of
\emph on
b
\emph default
.
If either a or b is a scalar then this function is equivalent to multiply(a,b).
\end_layout
\begin_layout Description
\InsetSpace ~
For example, if
\emph on
a
\emph default
and
\emph on
b
\emph default
are is 1-d the result is
\begin_inset Formula \[
\left[\begin{array}{cccc}
a[0]*b & a[1]*b & \cdots & a[-1]*b\end{array}\right]\]
\end_inset
while if
\emph on
a
\emph default
and
\emph on
b
\emph default
are 2-d, the result is
\begin_inset Formula \[
\left[\begin{array}{cccc}
a[0,0]*b & a[0,1]*b & \cdots & a[0,-1]*b\\
a[1,0]*b & a[1,1]*b & \cdots & a[1,-1]*b\\
\vdots & \vdots & \ddots & \vdots\\
a[-1,0]*b & a[-1,1]*b & \cdots & a[-1,-1]*b\end{array}\right]\]
\end_inset
\end_layout
\begin_deeper
\begin_layout Description
Example:
\end_layout
\end_deeper
\begin_layout MyCode
>>> kron([1,10,100],[5,6,7])
\newline
array([ 5, 6, 7, 50, 60, 70, 500, 600,
700])
\newline
>>> kron([[1,10],[100,1000]],[[2,3],[4,5]])
\newline
array([[ 2, 3, 20,
30],
\newline
[ 4, 5, 40, 50],
\newline
[ 200, 300, 2000, 3000],
\newline
[ 400, 500, 4000, 5000]])
\end_layout
\begin_layout Description
tile
\begin_inset LatexCommand index
name "tile"
\end_inset
(a, reps)
\end_layout
\begin_layout Description
\InsetSpace ~
Tile an
\begin_inset Formula $N$
\end_inset
-dimensional array using the shape information in reps to create a larger
\begin_inset Formula $N$
\end_inset
-dimensional array.
This is equivalent to kron(ones(reps, a.dtype), a).
The number of dimensions of a and the length of shape should be the same
or else 1's will be pre-pended to make them the same.
\end_layout
\begin_deeper
\begin_layout Description
Example:
\end_layout
\end_deeper
\begin_layout MyCode
>>> tile([5,6,7],(1,2,3))
\newline
array([[[5, 6, 7, 5, 6, 7, 5, 6, 7],
\newline
[5,
6, 7, 5, 6, 7, 5, 6, 7]]])
\end_layout
\begin_layout Section
Basic functions
\end_layout
\begin_layout Description
average
\begin_inset LatexCommand index
name "average"
\end_inset
(a, axis=None, weights=None, returned=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Computes the average along the indicated axis.
If axis is None, average over the entire array.
Inputs can be integer or floating types; result is type float.
If weights are given, the result is sum(a*weights)/sum(weights).
Therefore, weights must have shape equal to a.shape or be 1-d with length
a.shape[axis].
Integer weights are converted to float.
If returned is True, then return a tuple showing both the result and the
sum of the weights (or count of the values).
The shape of these two results will be the same.
\end_layout
\begin_layout Description
cov
\begin_inset LatexCommand index
name "cov"
\end_inset
(x, y=None, rowvar=1, bias=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the covariance matrix of data in x.
If x is a vector and y is None, then this function is equivalent to asarray(x).v
ar().
Otherwise, x is interpreted as observations of several random variables.
If rowvar is True (default), then the variables are in the rows and the
observations of the variables are in the columns.
Otherwise, the variables are in the columns and the observations are in
the rows.
If y is given then it is treated as another variable or set of variables
to be added to x.
By default, a so-called unbiased estimate of the covariance matrix is made.
If bias is non-zero, then a biased normalization factor (with better mean-squar
e error performance) is used instead.
If
\begin_inset Formula $\mathbf{X}$
\end_inset
is a random vector, then the covariance matrix is defined as
\begin_inset Formula \[
\mathbf{C}=E\left[\left(\mathbf{X}-E\mathbf{X}\right)\left(\mathbf{X}-E\mathbf{X}\right)^{H}\right].\]
\end_inset
It can be approximated as
\begin_inset Formula \[
\mathbf{C}\approx\frac{1}{P}\sum_{i=0}^{N-1}\left(\mathbf{x}_{i}-\bar{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\bar{\mathbf{x}}\right)^{H}\]
\end_inset
where
\begin_inset Formula $\mathbf{x}_{i}$
\end_inset
is an observation of
\begin_inset Formula $\mathbf{X}$
\end_inset
(as a column-vector),
\begin_inset Formula $N$
\end_inset
is the number of observations made and
\begin_inset Formula $P=N-1$
\end_inset
for an unbiased estimate or
\begin_inset Formula $P=N$
\end_inset
for a biased (but lower mean-squared error) estimate.
\end_layout
\begin_layout Description
corrcoef
\begin_inset LatexCommand index
name "corrcoef"
\end_inset
(x, y=None, rowvar=1, bias=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Estimate the correlation coefficient of x.
By default, each row of x contains a random variable with observations
of the random variable in the columns of x.
(If rowvar is False, the each column is a random variable with observations
in the rows).
The y argument can be used to append additional variables to x.
The
\begin_inset Formula $i^{\textrm{th}}$
\end_inset
row and
\begin_inset Formula $j^{\textrm{th}}$
\end_inset
column of the correlation coefficient matrix is defined as
\begin_inset Formula \[
\rho_{ij}=\frac{C_{ij}}{\sqrt{C_{ii}C_{jj}}}\]
\end_inset
where
\begin_inset Formula $\mathbf{C}$
\end_inset
is the covariance matrix.
The rowvar and bias arguments are passed on to the cov function to estimate
\begin_inset Formula $\mathbf{C}.$
\end_inset
\end_layout
\begin_layout Description
msort
\begin_inset LatexCommand index
name "msort"
\end_inset
(a)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array, sorted along the first axis.
Equivalent to b=a.copy(); b.sort(0)
\end_layout
\begin_layout Description
median
\begin_inset LatexCommand index
name "median"
\end_inset
(m)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the median of m along its first dimension.
\end_layout
\begin_layout Description
bincount
\begin_inset LatexCommand index
name "bincount"
\end_inset
(list=, weights=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The list argument is a 1-d integer array.
Let
\begin_inset Formula $r$
\end_inset
be the returned 1-d array whose length is (list.max()+1).
If weights is None, then
\begin_inset Formula $r[i]$
\end_inset
is the number of occurrences of
\begin_inset Formula $i$
\end_inset
in list.
If weight is present, then the
\begin_inset Formula $i^{\textrm{th}}$
\end_inset
element is
\begin_inset Formula \[
r[i]=\sum_{j:\textrm{list}\left[j\right]=i}\textrm{weights}[j].\]
\end_inset
Notice that if weights is None, it is equivalent to a weights array of
all 1.
The length of weights must be the same as the length of list.
\end_layout
\begin_layout Description
digitize
\begin_inset LatexCommand index
name "digitize"
\end_inset
(x=,bins=)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of integers the same length as x with values
\begin_inset Formula $i$
\end_inset
such that
\begin_inset Formula $\textrm{bins}\left[i-1\right]\leq x<\textrm{bins}\left[i\right]$
\end_inset
if bins is monotonically increasing, or
\begin_inset Formula $\textrm{bins}[i]\leq x<\textrm{bins}[i-1]$
\end_inset
if bins is monotonically decreasing.
When
\begin_inset Formula $x$
\end_inset
is beyond the bounds of bins, return either
\begin_inset Formula $i=0$
\end_inset
or
\begin_inset Formula $i=$
\end_inset
len(bins) as appropriate.
\end_layout
\begin_layout Description
histogram
\begin_inset LatexCommand index
name "histogram"
\end_inset
(x=, bins=None, range=None, normed=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a histogram for the data in x (treated as one-dimensional array
of type float).
If bins is not a sequence, then bins should be the number of bins which
will be constructed ranging from range[0] to range[1] or x.min() to x.max()
if range is None.
If normed is True, then the histogram will be normalized and comparable
with a probability density function, otherwise it will be a count of the
number of items in each bin.
The return value is the tuple (n, bins) where n is the histogram.
\end_layout
\begin_layout Description
histogram2d
\begin_inset LatexCommand index
name "histogram2d"
\end_inset
(x, y, bins=10, range=None, normed=False)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the two-dimensional histogram for a dataset (x,y) given the bins.
Returns (histogram, xedges, yedges).
The bins argument can be either the number of bins or a sequence of the
bin edges if the x and y directions should have the same bins.
If the bins argument is a sequence of length 2, then separate bin edges
will be computed.
The first element can be either the number of bins or the bin edges for
the x-direction.
The second element is interpreted as the number of bins or the bin edges
for the y-direction.
The returned histogram array, H, is a count of the number of samples in
each bin.
The array is oriented such that H[i,j] is the number of samples falling
into binx[j] and biny[i] (notice the association x<->j and y<->i).
Setting normed to True returns a density rather than a bin-count.
The range argument allows specifying lower and upper bin edges (in a sequence
of length 2 with 2-length sequences in each entry).
The default is [[x.min(), x.max()],[y.min(), y.max()]].
\end_layout
\begin_layout Description
histogramdd
\begin_inset LatexCommand index
name "histogramdd"
\end_inset
(sample, bins=10, range=None, normed=False)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the
\begin_inset Formula $D$
\end_inset
-dimensional histogram for a (vector) dataset contained in sample give the
bins.
The dataset is a sequence of
\begin_inset Formula $D$
\end_inset
arrays or an
\begin_inset Formula $N\times D$
\end_inset
array where
\begin_inset Formula $N$
\end_inset
is the number of samples and
\begin_inset Formula $D$
\end_inset
is the number of dimensions.
Returns (histogram, edges) where histogram is a
\begin_inset Formula $D$
\end_inset
-dimensional array of shape given by the number of bins selected in each
axis containing the number of counts that a point in the sample data fell
into the volume bin specified.
The edges sequence has
\begin_inset Formula $D$
\end_inset
-entries to specify the edge boundaries for each dimension.
The bins argument is a sequence of edge arrays or a sequence of the number
of bins.
If a scalar is given, it is assumed to be the number of bins for all dimensions.
The range is a length-
\begin_inset Formula $D$
\end_inset
sequence containing lower and upper bin edges which default to the min
and maximum of the respective datasets.
If normed is True, then a density rather than a bin-count is returned.
\end_layout
\begin_layout Description
logspace
\begin_inset LatexCommand index
name "logspace"
\end_inset
(start, stop, num=50, endpoint=True,base=10.0)
\end_layout
\begin_layout Description
\InsetSpace ~
Evenly spaced samples on a logarithmic scale.
Returns num evenly spaced (in logspace) samples from base**start to base**stop.
If endpoint is True, then the last sample is base**stop.
\end_layout
\begin_layout Description
linspace
\begin_inset LatexCommand index
name "linspace"
\end_inset
(start, stop, num=50, endpoint=True, retstep=False):
\end_layout
\begin_layout Description
\InsetSpace ~
Evenly spaced samples.
Returns num evenly spaced samples from start to stop.
If endpoint is True, then the last sample is stop.
If retstep is True, then return the computed step size.
\end_layout
\begin_layout Description
meshgrid
\begin_inset LatexCommand index
name "meshgrid"
\end_inset
(x, y)
\end_layout
\begin_layout Description
\InsetSpace ~
For 1-d arrays x, y with lengths Nx=len(x) and Ny = len(y), return X, Y
where X and Y are (Ny, Nx) shaped arrays with the elements of x and y repeated
to fill the array.
\end_layout
\begin_layout MyCode
>>> X,Y = meshgrid([1,2,3], [4,5,6,7]); print X; print Y
\newline
[[1 2 3]
\newline
[1 2 3]
\newline
[1 2 3]
\newline
[1 2 3]]
\newline
[[4 4 4]
\newline
[5 5 5]
\newline
[6 6 6]
\newline
[7 7 7]]
\end_layout
\begin_layout Description
select
\begin_inset LatexCommand index
name "select"
\end_inset
(condlist, choicelist, default=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an array comprised from different elements of choicelist depending
on the list of conditions.
The condlist argument is a list of Boolean condition arrays.
The choicelist argument is a list of choice arrays (of the same size as
the arrays in condlist).
The result has the same size as the arrays in choicelist.
If condlist is [
\begin_inset Formula $c_{0},\ldots,c_{N-1}$
\end_inset
], then choicelist must be of length
\begin_inset Formula $N$
\end_inset
.
The elements of choicelist can then be represented as [
\begin_inset Formula $v_{0},\ldots,v_{N-1}$
\end_inset
].
The default choice if none of the conditions are met is given as the default
argument.
The conditions are tested in order and the first one satisfied is used
to select the choice.
In other words, the elements of the output array are found from the following
tree (evaluated on an element-by-element basis)
\end_layout
\begin_layout LyX-Code
\series bold
if
\series default
\begin_inset Formula $c_{0}$
\end_inset
:
\begin_inset Formula $v_{0}$
\end_inset
\newline
\series bold
elif
\series default
\begin_inset Formula $c_{1}$
\end_inset
:
\begin_inset Formula $v_{1}$
\end_inset
\newline
...
\newline
\series bold
elif
\series default
\begin_inset Formula $c_{N-1}$
\end_inset
:
\begin_inset Formula $v_{N-1}$
\end_inset
\newline
\series bold
else
\series default
: default
\end_layout
\begin_layout Description
piecewise
\begin_inset LatexCommand index
name "piecewise"
\end_inset
(x, condlist, funclist, *args, **kw)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute a piecewise-defined function.
A piecewise defined function is
\begin_inset Formula \[
f\left(x\right)=\left\{ \begin{array}{cc}
f_{1}\left(x\right) & x\in S_{1},\\
f_{2}\left(x\right) & x\in S_{2},\\
\vdots & \vdots\\
f_{n}\left(x\right) & x\in S_{n}.\end{array}\right.\]
\end_inset
where
\begin_inset Formula $S_{1}$
\end_inset
are sets.
Thus, the function is defined differently over different sub-domains of
the input.
Such a function can be computed using
\family typewriter
select
\family default
but such an implementation means calling each
\begin_inset Formula $f_{i}$
\end_inset
over the entire region of
\begin_inset Formula $x.$
\end_inset
The piecewise call guarantees that each function
\begin_inset Formula $f_{i}$
\end_inset
will only be called over those values of
\begin_inset Formula $x$
\end_inset
in
\begin_inset Formula $S_{i}.$
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Arguments: x is the array of values over which to call the function; condlist
is a sequence of Boolean (indicator) arrays (or a single Boolean array)
of the same shape as
\begin_inset Formula $x$
\end_inset
that defines the sets (True indicates that element of
\begin_inset Formula $x$
\end_inset
is in the set).
If needed, to match the length of funclist, an
\begin_inset Quotes eld
\end_inset
otherwise
\begin_inset Quotes erd
\end_inset
set will be added to condlist.
This otherwise set is defined as
\begin_inset Formula $S_{n}=\overline{\bigcup S_{i}}.$
\end_inset
The argument funclist is a list of functions to be called (or items to
be inserted) corresponding to the conditions.
Each of these functions can take extra arguments and key-word arguments
which are passed in as *args, and **kw using standard Python syntax.
Each of these functions should return vector output for vector input.
If the function is a scalar, then it will simply be inserted where appropriate
into the output.
It is the equivalent of a constant function.
\end_layout
\begin_deeper
\begin_layout Description
Example: Suppose we want to compute
\begin_inset Formula $f\left(x\right)=x^{2}\Pi\left(\frac{x}{3}\right)+u\left(x-5\right)$
\end_inset
where
\begin_inset Formula $\Pi\left(x\right)=1$
\end_inset
only when
\begin_inset Formula $\left|x\right|\leq1$
\end_inset
and
\begin_inset Formula $u\left(x\right)=1$
\end_inset
only when
\begin_inset Formula $x\geq0.$
\end_inset
This could be done using the code:
\end_layout
\end_deeper
\begin_layout MyCode
>>> f1 = lambda x: x*x
\newline
>>> x = r_[-4:6:20j]
\newline
>>> y = piecewise(x,abs(x)<=3,[f1,0])+
piecewise(x,x>=0,[1,0])
\newline
>>> set_printoptions(precision=4); print y
\newline
[ 0.
0.
8.687 5.8615 3.59 1.8726 0.7091 0.0997
\newline
1.0443 1.5429 2.5956 4.2022
6.3629 9.0776 1.
1.
1.
\newline
1.
1.
1.
]
\end_layout
\begin_layout Description
trim_zeros
\begin_inset LatexCommand index
name "trim\\_zeros"
\end_inset
(filt, trim='fb'):
\end_layout
\begin_layout Description
\InsetSpace ~
Trim the leading ('f' in trim) and trailing ('b' in trim) zeros from a
sequence according to the trim keyword.
\end_layout
\begin_layout Description
trapz
\begin_inset LatexCommand index
name "trapz"
\end_inset
(y, x=None, dx=1.0, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
If
\begin_inset Formula $\mathbf{y}$
\end_inset
contains samples of a function:
\begin_inset Formula $y_{i}=f\left(x_{i}\right)$
\end_inset
then trapz can be used to approximate the integral of the function using
the trapezoidal rule.
If the sampling is not evenly spaced use
\begin_inset Formula $\mathbf{x}$
\end_inset
to pass in the sample positions.
Otherwise, only the sample-spacing is needed in dx.
The trapz function can work with many functions at a time stored in an
\begin_inset Formula $N$
\end_inset
-dimensional array.
The axis argument controls which axis defines the sampling axis (the other
dimensions are different functions).
The number of dimensions of the returned result is
\begin_inset Formula $y$
\end_inset
.ndim - 1.
\end_layout
\begin_layout Description
diff
\begin_inset LatexCommand index
name "diff"
\end_inset
(x, n=1, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Calculates the
\begin_inset Formula $n^{\textrm{th}}$
\end_inset
order, discrete difference along the given axis.
\end_layout
\begin_layout Description
gradient
\begin_inset LatexCommand index
name "gradient"
\end_inset
(f, *varargs)
\end_layout
\begin_layout Description
\InsetSpace ~
Calculate the gradient of an N-d scalar function, f.
Uses central differences on the interior and first differences on boundaries
to give the same shape for each component of the gradient.
The varargs variable can contain 0, 1, or N scalars corresponding to the
sample distances in each direction (default 1.0).
If f is N-d, then N arrays are returned each of the same shape as f, giving
the derivative of f with respect to each dimension.
\end_layout
\begin_layout Description
angle
\begin_inset LatexCommand index
name "angle"
\end_inset
(z, deg=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the angle of a complex number z (in degrees if deg is True).
\end_layout
\begin_layout Description
unwrap
\begin_inset LatexCommand index
name "unwrap"
\end_inset
(p, discont=pi, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Unwraps radian phase p by changing absolute jumps greater than discont
to their
\begin_inset Formula $2\pi$
\end_inset
complement along the given axis.
\end_layout
\begin_layout Description
sort_complex
\begin_inset LatexCommand index
name "sort\\_complex"
\end_inset
(x)
\end_layout
\begin_layout Description
\InsetSpace ~
This is syntactic sugar for asarray(x).sort().astype(<cmplx_type>) where
cmplx_type is csingle if x.dtype is integral with fewer bits than intp,
clongfloat if x.dtype.type is longfloat, and cdouble for all other types.
The sorting is done by comparing the real part of the array, and then the
imaginary part if the real parts are the same.
\end_layout
\begin_layout Description
disp
\begin_inset LatexCommand index
name "disp"
\end_inset
(mesg, device=None, linefeed=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Display a message to device (defaults to sys.stdout) with or without a closing
linefeed.
\end_layout
\begin_layout Description
unique
\begin_inset LatexCommand index
name "unique"
\end_inset
(seq)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns unique items in the 1-dimensional seq.
\end_layout
\begin_layout Description
extract
\begin_inset LatexCommand index
name "extract"
\end_inset
(condition, arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Equivalent to arr.compress(condition.flat) and arr.flat[bool_(condition.flat)]
which extracts the elements of (flattened) arr according to the elements
of (flattened) condition that are True.
\end_layout
\begin_layout Description
place
\begin_inset LatexCommand index
name "place"
\end_inset
(arr, mask, vals)
\end_layout
\begin_layout Description
\InsetSpace ~
Inverse of extract.
Equivalent to arr[abool(mask)] = vals but it uses a different algorithm.
\end_layout
\begin_layout Description
delete
\begin_inset LatexCommand index
name "delete"
\end_inset
(arr, indices, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array with the sub-arrays indicated by indices along axis
removed.
If axis is None, then first ravel the array and set axis to -1.
The indices argument describes which sub-arrays along the given axis should
be removed.
It can be an integer, a slice object, or a sequence of integers.
A new array is created with the corresponding sub-arrays are removed.
\end_layout
\begin_layout Description
insert
\begin_inset LatexCommand index
name "insert"
\end_inset
(arr, indices, values, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new array with values inserted into arr before indices.
If axis is None, then first ravel the array and set axis to -1.
The indices argument describes which indices along the provided axis the
values should be inserted before.
It can be an integer, a slice object, or a sequence of integers.
The values argument must be broadcastable to the shape implied by where
they will be inserted.
\end_layout
\begin_layout Description
append
\begin_inset LatexCommand index
name "append"
\end_inset
(arr, values, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a new array with values appended to the end of the array along axis.
\end_layout
\begin_layout Description
nansum
\begin_inset LatexCommand index
name "nansum"
\end_inset
(x, axis=None)
\end_layout
\begin_layout Description
nanmax
\begin_inset LatexCommand index
name "nanmax"
\end_inset
(x, axis=None)
\end_layout
\begin_layout Description
nanargmax
\begin_inset LatexCommand index
name "nanargmax"
\end_inset
(x, axis=None)
\end_layout
\begin_layout Description
nanargmin
\begin_inset LatexCommand index
name "nanargmin"
\end_inset
(x, axis=None)
\end_layout
\begin_layout Description
nanmin
\begin_inset LatexCommand index
name "nanmin"
\end_inset
(x, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
These functions perform their respective operations over the given axis
(or the entire array if axis is None), after replacing any nans with appropriat
e values so as not to affect the calculation.
\end_layout
\begin_layout Description
vectorize
\begin_inset LatexCommand index
name "vectorize"
\end_inset
(pyfunc, otypes=None, doc=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This creates a class whose instances have a call method that invokes a
ufunc that has been dynamically built to call the python function pyfunc
internally.
The output types can be controlled by the otypes argument.
If it is None, then the output types will be determined upon first call
to the function using the provided inputs.
This can be reset, by re-setting the otypes attribute to
\begin_inset Quotes eld
\end_inset
\begin_inset Quotes erd
\end_inset
.
The normal rules of array broadcasting are followed by the returned object.
\end_layout
\begin_layout MyCode
>>> def myfunc(a,b):
\newline
...
if (a>b): return a
\newline
...
else: return b-1
\newline
>>> vecfunc = vectorize(myfunc)
\newline
>>> vecfunc([[1,2,3],[5,6,9]
],[7,4,5])
\newline
array([[6, 3, 4],
\newline
[6, 6, 9]])
\end_layout
\begin_layout Description
asarray_chkfinite
\begin_inset LatexCommand index
name "asarray\\_chkfinite"
\end_inset
(x)
\end_layout
\begin_layout Description
\InsetSpace ~
Like asarray(x) except an error is raised if any of the values in x are
not finite.
\end_layout
\begin_layout Description
round_
\begin_inset LatexCommand index
name "round\\_"
\end_inset
(x, decimals=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array with all the elements of x rounded to decimals places.
Returns x if array is not floating point and rounds both the real and imaginary
parts separately if array is complex.
Rounds in the same way as standard python except for half-way values are
rounded to the nearest
\emph on
even
\emph default
number.
\end_layout
\begin_layout Description
packbits (array, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Pack an integer array of logical data (zero/non-zero) into bits of a uint8
data-type along the dimension given by axis.
This dimension is shrunk by a factor of 8 (rounded up).
Each element in the input is converted to a bit in the output which is
set to 1 or 0 depending on whether the input is non-zero or not.
Thus, every 8-element chunk of the input is converted to a single byte
in the output.
If axis is None, then the bit-packing is done on the entire array as if
it were raveled.
\end_layout
\begin_layout Description
unpackbits (array, axis=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Unpack bits of an array of uint8 data-type into a single uint8 byte for
each bit along the dimension given by axis.
This dimension is thus expanded 8-fold, but otherwise the output has the
same shape as the input.
If axis is None, then the input is treated as a 1-d array and expanded
8-fold so that each bit of the input is given an output byte.
\end_layout
\begin_layout Description
add_docstring
\begin_inset LatexCommand index
name "add\\_docstring"
\end_inset
(obj, doc)
\end_layout
\begin_layout Description
\InsetSpace ~
Adds a docstring to a built-in object, obj, that does not have a docstring
defined already.
The obj can be a built-in function-or-method, a typeobject, a method descriptor
, a getset descriptor, or a member descriptor.
This is useful for improving the documentation of objects defined in C-compiled
code without re-compiling.
If the object already has a docstring, a RuntimeError is raised.
If the object is not a supported type the code can add a docstring to,
a TypeError is raised.
\end_layout
\begin_layout Description
add_newdoc
\begin_inset LatexCommand index
name "add\\_newdoc"
\end_inset
(place, obj, doc)
\end_layout
\begin_layout Description
\InsetSpace ~
Adds a docstring to the
\emph on
obj
\emph default
imported from
\emph on
place
\emph default
using exec 'from %s import %s' % (place, obj).
Thus, both place and obj should be strings.
If doc is a string, then a single docstring is added to obj from place.
If doc is a 2-tuple, then obj must be an object with attributes that need
to be commented.
The first element of the doc tuple is the attribute to be commented on
and the second element is the actual docstring.
If doc is a list, then it must be composed of elements that are 2-tuples
indicating that obj has several attributes that need to be documented.
\end_layout
\begin_layout Section
Polynomial functions
\end_layout
\begin_layout Standard
There are two interfaces for dealing with polynomials
\begin_inset LatexCommand index
name "polynomials"
\end_inset
: a class-based interface, and a collection of functions to deal with a
polynomials represented as a simple list of coefficients.
This latter representation results from the is a one-to-one correspondence
between a length-
\begin_inset Formula $\left(n+1\right)$
\end_inset
sequence of coefficients
\begin_inset Formula $a_{n}\equiv a[n]$
\end_inset
and an
\begin_inset Formula $n^{\textrm{th}}$
\end_inset
order polynomial:
\begin_inset Formula \[
p\left(x\right)=a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n-1}x+a_{n}.\]
\end_inset
Most of the functions below operate on and return a simple sequence of
coefficients representing a polynomial.
There is, however, a simple polynomial class that provides some utility
for doing simple algebra on polynomials.
\end_layout
\begin_layout Description
poly1d
\begin_inset LatexCommand index
name "poly1d"
\end_inset
(c_or_r, r=0)
\end_layout
\begin_layout Description
\InsetSpace ~
This construction returns an instance of a simple polynomial class.
It can take either a list of coefficients on polynomial powers, or a sequence
of roots (if r=1).
The returned polynomial can be added, subtracted, multiplied, divided,
and taken to integer powers, resulting in new polynomials.
\end_layout
\begin_deeper
\begin_layout Description
.r roots of the polynomial
\end_layout
\begin_layout Description
.o order of the polynomial
\end_layout
\begin_layout Description
.c polynomial coefficients as an array (also
\series bold
__array__()
\series default
)
\end_layout
\begin_layout Description
__call__(x) evaluate the polynomial at x (can be an array)
\end_layout
\begin_layout Description
__getitem__(x) p[k] returns the coefficient on the kth power of x (backwards
from indexing the coefficient array)
\end_layout
\end_deeper
\begin_layout MyCode
>>> p=poly1d([2,5,7])
\newline
>>> print p
\newline
2
\newline
2 x + 5 x + 7
\newline
>>> print p*[1,3,1]
\newline
4
3 2
\newline
2 x + 11 x + 24 x + 26 x + 7
\newline
>>> print p([0.5,0.6,3])
\newline
[ 10.
10.72 40.
]
\newline
>>> print p.r
\newline
[-1.25+1.3919j -1.25-1.3919j]
\end_layout
\begin_layout Description
poly
\begin_inset LatexCommand index
name "poly"
\end_inset
(roots_or_matrix)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a sequence of coefficients representing a polynomial given the sequence
of roots as an argument.
Alternatively, if the argument is a 2-d array, then return the characteristic
polynomial of the matrix.
\end_layout
\begin_layout Description
roots
\begin_inset LatexCommand index
name "roots"
\end_inset
(poly)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the roots of the polynomial represented by coefficients in poly
\end_layout
\begin_layout Description
polyint
\begin_inset LatexCommand index
name "polyint"
\end_inset
(poly, m=1, k=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an exact
\begin_inset Formula $m^{\textrm{th}}$
\end_inset
-order integral of the polynomial represented in poly.
If k is None, then use 0 for the integrating constants.
Otherwise, use the scalars in the sequence k as integrating constants.
Also available as .integ (m=1,k=0) method of poly1d objects.
\end_layout
\begin_deeper
\begin_layout Description
Example:
\begin_inset Formula \begin{eqnarray*}
p\left(x\right) & = & x^{2}+3x+4\\
\int\int p\left(x\right) & = & \frac{1}{12}x^{4}+\frac{1}{2}x^{3}+2x^{2}+k_{0}x+k_{1}\end{eqnarray*}
\end_inset
\end_layout
\end_deeper
\begin_layout MyCode
>>> print polyint([1,3,4],m=2,k=[5,3])
\newline
[ 0.0833 0.5 2.
5.
3.
]
\end_layout
\begin_layout Description
polyder
\begin_inset LatexCommand index
name "polyder"
\end_inset
(poly, m)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an exact
\begin_inset Formula $m^{\textrm{th}}$
\end_inset
-order derivative of the polynomial represented in poly.
Also available as .deriv(m=1) method of poly1d objects.
\end_layout
\begin_deeper
\begin_layout Description
Example:
\begin_inset Formula \begin{eqnarray*}
p\left(x\right) & = & x^{3}+2x^{2}+4x+3\\
\frac{dp}{dx}\left(x\right) & = & 3x^{2}+4x+4\end{eqnarray*}
\end_inset
\end_layout
\end_deeper
\begin_layout MyCode
>>> polyder([1,2,4,3])
\newline
array([3, 4, 4])
\end_layout
\begin_layout Description
polyadd
\begin_inset LatexCommand index
name "polyadd"
\end_inset
(p1, p2)
\end_layout
\begin_layout Description
\InsetSpace ~
Add the two polynomials represented by coefficients:
\begin_inset Formula $p_{1}\left(x\right)+p_{2}\left(x\right)$
\end_inset
\end_layout
\begin_layout Description
polysub
\begin_inset LatexCommand index
name "polysub"
\end_inset
(p1, p2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return coefficients for the polynomial found by subtracting the two polynomials
represented by
\begin_inset Formula $p_{1}$
\end_inset
and
\begin_inset Formula $p_{2}$
\end_inset
:
\begin_inset Formula $p_{1}\left(x\right)-p_{2}\left(x\right)$
\end_inset
\end_layout
\begin_layout Description
polymul
\begin_inset LatexCommand index
name "polymul"
\end_inset
(p1, p2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the coefficients for
\begin_inset Formula $p_{1}\left(x\right)p_{2}\left(x\right)$
\end_inset
\end_layout
\begin_layout Description
polydiv
\begin_inset LatexCommand index
name "polydiv"
\end_inset
(p1, p2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the quotient,
\begin_inset Formula $q\left(x\right)$
\end_inset
, and remainder,
\begin_inset Formula $r\left(x\right)$
\end_inset
, so that
\begin_inset Formula $p_{1}\left(x\right)=q\left(x\right)p_{2}\left(x\right)+r\left(x\right),$
\end_inset
with the order of
\begin_inset Formula $r\left(x\right)$
\end_inset
less than the order of
\begin_inset Formula $p_{2}\left(x\right).$
\end_inset
\end_layout
\begin_layout Description
polyval
\begin_inset LatexCommand index
name "polyval"
\end_inset
(p, y)
\end_layout
\begin_layout Description
\InsetSpace ~
Evaluate the polynomial
\begin_inset Formula $p$
\end_inset
at
\begin_inset Formula $y$
\end_inset
.
The argument,
\begin_inset Formula $y$
\end_inset
, can be a number or an array or a polynomial object.
If x is a polynomial object, then polyval performs polynomial composition:
\begin_inset Formula $p\left(y\left(x\right)\right),$
\end_inset
otherwise polyval computes the value of the polynomial at each
\begin_inset Formula $y$
\end_inset
.
Uses Horner's rule for evaluation, but this can still lead to numerical
instabilities for wildly fluctuating coefficients.
\end_layout
\begin_layout Description
polyfit
\begin_inset LatexCommand index
name "polyfit"
\end_inset
(x,y,N)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute a best-fit polynomial in
\begin_inset Formula $x$
\end_inset
of order
\begin_inset Formula $N$
\end_inset
, to the data,
\begin_inset Formula $y$
\end_inset
, in the sense of minimizing averaged-squared error between the measurement
and the model.
Useful for quick line-fitting
\begin_inset LatexCommand index
name "fitting"
\end_inset
.
\end_layout
\begin_layout Section
Set Operations
\end_layout
\begin_layout Standard
The set operations
\begin_inset LatexCommand index
name "set operations|("
\end_inset
were kindly contributed by Robert Cimrman.
These set operations are based on sorting functions and all expect 1-d
sequences with unique elements with the exception of unique1d and intersect1d_n
u which will flatten N-d nested-sequences to 1-d arrays and can handle non-uniqu
e elements.
\end_layout
\begin_layout Description
unique1d
\begin_inset LatexCommand index
name "unique1d"
\end_inset
(arr, retindx=False)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the unique elements of arr as a 1-d array.
If retindx is True, then also return the indices, ind, such that arr.flat[ind]
is the set of unique values.
\end_layout
\begin_layout Description
intersect1d
\begin_inset LatexCommand index
name "intersect1d"
\end_inset
(a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (sorted) intersection of a1 and a2 which is an array containing
the elements of a1 that are also in a2.
\end_layout
\begin_layout Description
intersect1d_nu
\begin_inset LatexCommand index
name "intersect1d\\_nu"
\end_inset
(a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (sorted) intersection of a1 and a2 but allow a1 and a2 to be
N-d arrays with non-unique elements.
Equivalent to intersect1d(unique1d(a1), unique1d(a2)).
\end_layout
\begin_layout Description
union1d
\begin_inset LatexCommand index
name "union1d"
\end_inset
(a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (sorted) union of a1 and a2 which is an array containing elements
that are in either a1 or a2.
\end_layout
\begin_layout Description
setdiff1d
\begin_inset LatexCommand index
name "setdiff1d"
\end_inset
(a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the set-difference of a1 and a2 which is an array containing the
elements of a1 that are
\series bold
not
\series default
in a2.
\end_layout
\begin_layout Description
setxor1d
\begin_inset LatexCommand index
name "setxor1d"
\end_inset
(a1, a2)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (sorted) set containing the exclusive-or of the arrays a1 and
a2.
The exclusive-or contains elements that are in a1 or in a2 as long as the
element is not in both a1 and a2.
\end_layout
\begin_layout Description
setmember1d
\begin_inset LatexCommand index
name "setmember1d"
\end_inset
(tocheck, set)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a Boolean 1-d array of the length of tocheck which is True whenever
that element is contained in set and false when it is not.
Equivalent
\begin_inset LatexCommand index
name "set operations|)"
\end_inset
to array([x in set for x in tocheck]).
\end_layout
\begin_layout Section
Array construction using index tricks
\end_layout
\begin_layout Standard
The functions and classes in this category make it simpler to construct
arrays.
\end_layout
\begin_layout Description
ix_
\begin_inset LatexCommand index
name "ix\\_"
\end_inset
(*args)
\end_layout
\begin_layout Description
\InsetSpace ~
This indexing cross function is useful for forming indexing arrays necessary
to select out the cross-product of
\begin_inset Formula $N$
\end_inset
1-dimensional arrays.
Note that the default indexing does not do a cross-product (which might
be unexpected for someone coming from other programming environments).
The default indexing is more general purpose.
Using the ix_ constructor can produce the indexing arrays necessary to
select a cross-product.
\end_layout
\begin_layout Description
mgrid [index expression]
\end_layout
\begin_layout Description
\InsetSpace ~
This is an instance of a class.
It can be used to construct a filled
\begin_inset Quotes eld
\end_inset
mesh-grid
\begin_inset Quotes erd
\end_inset
using slicing syntax.
\end_layout
\begin_layout Description
ogrid [index expression]
\end_layout
\begin_layout Description
\InsetSpace ~
This is similar to mgrid except it returns an open grid, so as to save
space and time.
The broadcasting rules will ensure that any universal function operating
on the grid will act as if the ogrid had been the result of mgrid.
\end_layout
\begin_layout Description
r_
\begin_inset LatexCommand index
name "r\\_"
\end_inset
[index expression]
\end_layout
\begin_layout Description
\InsetSpace ~
This is a simple way to build up arrays quickly.
There are two use cases.
1) If the index expression contains comma separated arrays, then stack
them along their first axis.
2) If the index expression contains slice notation or scalars then create
a 1-d array with a range indicated by the slice notation.
In other-words the slice syntax start:stop:step is equivalent to arange(start,
stop, step) inside of the brackets.
However, if step is an imaginary number (i.e.
100j) then its integer portion is interpreted as a number-of-points desired
and the start and stop are inclusive.
In other words start:stop:step
\family typewriter
j
\family default
is interpreted as linspace(start, stop, step, endpoint=1) inside of the
brackets.
After expansion of slice notation, all comma separated sequences are concatenat
ed together.
\end_layout
\begin_layout Description
\InsetSpace ~
Optional character strings placed as the first element of the index expression
can be used to change the output.
The strings 'r' or 'c' result in matrix output.
If the result is 1-d and 'r' is specified a
\begin_inset Formula $1\times N$
\end_inset
(row) matrix is produced.
If the result is 1-d and 'c' is specified, then a
\begin_inset Formula $N\times1$
\end_inset
(column) matrix is produced.
If the result is 2-d then both provide the same matrix result.
\end_layout
\begin_layout MyCode
>>> print r_[-1:1:9j,[0]*10,5,6]
\newline
[-1.
-0.75 -0.5 -0.25 0.
0.25 0.5 0.75 1.
0.
0.
\newline
0.
0.
0.
0.
0.
0.
0.
0.
5.
6.
]
\newline
>>> print r_['r',1,2,5,6]
\newline
[[1 2 5 6]]
\newline
>>> print r_['c',1,2,5,6]
\newline
[[1]
\newline
[2]
\newline
[5]
\newline
[6]]
\end_layout
\begin_layout Description
\InsetSpace ~
A string integer specifies which axis to stack multiple comma separated
arrays along.
\end_layout
\begin_layout MyCode
>>> a=arange(6).reshape(2,3)
\newline
>>> r_[a,a]
\newline
array([[0, 1, 2],
\newline
[3, 4, 5],
\newline
[0, 1, 2],
\newline
[3, 4, 5]])
\newline
>>> r_['-1',a,a]
\newline
array([[0, 1, 2, 0, 1,
2],
\newline
[3, 4, 5, 3, 4, 5]])
\end_layout
\begin_layout Description
\InsetSpace ~
A string of two comma-separated integers allows indication of the minimum
number of dimensions to force each entry into as the second integer (the
axis to concatenate along is still the first integer).
\end_layout
\begin_layout MyCode
>>> r_['0,2',[1,2,3],[4,5,6]]
\newline
array([[1, 2, 3],
\newline
[4, 5, 6]])
\newline
>>> r_['1,2',[1,
2,3],[4,5,6]]
\newline
array([[1, 2, 3, 4, 5, 6]])
\end_layout
\begin_layout Description
\InsetSpace ~
A string with three comma-separated integers allows specification of the
axis to concatenate along, the minimum number of dimensions to force the
entries to, and which axis should contain the start of the arrays which
are less than the specified number of dimensions.
In other words the third integer allows you to specify where the the 1's
should be placed in the shape of the arrays that have their shapes upgraded.
By default, they are placed in the front of the shape tuple.
The third argument allows you to specify where the start of the array should
be instead.
Thus, a third argument of '0' would place the 1's at the end of the array
shape.
Negative integers specify where in the new shape tuple the last dimension
of upgraded arrays should be placed, so the default is '-1'.
\end_layout
\begin_layout MyCode
>>> r_['0,2,0', [1,2,3], [4,5,6]]
\newline
array([[1],
\newline
[2],
\newline
[3],
\newline
[4],
\newline
[5],
\newline
[6]])
\newline
>>> r_['1,2,0', [1,2,3], [4,5,6]]
\newline
array([[1,
4],
\newline
[2, 5],
\newline
[3, 6]])
\end_layout
\begin_layout Description
c_
\begin_inset LatexCommand index
name "c\\_"
\end_inset
[index_expression]
\end_layout
\begin_layout Description
\InsetSpace ~
This is short-hand for r_['-1,2,0', index_expression] useful because of
its common occurence.
In particular, arrays will be stacked along their last axis after being
upgraded to at least 2-d with 1's post-pended to the shape (column vectors
made out of 1-d arrays).
\end_layout
\begin_layout Section
Other indexing devices
\end_layout
\begin_layout Description
index_exp
\begin_inset LatexCommand index
name "index\\_exp"
\end_inset
[index expression]
\end_layout
\begin_layout Description
\InsetSpace ~
Return a tuple of Python objects that implements the index expression and
can be modified and placed in any other index expression.
\end_layout
\begin_layout MyCode
>>> index_exp[2:5,...,4,::-1]
\newline
(slice(2, 5, None), Ellipsis, 4, slice(None, None,
-1))
\end_layout
\begin_layout Description
s_
\begin_inset LatexCommand index
name "s\\_"
\end_inset
[index expression]
\end_layout
\begin_layout Description
\InsetSpace ~
Translate index expressions into the equivalent Python objects.
This is similar to index_expression except a tuple is not always returned.
For example:
\end_layout
\begin_layout MyCode
>>> s_[1:10]
\newline
slice(1, 10, None)
\newline
>>> s_[1:10,-3:4:0.5]
\newline
(slice(1, 10, None), slice(-3,
4, 0.5))
\end_layout
\begin_layout Description
\InsetSpace ~
This provides a standard way to construct index expressions to pass to
functions and methods because Python does not allow slice expressions anywhere
except for inside brackets.
\end_layout
\begin_layout Description
ndindex
\begin_inset LatexCommand index
name "ndindex"
\end_inset
(*seq)
\end_layout
\begin_layout Description
\InsetSpace ~
A sequence of
\begin_inset Formula $N$
\end_inset
integers are passed in as separate arguments.
These integers are used as the upper boundaries of an
\begin_inset Formula $N$
\end_inset
-dimensional counter that starts at 0.
The object returned is an iterator that implements the counter.
\end_layout
\begin_layout MyCode
>>> for index in ndindex(3,3,2):
\newline
...
print index,
\newline
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2,
1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1) (2, 0, 0)
(2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
\end_layout
\begin_layout Description
unravel_index
\begin_inset LatexCommand index
name "unravel\\_index"
\end_inset
(indx, dims)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert a flat index, indx, into an index tuple for an array of the given
shape.
Keep in mind that it may be more convenient to use indx with a.flat, then
to unravel the index.
\end_layout
\begin_layout Section
Two-dimensional functions
\end_layout
\begin_layout Standard
These functions all deal with or return two dimensional arrays.
\end_layout
\begin_layout Description
eye
\begin_inset LatexCommand index
name "eye"
\end_inset
(
\begin_inset Formula $N$
\end_inset
,
\begin_inset Formula $M$
\end_inset
=None,
\begin_inset Formula $k$
\end_inset
=0, dtype=float)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an
\begin_inset Formula $N\times M$
\end_inset
array of the given type with ones down the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
diagonal.
If
\begin_inset Formula $M$
\end_inset
is None, it defaults to
\begin_inset Formula $N$
\end_inset
.
Alternatively, if
\begin_inset Formula $M$
\end_inset
is a valid data type, then it becomes the data-type used.
\end_layout
\begin_layout Description
vander
\begin_inset LatexCommand index
name "vander"
\end_inset
(
\begin_inset Formula $x$
\end_inset
,
\begin_inset Formula $N$
\end_inset
=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The Vandermonde matrix of vector,
\begin_inset Formula $x$
\end_inset
.
The
\begin_inset Formula $i^{\textrm{th}}$
\end_inset
column of the return matrix is the
\begin_inset Formula $m_{i}^{\textrm{th}}$
\end_inset
power of
\begin_inset Formula $x$
\end_inset
where
\begin_inset Formula $m_{i}=N-i-1$
\end_inset
.
If
\begin_inset Formula $N$
\end_inset
is None, it defaults to the length of
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout MyCode
>>> vander([1,2,3,4,5],3)
\newline
array([[ 1, 1, 1],
\newline
[ 4, 2, 1],
\newline
[ 9, 3, 1],
\newline
[16, 4, 1],
\newline
[25, 5, 1]])
\end_layout
\begin_layout Description
diag
\begin_inset LatexCommand index
name "diag"
\end_inset
(
\begin_inset Formula $v$
\end_inset
,
\begin_inset Formula $k$
\end_inset
=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
diagonal if
\begin_inset Formula $v$
\end_inset
is a 2-d array, or returns an array with
\begin_inset Formula $v$
\end_inset
as the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
diagonal if
\begin_inset Formula $v$
\end_inset
is a 1-d array.
\end_layout
\begin_layout MyCode
>>> diag(arange(12).reshape(4,3),k=1)
\newline
array([1, 5])
\newline
>>> diag([1,4,5,7],k=-1)
\newline
array([
[0, 0, 0, 0, 0],
\newline
[1, 0, 0, 0, 0],
\newline
[0, 4, 0, 0, 0],
\newline
[0,
0, 5, 0, 0],
\newline
[0, 0, 0, 7, 0]])
\end_layout
\begin_layout Description
diagflat
\begin_inset LatexCommand index
name "diagflat"
\end_inset
(
\begin_inset Formula $v$
\end_inset
,
\begin_inset Formula $k$
\end_inset
=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 2-d array (of the same class as
\begin_inset Formula $v$
\end_inset
) by placing a flattened version of
\begin_inset Formula $v$
\end_inset
along the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
diagonal.
This differs from diag in that it only creates 2-d arrays and will work
with any object that can be converted to an array (returning that object
if it also defines an __array_wrap__ method).
\end_layout
\begin_layout Description
fliplr
\begin_inset LatexCommand index
name "fliplr"
\end_inset
(m)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the array, m, with rows preserved and columns reversed in the left-right
direction.
For m.ndim > 2, this works on the first two dimensions (equivalent to m[:,::-1])
\end_layout
\begin_layout Description
flipud
\begin_inset LatexCommand index
name "flipud"
\end_inset
(m)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the array, m, with columns preserved and rows reversed in the up-down
direction.
For m.ndim > 1, this works on the first dimension (equivalent to m[::-1])
\end_layout
\begin_layout Description
rot90
\begin_inset LatexCommand index
name "rot90"
\end_inset
(m, k=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Rotate the first two dimensions of an array, m, by k*90 degrees in the
counterclockwise direction.
Must have m.ndim >=2.
\end_layout
\begin_layout Description
tri
\begin_inset LatexCommand index
name "tri"
\end_inset
(
\begin_inset Formula $N$
\end_inset
,
\begin_inset Formula $M$
\end_inset
=
\begin_inset Formula $N$
\end_inset
, k=0, dtype=aint)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $N\times M$
\end_inset
array where all the diagonals starting from the lower left corner up to
the
\begin_inset Formula $\textrm{k}^{\textrm{th}}$
\end_inset
diagonal are all ones.
\end_layout
\begin_layout Description
triu
\begin_inset LatexCommand index
name "triu"
\end_inset
(m, k=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a upper-triangular 2-d array from m with all the elements below
the
\begin_inset Formula $\textrm{k}^{\textrm{th}}$
\end_inset
diagonal set to 0.
\end_layout
\begin_layout Description
tril
\begin_inset LatexCommand index
name "tril"
\end_inset
(m, k=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a lower-triangular 2-d array from m with all the elements above
the
\begin_inset Formula $\textrm{k}^{\textrm{th}}$
\end_inset
diagonal set to 0.
\end_layout
\begin_layout Description
mat
\begin_inset LatexCommand index
name "mat"
\end_inset
(data, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a matrix from data.
Alias for numpy.asmatrix.
The calling syntax is the same as that function.
Note that data can be a string in which case the routine uses spaces and
semi-colons to construct the matrix:
\end_layout
\begin_layout MyCode
>>> mat('1 3 4; 5 6 9')
\newline
matrix([[1, 3, 4],
\newline
[5, 6, 9]])
\end_layout
\begin_layout Description
bmat
\begin_inset LatexCommand index
name "bmat"
\end_inset
(obj, ldict=None, gdict=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Build a matrix from sub-blocks.
This is similar to mat, except the items in the nested-sequence, or string,
should be appropriately shaped 2-d arrays.
If obj is a string, then ldict and gdict can be used to alter where the
names represented in the string are found (default is current local and
global namespace).
\end_layout
\begin_layout MyCode
>>> A=mat('1 2; 3 4'); B=mat('5 6; 7 8')
\newline
>>> bmat('A, B; B, A')
\newline
matrix([[1,
2, 5, 6],
\newline
[3, 4, 7, 8],
\newline
[5, 6, 1, 2],
\newline
[7, 8, 3, 4]])
\end_layout
\begin_layout Section
More data type functions
\end_layout
\begin_layout Description
issubclass_
\begin_inset LatexCommand index
name "issubclass\\_"
\end_inset
(arg1, arg2)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns True if arg1 is a sub-class of arg2, otherwise returns False.
Similar to the built-in issubclass except it does not raise an error if
arg1 or arg2 are not types.
\end_layout
\begin_layout Description
issubdtype
\begin_inset LatexCommand index
name "issubdtype"
\end_inset
(arg1, arg2)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns True if the type-object of the data-type represented by arg1 is
a sub class of the type-object of the data-type represented by arg2.
\end_layout
\begin_layout Description
iscomplexobj
\begin_inset LatexCommand index
name "iscomplexobj"
\end_inset
(obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a single True or False value depending on whether or not obj would
be interpreted as an array with complex-valued data type.
\end_layout
\begin_layout Description
isrealobj
\begin_inset LatexCommand index
name "isrealobj"
\end_inset
(obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a single True or False value depending on whether or not obj would
be interpreted as an array with real-valued data type.
\end_layout
\begin_layout Description
isscalar
\begin_inset LatexCommand index
name "isscalar"
\end_inset
(obj)
\end_layout
\begin_layout Description
\InsetSpace ~
True if obj is a scalar (an instance of an array data type, or a standard
Python scalar type).
There is also a sequence of called ScalarType defined in NumPy, so that
this can also be tested as type(obj) in numpy.ScalarType.
\end_layout
\begin_layout Description
nan_to_num
\begin_inset LatexCommand index
name "nan\\_to\\_num"
\end_inset
(arr)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an array with non-finite numbers changed to finite numbers.
The mapping converts
\family typewriter
nan
\family default
to 0,
\family typewriter
inf
\family default
to the maximum value for the data type and
\family typewriter
-inf
\family default
to the minimum value for the data type.
\end_layout
\begin_layout Description
real_if_close
\begin_inset LatexCommand index
name "real\\_if\\_close"
\end_inset
(arr, tol=100)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a real arr if arr is complex with imaginary parts less than some
tolerance.
If tol > 1, then it represents a multiplicative factor on the value of
epsilon for the data type of arr.
\end_layout
\begin_layout Description
cast
\begin_inset LatexCommand index
name "cast"
\end_inset
[dtype_or_alias] (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Cast obj to an array of the given type.
This is equivalent to array(obj, copy=0).astype(dtype_or_alias).
When one type is cast to another in this fashion, a very low-level operation
takes place.
Typically, you get what your C-compiler produces for the cast, but notice
that in the case of casting to a bool type, the value becomes either a
0 or a 1.
\end_layout
\begin_layout MyCode
>>> cast[bool]([1,2,0,4,0]).astype(int)
\newline
array([1, 1, 0, 1, 0])
\end_layout
\begin_layout Description
asfarray
\begin_inset LatexCommand index
name "asfarray"
\end_inset
(a, dtype=float)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of inexact data type (floating or complexfloating).
\end_layout
\begin_layout Description
mintypecode
\begin_inset LatexCommand index
name "mintypecode"
\end_inset
(typechars, typeset='GDFgdf', default='d')
\end_layout
\begin_layout Description
\InsetSpace ~
Return a minimum data type character from typeset that handles all given
typechars.
The returned type character must correspond to the data type of the smallest
size such that an array of the returned type can handle the data from an
array of type t for each t in typechars.
If the typechars does not intersect with the typeset, then default is returned.
If an element of typechars is not a string, then t=asarray(t).dtypechar
is applied.
\end_layout
\begin_layout Description
finfo
\begin_inset LatexCommand index
name "finfo"
\end_inset
(dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
This class allows exploration of the details of how a floating point number
is represented in the computer.
It can be instantiated by an inexact data type object (or an alias for
one).
Complex-valued data types are acceptable and are equivalent to their real-value
d counterparts.
The attributes of the class are
\end_layout
\begin_deeper
\begin_layout Description
nmant The number of bits in the floating point mantissa, or fraction.
\end_layout
\begin_layout Description
nexp The number of bits in the floating point exponent
\end_layout
\begin_layout Description
machep Exponent of the smallest (most negative) power of 2 that when added
to 1.0 gives something different than 1.0.
\end_layout
\begin_layout Description
eps Floating point precision: 2**machep.
\end_layout
\begin_layout Description
precision Number of decimal digits of precision: int(-log10(eps))
\end_layout
\begin_layout Description
resolution 10**(-precision)
\end_layout
\begin_layout Description
negep Exponent of the smallest power of 2 that, subtracted from 1.0, gives
something different than 1.0.
\end_layout
\begin_layout Description
epsneg Floating point precision: 2**negep.
\end_layout
\begin_layout Description
minexp Smallest (most negative) power of 2 producing
\begin_inset Quotes eld
\end_inset
normal
\begin_inset Quotes erd
\end_inset
numbers (no leading zeros in the mantissa).
\end_layout
\begin_layout Description
tiny The smallest (in magnitude) usable floating point number equal to 2**minexp.
\end_layout
\begin_layout Description
maxexp Smallest (positive) power of 2 that causes overflow.
\end_layout
\begin_layout Description
max The largest usable floating value: (1-epsneg)* (2**maxep)
\end_layout
\begin_layout Description
min The most negative usable floating value: -max
\end_layout
\end_deeper
\begin_layout Description
\InsetSpace ~
The most useful attributes are probably eps, max, min, and tiny.
\end_layout
\begin_layout Section
Functions that behave like ufuncs
\end_layout
\begin_layout Standard
These functions are Python functions built on top of universal functions
(ufuncs) and also take optional output arguments.
They broadcast like ufuncs but do not have ufunc attributes.
\end_layout
\begin_layout Description
fix
\begin_inset LatexCommand index
name "fix"
\end_inset
(x, y=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Round x to the nearest integer towards zero.
\end_layout
\begin_layout Description
isneginf
\begin_inset LatexCommand index
name "isneginf"
\end_inset
(x, y=None)
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x=-\infty$
\end_inset
.
Should be the same as
\family typewriter
x==NumPy.NINF
\family default
.
\end_layout
\begin_layout Description
isposinf
\begin_inset LatexCommand index
name "isposinf"
\end_inset
(x, y=None)
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x=+\infty.$
\end_inset
Should be the same as
\family typewriter
x==NumPy.PINF
\family default
.
\end_layout
\begin_layout Description
log2
\begin_inset LatexCommand index
name "log2"
\end_inset
(x, y=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the logarithm to the base 2 of
\begin_inset Formula $x.$
\end_inset
An optional output array may be provided.
\end_layout
\begin_layout Section
Miscellaneous Functions
\end_layout
\begin_layout Standard
Some miscellaneous functions are available in NumPy which are included largely
for compatibility with MLab of the old Numeric package.
One notable difference, however, is that due to a separate implementation
of the modified Bessel function, the kaiser window is available without
needing a separate library.
\end_layout
\begin_layout Description
sinc
\begin_inset LatexCommand index
name "sinc"
\end_inset
(
\begin_inset Formula $x$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the sinc function for
\begin_inset Formula $x$
\end_inset
which can be a scalar or array.
The sinc is defined as
\begin_inset Formula $y=\textrm{sinc}\left(x\right)=\frac{\sin\left(\pi x\right)}{\pi x}$
\end_inset
with the caveat that the limiting value (1.0) of the ratio is taken for
\begin_inset Formula $x=0.$
\end_inset
\end_layout
\begin_layout Description
i0
\begin_inset LatexCommand index
name "i0"
\end_inset
(
\begin_inset Formula $x$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Modified Bessel function of the first kind of order 0.
Needed to compute the kaiser window.
The modified Bessel function is defined as
\begin_inset Formula \[
I_{0}\left(x\right)=\frac{1}{\pi}\int_{0}^{\pi}e^{x\cos\theta}d\theta=\sum_{k=0}^{\infty}\frac{x^{2k}}{4^{k}\left(k!\right)^{2}}.\]
\end_inset
\end_layout
\begin_layout Description
blackman
\begin_inset LatexCommand index
name "blackman"
\end_inset
(
\begin_inset Formula $M$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $M$
\end_inset
-point Blackman smoothing window which is sequence of length
\begin_inset Formula $M$
\end_inset
with values given for
\begin_inset Formula $n=0\ldots M-1$
\end_inset
by
\begin_inset Formula \[
w\left[n\right]=0.42-0.5\cos\left(2\pi\frac{n}{M-1}\right)+0.08\cos\left(4\pi\frac{n}{M-1}\right).\]
\end_inset
\end_layout
\begin_layout Description
bartlett
\begin_inset LatexCommand index
name "bartlett"
\end_inset
(
\begin_inset Formula $M$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $M$
\end_inset
-point Bartlett (triangular) smoothing window as
\begin_inset Formula \[
w\left[n\right]=\left\{ \begin{array}{cc}
2\frac{n}{M-1} & 0\leq n\leq\frac{M-1}{2},\\
2-2\frac{n}{M-1} & \frac{M-1}{2}<n\leq M-1.\end{array}\right.\]
\end_inset
\end_layout
\begin_layout Description
hanning
\begin_inset LatexCommand index
name "hanning"
\end_inset
(
\begin_inset Formula $M$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $M$
\end_inset
-point Hanning smoothing window defined as
\begin_inset Formula \[
w\left[n\right]=\frac{1}{2}-\frac{1}{2}\cos\left(2\pi\frac{n}{M-1}\right).\]
\end_inset
\end_layout
\begin_layout Description
hamming
\begin_inset LatexCommand index
name "hamming"
\end_inset
(
\begin_inset Formula $M$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $M$
\end_inset
-point Hamming smoothing window defined for
\begin_inset Formula $n=0\ldots M-1$
\end_inset
as
\begin_inset Formula \[
w\left[n\right]=0.54-0.46\cos\left(2\pi\frac{n}{M-1}\right).\]
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
All of the windowing functions are smoothing windows that attempt to balance
the inherent trade off between side-lobe height (ringing) and main-lobe
width (resolution) in the frequency domain.
A rectangular window has the smallest main-lobe width but the largest side-lobe
height.
A windowing (tapering) function tries to can help trade off main-lobe width
By sacrificing a little in resolution using a windowing function These
windows can be used to smooth data using the convolve function.
Figure
\begin_inset LatexCommand ref
reference "cap:window functions"
\end_inset
shows the windowing functions described so far and their time- and frequency-do
main behavior.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Graphics
filename Figures/fig1.eps
lyxscale 48
width 49line%
keepAspectRatio
\end_inset
\hfill
\begin_inset Graphics
filename Figures/fig2.eps
lyxscale 48
width 49line%
keepAspectRatio
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:window functions"
\end_inset
Blackman, Bartlett, Hanning, and Hamming windows in the time and frequency
domain showing the trade-off between main-lobe width and side-lobe height
(Figures made with matplotlib).
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The trade-off between main-lobe and side-lobe has been studied extensively.
Solutions that maximize energy in the main-lobe compared to energy in the
side-lobes can be found by finding an eigenvector which can be expensive
to compute for large window sizes.
A good approximation to these prolate-spheroidal windows is the Kaiser
window.
\end_layout
\begin_layout Description
kaiser
\begin_inset LatexCommand index
name "kaiser"
\end_inset
(
\begin_inset Formula $M$
\end_inset
,
\begin_inset Formula $\beta$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an
\begin_inset Formula $M$
\end_inset
-point Kaiser smoothing window.
The
\begin_inset Formula $\beta$
\end_inset
parameter controls the width of the window (and the frequency-domain side-lobe
height and main-lobe width).
The window is defined as
\begin_inset Formula \[
w\left[n\right]=\frac{1}{I_{0}\left(\beta\right)}I_{0}\left(\beta\sqrt{1-\frac{\left(2n-M-1\right)^{2}}{\left(M-1\right)^{2}}}\right).\]
\end_inset
There is an empirical relationship between
\begin_inset Formula $\beta$
\end_inset
and the side-lobe height which can be used in FIR filter design.
To achieve a side-lobe height of
\begin_inset Formula $-\alpha$
\end_inset
dB, the
\begin_inset Formula $\beta$
\end_inset
parameter is
\begin_inset Formula \[
\beta=\left\{ \begin{array}{cc}
0.1002\left(\alpha-8.7\right) & \alpha>50,\\
0.5842\left(\alpha-21\right)^{0.4}+0.07886\left(\alpha-21\right) & 21\leq\alpha\leq50,\\
0 & \alpha<21.\end{array}\right.\]
\end_inset
The length
\begin_inset Formula $M$
\end_inset
of the window determines the transition width.
To obtain a transition width of
\begin_inset Formula $\Delta\omega$
\end_inset
rad/s the window-length must be at least:
\begin_inset Formula \[
M=\frac{\alpha-8}{2.285\Delta\omega}+1.\]
\end_inset
\end_layout
\begin_layout Section
Utility functions
\end_layout
\begin_layout Description
set_numeric_ops
\begin_inset LatexCommand index
name "set\\_numeric\\_ops"
\end_inset
(<op1>=func1, <op2>=func2, ...)
\end_layout
\begin_layout Description
\InsetSpace ~
This function can be used to alter the operations used for internal array
calculations and array special methods.
Replaceable operations (and possible entries for <opN>) are add, subtract,
multiply, divide, remainder, power, sqrt, negative, absolute, invert, left_shif
t, right_shift, bitwise_and, bitwise_or, less, less_equal, equal, not_equal,
greater, greater_equal, floor_divide, true_divide, logical_or, logical_and,
floor, ceil, maximum, and minimum.
The example code below changes, then restores, the old Numeric behavior
of remainder (which was changed because it was not consistent with Python).
\end_layout
\begin_layout MyCode
>>> a = array([-3.,-2,-1,0,1,2,3])
\newline
>>> print a % -2.1
\newline
[-0.9 -2.
-1.
0.
-1.1 -0.1 -1.2]
\newline
>>> oldops = set_numeric_ops(remainder=fmod)
\newline
>>> print a %
-2.1
\newline
[-0.9 -2.
-1.
0.
1.
2.
0.9]
\newline
>>> newops = set_numeric_ops(**oldops)
\newline
>>> print a % -2.1
\newline
[-0.9 -2.
-1.
0.
-1.1 -0.1 -1.2]
\newline
>>> print 3 % -2.1 # comparison
\newline
-1.2
\end_layout
\begin_layout Description
get_include
\begin_inset LatexCommand index
name "get\\_include"
\end_inset
()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the directory that contains the numpy include files.
The numpy.distutils automatically includes this directory in building extensions.
\end_layout
\begin_layout Description
get_numarray_include
\begin_inset LatexCommand index
name "get\\_numarray\\_include"
\end_inset
(type=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the directory that contains the numarray compatible C-API include
files.
If type is not None, then return a list containing both the numarray compatible
C-API include files and the numpy include files.
The latter form is only needed when building an extension without the use
of numpy.distutils.
\end_layout
\begin_layout Description
deprecate
\begin_inset LatexCommand index
name "deprecate"
\end_inset
(func, oldname, newname)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a deprecated function named 'oldname' that has been replaced by
'newname'.
This new deprecated function issues a warning before calling the old function.
The name and docs of the function are also updated to be oldname instead
of the name that func has.
Example usage.
If you want to deprecate the function named 'old' in favor of a new function
named 'new' which has the same calling conention then this could be done
with the assignment
\end_layout
\begin_deeper
\begin_layout LyX-Code
old = deprecate(new, 'old', 'new')
\end_layout
\end_deeper
\begin_layout Chapter
Scalar objects
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "cha:Scalar-objects"
\end_inset
\end_layout
\begin_layout Quotation
Never worry about numbers.
Help one person at a time, and always start with the person nearest you.
\end_layout
\begin_layout Right Address
---
\emph on
Mother Teresa
\end_layout
\begin_layout Quotation
A great many people think they are thinking when they are merely rearranging
their prejudices.
\end_layout
\begin_layout Right Address
---
\emph on
William James
\end_layout
\begin_layout Standard
One
\begin_inset LatexCommand index
name "array scalars|("
\end_inset
important new feature of NumPy is the addition of a new scalar object for
each of the 21 different data types that an array can have.
Do not confuse these scalar objects with the data-type objects.
There is one data-type object.
It contains a
\family typewriter
.type
\family default
attribute which points to the Python type that each element of the array
will be returned as
\begin_inset Foot
status open
\begin_layout Standard
with the exception of object data-types which return the underlying object
and not a
\begin_inset Quotes eld
\end_inset
scalar
\begin_inset Quotes erd
\end_inset
type.
\end_layout
\end_inset
.
The built-in data-types point have .
\family typewriter
type
\family default
attributes that point to these scalar objects.
Five (or six) of these new scalar objects are essentially equivalent to
fundamental Python types and therefore inherit from them as well as from
the generic array scalar type.
The bool_ data type is very similar to the Python BooleanType but does
not inherit from it because Python's BooleanType does not allow itself
to be inherited from, and on the C-level the size of the actual bool_ data
is not the same as a Python Boolean scalar.
Table
\begin_inset LatexCommand ref
reference "cap:Array-scalar-types"
\end_inset
shows which array scalars inherit from basic Python types.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Array-scalar-types"
\end_inset
Array scalar types that inherit from basic Python types.
The intc array data type might also inherit from the IntType if it has
the same number of bits as the int_ array data type on your platform.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="6" columns="2">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
array data type
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Python type
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
int_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
IntType
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
float_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
FloatType
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
complex_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
ComplexType
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
str_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
StringType
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
unicode_
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
UnicodeType
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The array scalars have the same attributes and methods as arrays and live
in a hierarchy of scalar types so they can be easily classified based on
their type objects.
However, because array scalars are immutable, and attributes change intrinsic
properties of the object, the
\series bold
array scalar attributes are not settable
\series default
.
\end_layout
\begin_layout Standard
Array scalars can be detected using the hierarchy of data types.
For example,
\family typewriter
isinstance(val, generic)
\family default
will return True if val is an array scalar object.
Alternatively, what kind of array scalar is present can be determined using
other members of the data type hierarchy.
Thus, for example
\family typewriter
isinstance(val, complexfloating)
\family default
will return True if val is a complex valued type, while
\family typewriter
isinstance(val, flexible)
\family default
will return true if val is one of the flexible itemsize array types (string,
unicode, void).
\end_layout
\begin_layout Warning
The bool_ type is not a subclass of the int_ type (the bool_ type is not
even a number type).
This is different than Python's default implementation of bool as a sub-class
of int.
\end_layout
\begin_layout Section
Attributes of array scalars
\end_layout
\begin_layout Standard
The array scalar objects have an
\family typewriter
__array_priority__
\family default
of NPY_SCALAR_PRIORITY (-1,000,000.0).
They also do not (yet) have a ctypes attribute.
Otherwise, they share the same attributes as arrays:
\end_layout
\begin_layout Description
flags
\end_layout
\begin_layout Description
\InsetSpace ~
Returns True for CONTIGUOUS, OWNDATA, FORTRAN, and ALIGNED.
Always returns False for WRITEABLE, and UPDATEIFCOPY.
\end_layout
\begin_layout Description
shape
\end_layout
\begin_layout Description
\InsetSpace ~
Returns ().
\end_layout
\begin_layout Description
strides
\end_layout
\begin_layout Description
\InsetSpace ~
Returns ().
\end_layout
\begin_layout Description
ndim
\end_layout
\begin_layout Description
\InsetSpace ~
Returns 0.
\end_layout
\begin_layout Description
data
\end_layout
\begin_layout Description
\InsetSpace ~
A read-only buffer object of size self.itemsize,
\end_layout
\begin_layout Description
size
\end_layout
\begin_layout Description
\InsetSpace ~
Return 1.
\end_layout
\begin_layout Description
itemsize
\end_layout
\begin_layout Description
\InsetSpace ~
The number of bytes this scalar requires.
\end_layout
\begin_layout Description
base
\end_layout
\begin_layout Description
\InsetSpace ~
Returns None.
\end_layout
\begin_layout Description
dtype
\end_layout
\begin_layout Description
\InsetSpace ~
Returns data type descriptor corresponding to this array scalar.
\end_layout
\begin_layout Description
real
\end_layout
\begin_layout Description
\InsetSpace ~
The real part of the scalar.
\end_layout
\begin_layout Description
imag
\end_layout
\begin_layout Description
\InsetSpace ~
The imaginary part of the scalar (or 0 if this is real).
\end_layout
\begin_layout Description
flat
\end_layout
\begin_layout Description
\InsetSpace ~
Return a 1-d iterator object (of size 1).
\end_layout
\begin_layout Description
T
\end_layout
\begin_layout Description
\InsetSpace ~
Return a reference to self.
\end_layout
\begin_layout Description
__array_interface__
\end_layout
\begin_layout Description
\InsetSpace ~
The Python-side to the array interface.
\end_layout
\begin_layout Description
__array_struct__
\end_layout
\begin_layout Description
\InsetSpace ~
The C-side to the array interface
\end_layout
\begin_layout Description
__array_priority__
\end_layout
\begin_layout Description
\InsetSpace ~
-100.0 (very low-priority).
\end_layout
\begin_layout Description
__array_wrap__ (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an array scalar from an array
\end_layout
\begin_layout Section
Methods of array scalars
\end_layout
\begin_layout Standard
Array scalars have exactly the same methods as arrays.
The default behavior of these methods is to internally convert the scalar
to an equivalent 0-dimensional array and to call the corresponding array
method.
The exceptions to these rules are given below.
In addition, math operations on array scalars are defined so that the same
hardware flags are set and used to interpret the results as for ufunc.
Therefore the error state used for ufuncs also carries over to the math
on array scalars.
\end_layout
\begin_layout Description
__new__ (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
The default behavior is to return a new array or array scalar by calling
array(obj) with the corresponding data type.
There are two situations when this default behavior is delayed until another
approach is tried.
First, when the array scalar type inherits from a Python type, then the
Python types new method is called first and the default method is called
only if that approach fails.
The second situation is for the
\family typewriter
void
\family default
data type where a single integer-like argument will cause a void scalar
of that size to be created and initialized to 0.
\end_layout
\begin_layout Description
\InsetSpace ~
Notice that because array(obj) is called for new, if obj is a nested sequence,
then the return object could actually be an
\family typewriter
ndarray
\family default
.
Thus, arrays of the correct type can also be created by calling the array
data type name directly:
\end_layout
\begin_layout MyCode
>>> uint32([[5,6,7,8],[1,2,3,4]])
\newline
array([[5, 6, 7, 8],
\newline
[1, 2, 3, 4]],
dtype=uint32)
\end_layout
\begin_layout Description
__array__ (<None>)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a 0-dimensional array of the given data type, or of type(self)
if argument is None.
\end_layout
\begin_layout Description
__array_wrap__ (array)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a scalar array object from the first-element of the array.
\end_layout
\begin_layout Description
__squeeze__ ()
\end_layout
\begin_layout Description
\InsetSpace ~
Returns self.
\end_layout
\begin_layout Description
byteswap (<False>)
\end_layout
\begin_layout Description
\InsetSpace ~
Trying to set the first (inplace) argument to True raises a ValueError.
Otherwise, this returns a new array scalar with the data byteswapped.
\end_layout
\begin_layout Description
__reduce__ ()
\end_layout
\begin_layout Description
\InsetSpace ~
This is called to pickle an array scalar.
It returns a tuple of (numpy.core.multiarray.scalar, self.dtypestr, obj or
self.tostring()) which can be used to reconstruct the scalar on unpickling.
Notice that no state is written, because the entire scalar can be constructed
from just the string.
Also, if this is an object array scalar, then the Python object being reference
d is written.
\end_layout
\begin_layout Description
__setstate__ ()
\end_layout
\begin_layout Description
\InsetSpace ~
Does nothing but return None.
\end_layout
\begin_layout Description
setflags ()
\end_layout
\begin_layout Description
\InsetSpace ~
Does nothing, as flags cannot be set for scalars
\begin_inset LatexCommand index
name "array scalars|)"
\end_inset
.
\end_layout
\begin_layout Section
Defining New Types
\end_layout
\begin_layout Standard
There are two ways to effectively define a new type of array.
One way is to simply subclass the ndarray and overwrite the methods of
interest.
This will work to a degree, but internally certain behaviors are fixed
by the data type of the array.
To fully customize the data type of an array you need to define a new data-type
for the array, and register it with NumPy.
This new type can only be defined in C.
How to define a new data type in C will be discussed in the next part of
the book.
\end_layout
\begin_layout Chapter
Data-type (
\family typewriter
dtype
\family default
) Objects
\end_layout
\begin_layout Quotation
We cannot expect that all nations will adopt like systems, for conformity
is the jailer of freedom and the enemy of growth.
\end_layout
\begin_layout Right Address
---
\emph on
John F.
Kennedy
\end_layout
\begin_layout Quotation
What information consumes is rather obvious: it consumes the attention of
its recipients.
Hence, a wealth of information creates a poverty of attention and a need
to allocate that attention efficiently among the overabundance of information
sources that might consume it.
\end_layout
\begin_layout Right Address
---
\emph on
Herbert Simon
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "cha:Data-descriptor-objects"
\end_inset
It
\begin_inset LatexCommand index
name "dtype|("
\end_inset
is important not to confuse the
\begin_inset Quotes eld
\end_inset
array-scalars
\begin_inset Quotes erd
\end_inset
with the
\begin_inset Quotes eld
\end_inset
data-type objects.
\begin_inset Quotes erd
\end_inset
It is true that an array-scalar can be interpreted as a data-type object
and so can be used to refer to the data-type of an array.
However, the data-type object is a separate Python object.
Every ndarray has an associated data-type object that completely defines
the data in the array (including any named fields).
For every built-in data-type object there is an associated type object
whose instances are the array-scalars.
Because of the association between each data-type object and a type-object
of the corresponding array scalar, the array-scalar type-objects can also
be thought of as data-types.
However, for the type objects of flexible array-scalars (string, unicode_,
and void), the type-objects alone are not enough to specify the full data-type
because the length is not given.
The data-type constructor,
\series bold
numpy.dtype
\series default
, converts any object that can be considered as a data-type into a data-type
object which is the actual object an ndarray looks to in order to interpret
each element of its data region.
Whenever a data-type is required in a NumPy function or method, supplying
a dtype object is always fastest.
If the object supplied is not a dtype object, then it will be converted
to one using dtype(obj).
Therefore, understanding data-type objects is the key to understanding
how data types are really represented and understood in NumPy.
\end_layout
\begin_layout Section
Attributes
\begin_inset LatexCommand index
name "dtype!attributes|("
\end_inset
\end_layout
\begin_layout Description
type
\begin_inset LatexCommand index
name "dtype!attributes!type"
\end_inset
The
\begin_inset LatexCommand index
name "The"
\end_inset
type object used to instantiate a scalar of this data-type.
\end_layout
\begin_layout Description
kind
\begin_inset LatexCommand index
name "dtype!attributes!kind"
\end_inset
A character code (one of 'biufcSUV') identifying the general kind of data.
\end_layout
\begin_layout Description
char
\begin_inset LatexCommand index
name "dtype!attributes!char"
\end_inset
A unique character code for each of the 21 different built-in types.
\end_layout
\begin_layout Description
num
\begin_inset LatexCommand index
name "dtype!attributes!num"
\end_inset
A unique number for each of the 21 different built-in types roughly ordered
from least-to-most precision.
\end_layout
\begin_layout Description
str
\begin_inset LatexCommand index
name "dtype!attributes!str"
\end_inset
The array-protocol typestring of this data-type object.
\end_layout
\begin_layout Description
name
\begin_inset LatexCommand index
name "dtype!attributes!name"
\end_inset
A bit-width name for this data-type (un-sized flexible data-type objects
are missing the width).
\end_layout
\begin_layout Description
byteorder
\begin_inset LatexCommand index
name "dtype!attributes!byteorder"
\end_inset
A character indicating the byte-order of this data-type object ('=' : native,
'<' : little-endian, '>' : big-endian, '|' : not applicable).
All built-in data-type objects have byteorder either '=' or '|'.
\end_layout
\begin_layout Description
itemsize
\begin_inset LatexCommand index
name "dtype!attributes!itemsize"
\end_inset
The element size of this data-type object.
For 18 of the 21 types this number is fixed by the data-type.
For the flexible data-types, this number can be anything.
\end_layout
\begin_layout Description
alignment
\begin_inset LatexCommand index
name "dtype!attributes!alignment"
\end_inset
The required alignment (in bytes) of this data-type according to the compiler.
More information is available in the C-API section.
\end_layout
\begin_layout Description
fields
\begin_inset LatexCommand index
name "dtype!attributes!fields"
\end_inset
A dictionary showing any named fields that have been defined for this data-type
(or None if there are no named fields).
Fields can be assigned to any built-in data-type (
\emph on
e.g.
\emph default
using the tuple input to the dtype constructor).
However, fields are most useful for (subtypes of) void data-types which
can be any size.
Fields are a convenient way to keep track of fixed-size sub-parts of the
total fixed-size array-element, or record.
A field is defined in terms of another dtype object and an offset (in bytes)
into the current record.
\end_layout
\begin_layout Description
\InsetSpace ~
The fields dictionary is indexed by keys that are the names of the fields.
Each entry in the dictionary is a tuple fully describing the field: (dtype,
offset[, title]).
If present, the optional title can actually be any object (if it is string
or unicode then it will also be a key in the fields dictionary, otherwise
it's meta-data).
Notice also, that the first two elements of the tuple can be passed directly
as arguments to the getfield and setfield attributes of an ndarray.
If field names are not specified in a constructor, they default to 'f0',
'f2', ..., 'f<n-1>'.
\end_layout
\begin_layout Description
names
\begin_inset LatexCommand index
name "dtype!attributes!char"
\end_inset
An ordered list of field names.
This can be used to walk through all of the named fields in offset order.
Notice that the defined fields do not have to
\begin_inset Quotes eld
\end_inset
cover
\begin_inset Quotes erd
\end_inset
the record, but the itemsize of the container data-type object must always
be at least as large as the itemsizes of the data-type objects in the defined
fields.
This attribute is None if there are no fields.
\end_layout
\begin_layout Description
subdtype
\begin_inset LatexCommand index
name "dtype!attributes!subdtype"
\end_inset
Numarray introduced the concept of a fixed-length record having fields
that were themselves arrays of another data-type.
This is supported at a fundamental level in NumPy using this attribute
which maintains the simplicity of defining a field by another data-type
object.
It either returns None or a tuple (base dtype, shape) where shape is a
tuple showing the size of the C-contiguous array and the base dtype object
indicates the data-type in each element of the subarray.
If a field whose dtype object has this attribute is retrieved, then the
extra dimensions implied by the shape are tacked on to the end of the retrieved
array.
\end_layout
\begin_layout Description
descr
\begin_inset LatexCommand index
name "dtype!attributes!descr"
\end_inset
An array-interface-compliant full description of the data-type.
The format is that required by the 'descr' key in the __array_interface__.
\end_layout
\begin_layout Description
isbuiltin
\begin_inset LatexCommand index
name "dtype!attributes!isbuiltin"
\end_inset
A 1 if self is one of the built-in dtype objects; a 2 if self is a user-defined
dtype object; a 0, otherwise.
\end_layout
\begin_layout Description
isnative
\begin_inset LatexCommand index
name "dtype!attributes!isnative"
\end_inset
True if this data-type object has a byteorder that is native to the platform;
otherwise False.
\end_layout
\begin_layout Description
hasobject
\begin_inset LatexCommand index
name "dtype!attributes!hasobject"
\end_inset
True if self contains reference-counted objects in any of it's fields or
sub data-types.
Recall that what is actually in the ndarray memory representing the Python
object is the memory address of that object (a pointer).
Special handling may be required and this attribute is useful for distinguishin
g data-types that may contain arbitrary Python objects and data-types that
won't.
\end_layout
\begin_layout Description
flags
\begin_inset LatexCommand index
name "dtype!attributes!flags"
\end_inset
Bit-flags for the data-type describing how the data-type will be interpreted.
Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICK
LE, ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM.
A full explanation of these flags is in the second part of this book.
These flags are largely useful for user-defined data-types.
\begin_inset LatexCommand index
name "dtype!attributes|)"
\end_inset
\end_layout
\begin_layout Section
Construction
\end_layout
\begin_layout Description
dtype (obj, align=0, copy=0)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "dtype!construction|("
\end_inset
Return a new data-type object from obj.
The keyword argument, align, can only be nonzero if obj is a dictionary,
or a comma-separated string.
If it is non-zero in those cases it is used to add padding as needed to
the fields to match what the compiler that compiled NumPy would do to a
similar C-struct.
The copy argument guarantees a new copy of the data-type object, otherwise,
the result may just be a reference to a built-in data-type object.
\end_layout
\begin_layout Description
\InsetSpace ~
Objects that can be converted to a data-type object are described in the
following list.
Because every object in this list can be converted to a data-type object
it can also be used whenever a
\family typewriter
dtype
\family default
is requested by a function or method in NumPy.
\end_layout
\begin_deeper
\begin_layout Description
dtype
\begin_inset LatexCommand index
name "dtype!construction!from float"
\end_inset
Returns itself.
\end_layout
\begin_layout Description
None
\begin_inset LatexCommand index
name "dtype!construction!from None"
\end_inset
Returns the default data-type descriptor object: float.
\end_layout
\begin_layout Description
type-object
\begin_inset LatexCommand index
name "dtype!construction!from type"
\end_inset
Many Python type objects can be converted to data-type objects.
\end_layout
\begin_deeper
\begin_layout Enumerate
Array-scalar types: The type-objects of the 21 built-in array scalars all
convert to an associated data-type object.
This is true for sub-classes as well.
Not all data-type information can be supplied with a type-object.
Flexible data-types with default itemsizes of 0, for example, require an
itemsize to be useful.
\end_layout
\begin_deeper
\begin_layout Description
Examples: int32, float64, uint16, complex128
\end_layout
\end_deeper
\begin_layout Enumerate
Generic types: The generic hierarchical type objects convert to corresponding
dtype objects according to the associations: (numeric, inexact, floating)
--> float; complexfloating --> cfloat; (integer, signedinteger) --> int_;
unsignedinteger --> uint; character --> string; (generic, flexible) -->
void.
\end_layout
\begin_layout Enumerate
Builtin types: Several python types are equivalent to a corresponding array
scalar when used to generate a dtype object: int --> int_; bool --> bool_;
float --> float_; complex --> cfloat; str --> string; unicode --> unicode_;
buffer --> void; (all others) --> object_.
\end_layout
\begin_deeper
\begin_layout Description
Examples: object, str, float, int
\end_layout
\end_deeper
\begin_layout Enumerate
Any type object with the dtype attribute: The attribute will be accessed
and used directly.
The attribute must return something that is convertible into a dtype object.
\end_layout
\end_deeper
\begin_layout Description
string
\begin_inset LatexCommand index
name "dtype!construction!from string"
\end_inset
Several kinds of strings can be converted.
Recognized strings can be pre-pended with '>', or '<', to specify the byteorder.
\end_layout
\begin_deeper
\begin_layout Enumerate
One-character strings: Each built-in data-type has a character code (the
updated Numeric typecodes), that uniquely identifies it.
\end_layout
\begin_deeper
\begin_layout Description
Examples: 'b', 'H', 'f', 'd', 'F', 'D', Float64, Int32, UInt16
\end_layout
\end_deeper
\begin_layout Enumerate
Array-protocol type strings: The first character specifies the kind of data
and the remaining characters specify how many bytes of data.
The supported kinds are 'b' --> Boolean, 'i' --> (signed) integer, 'u'
--> unsigned integer, 'f' --> floating-point, 'c' --> complex-floating
point, 'S', 'a' --> string, 'U' --> unicode, 'V' --> anything (void).
\end_layout
\begin_deeper
\begin_layout Description
Examples: 'i4', 'f8', 'c16', 'b1', 'S10', 'a25'
\end_layout
\end_deeper
\begin_layout Enumerate
Comma-separated field formats: numarray introduced a short-hand notation
for specifying the format of a record as a comma-separated string of basic
formats.
A basic format in this context is an optional shape specifier followed
by an array-protocol type string.
Parenthesis are required on the shape if it is greater than 1-d.
NumPy allows a modification on the format in that any string that can uniquely
identify the type can be used to specify the data-type in a field.
This data-type defines fields named 'f0', 'f2', ..., 'f<N-1>' where N (>1)
is the number of comma-separated basic formats in the string.
If the optional shape specifier is provided, then the data-type for the
corresponding field contains a subdtype attribute providing the shape.
\end_layout
\begin_deeper
\begin_layout Description
Examples:
\begin_inset Quotes eld
\end_inset
i4, (2,3)f8, f4
\begin_inset Quotes erd
\end_inset
;
\begin_inset Quotes eld
\end_inset
a3, 3u8, (3,4)a10
\begin_inset Quotes erd
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
Any string in NumPy.sctypeDict.keys():
\end_layout
\begin_deeper
\begin_layout Description
Examples: 'uint32', 'Int16', 'Uint64', 'Float64', 'Complex64'
\end_layout
\end_deeper
\end_deeper
\begin_layout Description
tuple
\begin_inset LatexCommand index
name "dtype!construction!from tuple"
\end_inset
Three kinds of tuples each of length 2 can be converted into a data-type
object:
\end_layout
\begin_deeper
\begin_layout Enumerate
(flexible dtype, itemsize): The first argument must be an object that is
converted to a flexible data-type object (one whose element size is 0),
the second argument is an integer providing the desired itemsize.
\end_layout
\begin_deeper
\begin_layout Description
Examples: (void, 10); (str, 35), ('U', 10)
\end_layout
\end_deeper
\begin_layout Enumerate
(fixed dtype, shape): The first argument is any object that can be converted
into a fixed-size data-type object.
The second argument is the desired shape of this type.
If the shape parameter is 1, then the data-type object is equivalent to
fixed dtype.
\end_layout
\begin_deeper
\begin_layout Description
Examples: (int32, (2,5)); ('S10', 1)=='S10'; ('i4, (2,3)f8, f4', (2,3))
\end_layout
\end_deeper
\begin_layout Enumerate
(base dtype, new dtype): Both arguments must be convertible to data-type
objects in this case.
The base dtype is the data-type object that the new data-type builds on.
This is how you could assign named fields to any built-in data-type object.
\end_layout
\begin_deeper
\begin_layout Description
Examples: (int32, {'real':(int16,0), 'imag':(int16,2)}); (int32, (int8,
4));
\newline
('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1')])
\end_layout
\end_deeper
\end_deeper
\begin_layout Description
list
\begin_inset LatexCommand index
name "dtype!construction!from list"
\end_inset
(array description interface): This style is more fully described at
\begin_inset LatexCommand url
name "this site"
target "http://numpy.scipy.org/array_interface.html"
\end_inset
.
It consists of a list of fields where each field is described by a tuple
of length 2 or 3.
The first element of the tuple is the field name (if this is '' then a
standard field name, 'f#', is assigned).
The field name may also be a 2-tuple of strings where the first string
is either a
\begin_inset Quotes eld
\end_inset
title
\begin_inset Quotes erd
\end_inset
(which may be any string or unicode string) or meta-data for the field
which can be any object, and the second string is the
\begin_inset Quotes eld
\end_inset
name
\begin_inset Quotes erd
\end_inset
which must be a valid Python identifier.
The second element of the tuple can be anything that can be interpreted
as a data-type.
The optional third element of the tuple contains the shape if this field
represents an array of the data-type in the second element.
This style does not accept align=1 as it is assumed that all of the memory
is accounted for by the array interface description.
See the web-page for more examples.
Note that a 3-tuple with a third argument equal to 1 is equivalent to a
2-tuple.
\end_layout
\begin_layout Description
Examples: [('big','>i4'), ('little','<i4')]; [('R','u1'), ('G','u1'), ('B','u1')
, ('A','u1')]
\end_layout
\begin_layout Description
dictionary
\begin_inset LatexCommand index
name "dtype!construction!from dict"
\end_inset
There are two dictionary styles.
The first is a standard dictionary format while the second accepted format
allows the fields attribute of dtype objects to be interpreted as a data-type.
\end_layout
\begin_deeper
\begin_layout Enumerate
names and formats: This style has two required and two optional keys.
The 'names' and 'formats' keys are required.
Their respective values are equal-length lists with the field names and
the field formats.
The field names must be strings and the field formats can be any object
accepted by dtypedescr constructor.
The optional keys in the dictionary are 'offsets' and 'titles' and their
values must each be lists of the same length as the 'names' and 'formats'
lists.
The 'offsets' value is a list of integer offsets for each field, while
the 'titles' value is a list of titles for each field (None can be used
if no title is desired for that field).
The titles can be any string or unicode object and will add another entry
to the fields dictionary keyed by the title and referencing the same field
tuple which will contain the title as an additional tuple member.
\end_layout
\begin_deeper
\begin_layout Description
Examples: {'names': ['r','g','b','a'], 'formats': [uint8, uint8, uint8,
uint8]}; {'names':['r','b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2],
'titles': ['Red pixel', 'Blue pixel']}
\end_layout
\end_deeper
\begin_layout Enumerate
data-type object fields: This style is patterned after the format of the
fields dictionary in a data-type object.
It contains string or unicode keys that refer to (data-type, offset) or
(data-type, offset, title) tuples.
\end_layout
\begin_deeper
\begin_layout Description
Examples: {'col1': ('S10', 0), 'col2': (float32, 10), 'col3': (int, 14)}
\begin_inset LatexCommand index
name "dtype!construction|)"
\end_inset
\end_layout
\end_deeper
\end_deeper
\end_deeper
\begin_layout Section
Methods
\begin_inset LatexCommand index
name "dtype!methods|("
\end_inset
\end_layout
\begin_layout Description
newbyteorder
\begin_inset LatexCommand index
name "dtype!methods!newbyteorder"
\end_inset
(<'swap'>)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a new copy of self with its byteorder changed according to the
optional argument.
All changes are also propagated to the data-type objects of all fields
and sub-arrays.
If a byteorder of '|' (meaning ignore) is encountered it is left unchanged.
The default behavior is to swap the byteorder.
Other possible arguments are 'big' ('>'), 'little' ('<'), and 'native'
('=') which recursively forces the byteorder of self (and it's field data-type
objects and any sub-arrays) to the corresponding byteorder.
\end_layout
\begin_layout Description
__reduce__
\begin_inset LatexCommand index
name "dtype!methods!\\_\\_reduce\\_\\_"
\end_inset
()
\end_layout
\begin_layout Description
__setstate__
\begin_inset LatexCommand index
name "dtype!methods!\\_\\_setstate\\_\\_"
\end_inset
(state)
\end_layout
\begin_layout Description
\InsetSpace ~
Data-type objects can be pickled because of these two methods.
The __reduce__() method returns a 3-tuple consisting of (callable object,
args, state), where the callable object is numpy.core.multiarray.dtype and
args is (typestring, 0, 1) unless the data-type inherits from void (or
is user-defined) in which case args is (typeobj, 0, 1).
The state is an 8-tuple with (version, endian, self.subdtype, self.names,
self.fields, self.itemsize, self.alignment, self.flags).
The self.itemsize and self.alignment entries are both -1 if the data-type
object is built-in and not flexible (because they are fixed on creation).
The setstate method takes the saved state and updates the date-type
\begin_inset LatexCommand index
name "dtype!methods|)"
\end_inset
object.
\begin_inset LatexCommand index
name "dtype|)"
\end_inset
\end_layout
\begin_layout Chapter
Standard Classes
\end_layout
\begin_layout Quotation
To generalize is to be an idiot.
\end_layout
\begin_layout Right Address
---
\emph on
William Blake
\end_layout
\begin_layout Quotation
Not everything that can be counted counts, and not everything that counts
can be counted.
\end_layout
\begin_layout Right Address
---
\emph on
Albert Einstein
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ndarray!subtyping|("
\end_inset
The ndarray in NumPy is a
\begin_inset Quotes eld
\end_inset
new-style
\begin_inset Quotes erd
\end_inset
Python built-in-type.
Therefore, it can be inherited from (in Python or in C) if desired.
Therefore, it can form a foundation for many useful classes.
Often whether to sub-class the array object or to simply use the core array
component as an internal part of a new class is a difficult decision, and
can be simply a matter of choice.
NumPy has several tools for simplifying how your new object interacts with
other array objects, and so the choice may not be significant in the end.
One way to simplify the question is by asking yourself if the object you
are interested can be replaced as a single array or does it really require
two or more arrays at it's core.
For example, in the standard NumPy distribution, the matrix and records
classes inherit from the ndarray, while masked arrays use two ndarrays
as objects of its internal structure.
\end_layout
\begin_layout Standard
Note that asarray(a) always returns the base-class ndarray.
If you are confident that your use of the array object can handle any subclass
of an ndarray, then asanyarray(a) can be used to allow subclasses to propagate
more cleanly through your subroutine.
In principal a subclass could redefine any aspect of the array and therefore,
under strict guidelines, asanyarray(a) would rarely be useful.
However, most subclasses of the arrayobject will not redefine certain aspects
of the array object such as the buffer interface, or the attributes of
the array.
One of important example, however, of why your subroutine may not be able
to handle an arbitrary subclass of an array is that matrices redefine the
'*' operator to be matrix-multiplication, rather than element-by-element
multiplication.
\end_layout
\begin_layout Section
Special attributes and methods recognized by NumPy
\begin_inset LatexCommand index
name "ndarray!attributes!recognized by|("
\end_inset
\end_layout
\begin_layout Description
__array_finalize__ (obj)
\end_layout
\begin_layout Description
\InsetSpace ~
This method is called whenever the system internally allocates a new array
from obj, where obj is a subclass (subtype) of the (big)ndarray.
It can be used to change attributes of self after construction (so as to
ensure a 2-d matrix for example), or to update meta-information from the
\begin_inset Quotes eld
\end_inset
parent.
\begin_inset Quotes erd
\end_inset
Subclasses inherit a default implementation of this method that does nothing.
\end_layout
\begin_layout Description
__array_wrap__ (array)
\end_layout
\begin_layout Description
\InsetSpace ~
This method should return an instance of the class from the ndarray object
passed in.
For example, this is called after every ufunc for the object with the highest
__array_priority__.
The ufunc-computed array object is passed in and whatever is returned is
passed to the user.
Subclasses inherit a default implementation of this method.
\end_layout
\begin_layout Description
__array__ (dtype <None>)
\end_layout
\begin_layout Description
\InsetSpace ~
This method is called to obtain an ndarray object when needed.
You should always guarantee this returns an actual ndarray object.
Subclasses inherit a default implementation of this method.
\end_layout
\begin_layout Description
__array_priority__
\end_layout
\begin_layout Description
\InsetSpace ~
The value of this attribute is used to determine what type of object to
return in situations where there is more than one possibility for the Python
type of the returned object.
Subclasses inherit a default value of 1.0 for this attribute.
\begin_inset LatexCommand index
name "ndarray!attributes!recognized by|)"
\end_inset
\begin_inset LatexCommand index
name "ndarray!subtyping|)"
\end_inset
\end_layout
\begin_layout Section
Matrix Objects
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "matrix|("
\end_inset
Matrix objects inherit from the ndarray and therefore, they have the same
attributes and methods of ndarrays.
There are six important differences of matrix objects, however that may
lead to unexpected results when you use matrices but expect them to act
like arrays:
\end_layout
\begin_layout Enumerate
Matrix objects can be created using a string notation to allow Matlab-style
syntax where spaces separate columns and semicolons (';') separate rows.
\end_layout
\begin_layout Enumerate
Matrix objects are always two-dimensional.
This has far-reaching implications, in that m.ravel() is still two-dimensional
(with a 1 in the first dimension) and item selection returns two-dimensional
objects so that sequence behavior is fundamentally different than arrays.
\end_layout
\begin_layout Enumerate
Matrix objects over-ride multiplication to be matrix-multiplication.
\series bold
Make sure you understand this for functions that you may want to receive
matrices.
Especially in light of the fact that asanyarray(m) returns a matrix when
m is a matrix.
\end_layout
\begin_layout Enumerate
Matrix objects over-ride power to be matrix raised to a power.
The same warning about using power inside a function that uses asanyarray(...)
to get an array object holds for this fact.
\end_layout
\begin_layout Enumerate
The default __array_priority__ of matrix objects is 10.0, and therefore mixed
operations with ndarrays always produce matrices.
\end_layout
\begin_layout Enumerate
Matrices have special attributes which make calculations easier.
These are
\end_layout
\begin_deeper
\begin_layout Enumerate
.T --- return the transpose of self
\end_layout
\begin_layout Enumerate
.H --- return the conjugate transpose of self
\end_layout
\begin_layout Enumerate
.I --- return the inverse of self
\end_layout
\begin_layout Enumerate
.A --- return a view of the data of self as a 2d array (no copy is done).
\end_layout
\end_deeper
\begin_layout Warning
Matrix objects over-ride multiplication, '*', and power, '**', to be matrix-mult
iplication and matrix power, respectively.
If your subroutine can accept sub-classes and you do not convert to base-class
arrays, then you must use the ufuncs multiply and power to be sure that
you are performing the correct operation for all inputs.
\end_layout
\begin_layout Standard
The matrix class is a Python subclass of the ndarray and can be used as
a reference for how to construct your own subclass of the ndarray.
Matrices can be created from other matrices, strings, and anything else
that can be converted to an
\family typewriter
ndarray
\family default
.
The name
\begin_inset Quotes eld
\end_inset
mat
\begin_inset Quotes erd
\end_inset
is an alias for
\begin_inset Quotes eld
\end_inset
matrix
\begin_inset Quotes erd
\end_inset
in NumPy.
\end_layout
\begin_layout Description
Example\InsetSpace ~
1: Matrix creation from a string
\end_layout
\begin_layout MyCode
>>> a=mat('1 2 3; 4 5 3')
\newline
>>> print (a*a.T).I
\newline
[[ 0.2924 -0.1345]
\newline
[-0.1345 0.0819]]
\end_layout
\begin_layout Description
Example\InsetSpace ~
2: Matrix creation from nested sequence
\end_layout
\begin_layout MyCode
>>> mat([[1,5,10],[1.0,3,4j]])
\newline
matrix([[ 1.+0.j, 5.+0.j, 10.+0.j],
\newline
[
1.+0.j, 3.+0.j, 0.+4.j]])
\end_layout
\begin_layout Description
Example\InsetSpace ~
3: Matrix creation from an array
\end_layout
\begin_layout MyCode
>>> mat(random.rand(3,3)).T
\newline
matrix([[ 0.7699, 0.7922, 0.3294],
\newline
[ 0.2792,
0.0101, 0.9219],
\newline
[ 0.3398, 0.7571, 0.8197]])
\end_layout
\begin_layout Description
matrix (data, dtype=None, copy=True)
\end_layout
\begin_layout Description
\InsetSpace ~
The sequence to convert to a matrix is passed in as data.
If dtype is None, then the data-type is determined from the data.
If copy is True, then a copy of the data is made, otherwise, the same data
buffer is used.
If no buffer can be found for data, then a copy is also made.
Note: The matrix object is actually a class and so using this syntax calls
matrix.__new__(matrix, data, dtype, copy) which is what happens whenever
you
\begin_inset Quotes eld
\end_inset
call
\begin_inset Quotes erd
\end_inset
any class object as a function.
\end_layout
\begin_layout Description
mat
\end_layout
\begin_layout Description
\InsetSpace ~
Just another name for matrix.
\end_layout
\begin_layout Description
asmatrix (data, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the data without copying.
Equivalent to matrix(data, dtype, copy=False).
\end_layout
\begin_layout Description
bmat (obj, ldict=None, gdict=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Build a matrix object from a string, nested sequence or an array.
This command lets you build up matrices from other other objects.
The ldict and gdict parameters are local and module (global) dictionaries
that are only used when obj is a string.
If they are not provided, then the local and module dictionaries present
when bmat is called are used.
\begin_inset LatexCommand index
name "matrix|)"
\end_inset
\end_layout
\begin_layout MyCode
>>> A = mat('2 2; 2 2'); B=mat('1 1; 1 1');
\newline
>>> print bmat('A B; B A')
\newline
[[2
2 1 1]
\newline
[2 2 1 1]
\newline
[1 1 2 2]
\newline
[1 1 2 2]]
\end_layout
\begin_layout Section
Memory-mapped-file arrays
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "memory maps|("
\end_inset
Memory-mapped files are useful for reading and/or modifying small segments
of a large file with regular layout, without reading the entire file into
memory.
A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array.
For small files, the over-head of reading the entire file into memory is
typically not significant, however for large files using memory mapping
can save considerable resources.
\end_layout
\begin_layout Note
Memory-mapped arrays use the the Python memory-map object which (prior to
Python 2.5) does not allow files to be larger than a certain size depending
on the platform.
This size is always < 2GB even on 64-bit systems.
\end_layout
\begin_layout Standard
The class is called memmap and is available in the NumPy namespace.
The __new__ method of the class has been re-written to have the following
syntax:
\end_layout
\begin_layout Description
__new__ (cls, filename, dtype=uint8, mode='r+', offset=0, shape=None, order=0)
\end_layout
\begin_deeper
\begin_layout Description
filename The file name to be used as the array data buffer
\end_layout
\begin_layout Description
dtype A data-type object used to interpret the file contents (including
byteorder).
\end_layout
\begin_layout Description
mode The mode to open the file in.
Valid modes are 'readonly' or 'r', 'copyonwrite' or 'c', 'readwrite' or
'r+', and 'write' or 'w+'.
This mode determines the WRITEABLE flag of the returned array.
\end_layout
\begin_layout Description
offset An offset into the file to start the array data.
\end_layout
\begin_layout Description
shape The desired shape of the array.
If this is None, then the returned array will be 1-d with the number of
elements determined by the file size and data type.
\end_layout
\begin_layout Description
order Either 'C' or 'Fortran' to indicate the order that an N-D array should
be interpreted.
This only has an effect if the shape is greater than 2-D.
\end_layout
\end_deeper
\begin_layout Standard
Memory-mapped-file arrays have one additional method (besides those they
inherit from the ndarray): self.
\series bold
flush
\series default
() which can be called manually by the user to ensure that any changes to
the array actually get written to disk. This also occurs on deleting
the memmap object
\end_layout
\begin_layout Description
Example:
\end_layout
\begin_layout MyCode
>>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
\newline
>>> a[10]
= 10.0
\newline
>>> a[30] = 30.0
\newline
>>> del a
\newline
>>> b = fromfile('newfile.dat', dtype=float)
\newline
>>>
print b[10], b[30]
\newline
10.0 30.0
\newline
>>> a = memmap('newfile.dat', dtype=float)
\newline
>>> print
a[10], a[30]
\newline
10.0 30.0
\end_layout
\begin_layout Section
Character arrays (numpy.char)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "character arrays|("
\end_inset
These are enhanced arrays of either string type or unicode_ type.
These arrays inherit from the ndarray, but specially-define the operations
+, *, and % on a (broadcasting) element-by-element basis.
These operations are not available on the standard ndarray of character
type.
In addition, the chararray has all of the standard string (and unicode)
methods, executing them on an element-by-element basis.
Perhaps the easiest way to create a chararray is to use self.view(chararray)
where self is an ndarray of string or unicode data-type.
However, a chararray can also be created using the numpy.chararray.__new__
method.
\end_layout
\begin_layout Description
__new__ (shape, itemsize, unicode=False, buffer=None, offset=0, strides=None,
order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a new character array of string or unicode type and itemsize characters.
Create the array using buffer (with offset and strides) if it is not None.
If buffer is None, then construct a new array with strides in Fortran order
if len(shape) >=2 and order is 'Fortran' (otherwise the strides will be
in 'C' order).
\end_layout
\begin_layout Description
char.array (obj, itemsize=None, copy=True, unicode=False, order=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a chararray from the nested sequence obj.
If obj is an ndarray of data-type unicode_ or string, then its data is
wrapped by the chararray object and converted to the desired type (string
or unicode).
\end_layout
\begin_layout Standard
Another difference with the standard ndarray of string data-type is that
the chararray inherits the feature introduced by Numarray that white-space
at the end of any element in the array will be ignored on item retrieval
and comparison operations.
\begin_inset LatexCommand index
name "character arrays|)"
\end_inset
\end_layout
\begin_layout Section
Record Arrays (numpy.rec)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "record arrays|("
\end_inset
NumPy provides a powerful data-type object that allows any ndarray to hold
(arbitrarily nested) record-like items with named-field access to the sub-types.
This is possible without any special record-array sub-class.
Consider the example where each item in the array is a simple record of
name, age, and weight.
You could specify a data-type for an array of such records using the following
data-type object:
\end_layout
\begin_layout MyCode
>>> desc = dtype({'names': ['name', 'age', 'weight'], 'formats': ['S30',
'i2', 'f4']})
\newline
>>> a = array([('Bill',31,260.0),('Fred', 15, 145.0)],dtype=desc)
\newline
>>>
print a[0]
\newline
('Bill', 31, 260.0)
\newline
>>> print a['name']
\newline
['Bill' 'Fred']
\newline
>>> print
a['age']
\newline
[31 15]
\newline
>>> print a['weight']
\newline
[ 260.
145.]
\newline
>>> print a[0]['name'], a[0]['age'], a[0]['weight']
\newline
Bill 31 260.0
\newline
>>>
print len(a[0])
\newline
3
\end_layout
\begin_layout Standard
This example shows how a general array can be assigned named fields and
how these fields can be accessed.
In this case the a[0] object is an array-scalar of type void.
The void array-scalars are unique in that they contain references to (rather
than copies of) the underlying data whenever fields are defined.
Therefore, the record data can be modified in place:
\end_layout
\begin_layout MyCode
>>> a[0]['name'] = 'George'; print a
\newline
[('George', 31, 260.0) ('Fred', 15, 145.0)]
\end_layout
\begin_layout Standard
The recarray subclass and its accompanying record item add the ability to
access named fields through attribute lookup.
A quick way to get a record array is to use the view method of the ndarray.
\end_layout
\begin_layout MyCode
>>> r = a.view(recarray)
\newline
>>> print r.name
\newline
['George' 'Fred']
\end_layout
\begin_layout Standard
The numpy.core.records module (aliased to nump.rec when numpy is imported)
contains additional convenience functions for constructing record arrays.
All of the following constructors have two different mechanisms for specifying
the data-type.
Either the dtype= argument can be specified or the argument formats= can
be specified along with an optional set of four additional keyword arguments
(names=, titles=, aligned= and byteorder=).
In some cases neither dtype= nor formats= is required as the data-type
can be inferred from the object passed in as the first argument.
\end_layout
\begin_layout Standard
The five argument method for specifying a data-type constructs a data-type
object internally.
The comma-separated formats string is used to specify the fields.
The names (and optional titles) of the fields can be specified by a comma-separ
ated string of names (or titles).
The aligned flag determines whether the fields are packed (False) or padded
(True) according to the platform compiler rules.
The byteorder argument allows specification of the byte-order for all of
the fields at once (they can also be specified individually in the formats
string).
The default byte-order is native to the platform.
\end_layout
\begin_layout Description
array (obj, dtype=None, shape=None, offset=0, strides=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None, copy=True)
\end_layout
\begin_layout Description
\InsetSpace ~
A general-purpose record array constructor that is a front-end to the other
constructors If obj is None, then call the
\series bold
recarray
\series default
constructor.
If obj is a string, then call the
\series bold
fromstring
\series default
constructor.
If obj is a list or a tuple then if the first object is an ndarray, then
call
\series bold
fromarrays
\series default
, otherwise call
\series bold
fromrecords
\series default
.
If obj is a recarray, then make a copy of the data in recarray (if copy
is True) and use the new formats, names, and titles.
If obj is a file then call
\series bold
fromfile
\series default
.
Finally, if obj is an ndarray, then return obj.view(recarray) and make a
copy of the data if copy is True.
Otherwise, call the __array_interface__ attribute and try to convert using
the information returned from that object.
Either dtype or the formats argument must be given if obj is None, a string,
or a file, and if obj is None so the recarray constructor will be called,
then shape must be given as well.
\end_layout
\begin_layout Description
fromarrays (array_list, dtype=None, shape=None, formats=None, names=None,
titles=None, aligned=False, byteorder=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a record array from a (flat) list of ndarrays.
The data from the arrays will be copied into the fields.
If formats is None and dtype is None, then the formats will be determined
from the arrays.
The names and titles arguments can be a list, tuple or a (comma-separated)
string specifying the names and/or titles to use for the fields.
If aligned is True, then the structure will be padded according to the
rules of the compiler that NumPy was compiled with.
\end_layout
\begin_layout MyCode
>>> x1 = array([21,32,14])
\newline
>>> x2 = array(['my','first','name'])
\newline
>>> x3 =
array([3.1, 4.5, 6.2])
\newline
>>> r = rec.fromarrays([x1,x2,x3], names='id, word, number')
\newline
>
>> print r[1]
\newline
(32, 'first', 4.5)
\newline
>>> r.number
\newline
array([ 3.1, 4.5, 6.2])
\newline
>>> r.word
\newline
chararra
y(['my', 'first', 'name'],
\newline
dtype='|S5')
\end_layout
\begin_layout Description
fromrecords (rec_list, dtype=None, shape=None, formats=None, names=None,
titles=None, aligned=False, byteorder=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a record array from a (nested) sequence of tuples that define
the records.
If formats are not given, they are deduced from the records, but this is
slower.
The field names and field titles can be specified.
If aligned is non-zero, then the record array is padded so that fields
are aligned as the platform compiler would do if the fields represented
a C-struct.
\end_layout
\begin_layout MyCode
>>> recs = [('Bill', 31, 260.0), ('Fred', 15, 145.0)]
\newline
>>> r = rec.fromrecords(recs,
formats='S30,i2,f4', names='name, age, weight')
\newline
>>> print r.name
\newline
['Bill' 'Fred']
\newline
>>
> print r.age
\newline
[31 15]
\newline
>>> print r.weight
\newline
[ 260.
145.]
\end_layout
\begin_layout Description
fromstring (datastring, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=0, byteorder=None):
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a record array using the provided datastring (at the given offset)
as the memory.
The record array will be read-only.
The byteorder argument may be used to specify the byteorder of all of the
fields at the same time.
A True aligned argument causes padding fields to be added as needed so
that the fields are aligned on boundaries determined by the compiler.
The shape of the returned array can also be specified.
\end_layout
\begin_layout Description
fromfile (fd, dtype=None, shape=None, offset=0, formats=None, names=None,
titles=None, aligned=False, byteorder=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a record array from the (binary) data in the given file object,
fd.
This object may be an open file or a string to indicate a file to read
from.
If offset is non-zero, then data is read from the file at offset bytes
from the current position.
\end_layout
\begin_layout Standard
The following classes are also available in the numpy.core (and therefore
the numpy) namespace
\end_layout
\begin_layout Description
record A subclass of the void array scalar type that allows field access
using attributes.
\end_layout
\begin_layout Description
recarray A subclass of the ndarray that allows field access using attributes
\end_layout
\begin_deeper
\begin_layout Description
__new__ (subtype, shape, formats, names=None, titles=None, buf=None, offset=0,
strides=None, byteorder=None, aligned=0)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct an array of the given subtype and shape with data-type (record,
dtype) where dtype is constructed from formats, names, and titles.
If buf is None, then create new memory.
Otherwise, use the memory of buf exposed through the buffer protocol.
\end_layout
\end_deeper
\begin_layout Description
format_parser A class useful for creating a data-type descriptor from formats,
names, titles, and aligned arguments.
This is used by several of the record array constructors for consistency
in behavior.
\end_layout
\begin_deeper
\begin_layout Description
__init__ (self, formats, names, titles, aligned=False, byteorder=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Construct a data-type object from formats, names, titles, aligned, and
byteorder arguments.
Upon completion the constructed data-type object is in self._descr.
\begin_inset LatexCommand index
name "record arrays|)"
\end_inset
\end_layout
\end_deeper
\begin_layout Section
Masked Arrays (numpy.ma)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "masked arrays|("
\end_inset
These are adapted from the masked arrays provided with Numeric.
Masked Arrays do not inherit from the ndarray, they simply use two ndarray
objects in their internal representation.
Fortunately, as I have not used masked arrays in my work, Paul Dubois (the
original author of MA for Numeric) adapted and modified the code for use
by NumPy.
Alexander Belopolsky (Sasha) added additional functions and improvements
\end_layout
\begin_layout Standard
Masked arrays are created using the masked array creation function.
\end_layout
\begin_layout Description
ma.array (data, dtype=None, copy=True, order='C', mask=ma.nomask, fill_value=None)
\end_layout
\begin_deeper
\begin_layout Description
data Something that can be converted to an array.
If data is already a masked array, then if mask is ma.nomask, the mask used
be data.mask and the data used data.data.
\end_layout
\begin_layout Description
dtype The data-type of the underlying array
\end_layout
\begin_layout Description
copy If copy is False, then every effort will be made to not copy the data.
\end_layout
\begin_layout Description
order Specify whether the array is in 'C', 'Fortran', or 'Any' order
\end_layout
\begin_layout Description
mask Masked values are excluded from calculations.
If this is ma.nomask, then there are no masked values.
Otherwise, this should be an object that is convertible to an array of
Booleans with the same shape as data.
\end_layout
\begin_layout Description
fill_value This value is used to fill in masked values when necessary.
The fill_value is not used for computation for functions within the ma
module.
\end_layout
\end_deeper
\begin_layout Standard
Masked arrays have the same methods and attributes as arrays with the addition
of the mask attribute as well as the
\begin_inset Quotes eld
\end_inset
hidden
\begin_inset Quotes erd
\end_inset
attributes ._data and ._mask.
\begin_inset LatexCommand index
name "masked arrays|)"
\end_inset
\end_layout
\begin_layout Section
Standard container class
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "user\\_array"
\end_inset
\begin_inset LatexCommand index
name "container class"
\end_inset
For backward compatibility and as a standard
\begin_inset Quotes eld
\end_inset
container
\begin_inset Quotes erd
\end_inset
class, the UserArray from Numeric has been brought over to NumPy and named
\series bold
numpy.lib.user_array.container
\series default
The container class is a Python class whose self.array attribute is an ndarray.
Multiple inheritance is probably easier with numpy.lib.user_array.container
than with the ndarray itself and so it is included by default.
It is not documented here beyond mentioning its existence because you are
encouraged to use the ndarray class directly if you can.
\end_layout
\begin_layout Section
Array Iterators
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "array iterator"
\end_inset
Iterators are a powerful concept for array processing.
Essentially, iterators implement a generalized for-loop.
If myiter is an iterator object, then the Python code
\end_layout
\begin_layout LyX-Code
for val in myiter:
\end_layout
\begin_layout LyX-Code
...
\end_layout
\begin_layout LyX-Code
some code involving val
\end_layout
\begin_layout LyX-Code
...
\end_layout
\begin_layout Standard
calls val=myiter.next() repeatedly until StopIteration is raised by the iterator.
There are several ways to iterate over an array that may be useful: default
iteration, flat iteration, and
\begin_inset Formula $N$
\end_inset
-dimensional enumeration.
\end_layout
\begin_layout Subsection
Default iteration
\end_layout
\begin_layout Standard
The default iterator of an ndarray object is the default Python iterator
of a sequence type.
Thus, when the array object itself is used as an iterator.
The default behavior is equivalent to:
\end_layout
\begin_layout LyX-Code
for i in arr.shape[0]:
\end_layout
\begin_layout LyX-Code
val = arr[i]
\end_layout
\begin_layout Standard
This default iterator selects a sub-array of dimension
\begin_inset Formula $N-1$
\end_inset
from the array.
This can be a useful construct for defining recursive algorithms.
To loop over the entire array requires
\begin_inset Formula $N$
\end_inset
for-loops.
\end_layout
\begin_layout MyCode
>>> a = arange(24).reshape(3,2,4)+10
\newline
>>> for val in a:
\newline
...
print 'item:', val
\newline
item: [[10 11 12 13]
\newline
[14 15 16 17]]
\newline
item: [[18 19
20 21]
\newline
[22 23 24 25]]
\newline
item: [[26 27 28 29]
\newline
[30 31 32 33]]
\end_layout
\begin_layout Subsection
Flat iteration
\end_layout
\begin_layout Standard
As mentioned previously, the flat attribute of ndarray objects returns an
iterator that will cycle over the entire array in C-style contiguous order.
\end_layout
\begin_layout MyCode
>>> for i, val in enumerate(a.flat):
\newline
...
if i%5 == 0: print i, val
\newline
0 10
\newline
5 15
\newline
10 20
\newline
15 25
\newline
20 30
\end_layout
\begin_layout Standard
Here, I've used the built-in enumerate iterator to return the iterator index
as well as the value.
\end_layout
\begin_layout Subsection
N-dimensional enumeration
\end_layout
\begin_layout Standard
Sometimes it may be useful to get the N-dimensional index while iterating.
The ndenumerate iterator can achieve this.
\end_layout
\begin_layout MyCode
>>> for i, val in ndenumerate(a):
\newline
...
if sum(i)%5 == 0: print i, val
\newline
(0, 0, 0) 10
\newline
(1, 1, 3) 25
\newline
(2, 0, 3) 29
\newline
(2,
1, 2) 32
\end_layout
\begin_layout Subsection
Iterator for broadcasting
\end_layout
\begin_layout Standard
The general concept of broadcasting is also available from Python using
the
\series bold
broadcast
\series default
iterator.
This object takes
\begin_inset Formula $N$
\end_inset
objects as inputs and returns an iterator that returns tuples providing
each of the input sequence elements in the broadcasted result.
\end_layout
\begin_layout MyCode
>>> for val in broadcast([[1,0],[2,3]],[0,1]):
\newline
...
print val
\newline
(1, 0)
\newline
(0, 1)
\newline
(2, 0)
\newline
(3, 1)
\end_layout
\begin_layout Description
\InsetSpace ~
The methods and attributes of the broadcast object are:
\end_layout
\begin_deeper
\begin_layout Description
nd the number of dimensions in the broadcasted result.
\end_layout
\begin_layout Description
shape the shape of the broadcasted result.
\end_layout
\begin_layout Description
size the total size of the broadcasted result.
\end_layout
\begin_layout Description
index the current (flat) index into the broadcasted array
\end_layout
\begin_layout Description
iters a tuple of (broadcasted) NumPy.flatiter objects, one for each array.
\end_layout
\begin_layout Description
reset ()
\end_layout
\begin_layout Description
\InsetSpace ~
Reset the multiter object to the beginning.
\end_layout
\begin_layout Description
next ()
\end_layout
\begin_layout Description
\InsetSpace ~
Get the next tuple of objects from the (broadcasted) arrays
\end_layout
\end_deeper
\begin_layout Chapter
Universal Functions
\end_layout
\begin_layout Standard
\begin_inset LatexCommand label
name "par:The-Ufunc-Object"
\end_inset
\end_layout
\begin_layout Quotation
Computers make it easier to do a lot of things, but most of the things they
make it easier to do don't need to be done.
\end_layout
\begin_layout Right Address
---
\emph on
Andy Rooney
\end_layout
\begin_layout Quotation
People think computers will keep them from making mistakes.
They're wrong.
With computers you make mistakes faster.
\end_layout
\begin_layout Right Address
---
\emph on
Adam Osborne
\end_layout
\begin_layout Section
Description
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc|("
\end_inset
Universal functions are wrappers that provide a common interface to mathematical
functions that operate on scalars, and can be made to operate on arrays
in an element-by-element fashion.
All
\family typewriter
u
\family default
niversal
\family typewriter
func
\family default
tion
\family typewriter
s
\family default
(
\family typewriter
ufuncs
\family default
) wrap some core function that takes
\begin_inset Formula $n_{i}$
\end_inset
(scalar) inputs and produces
\begin_inset Formula $n_{o}$
\end_inset
(scalar) outputs.
Typically, this core function is implemented in compiled code but a Python
function can also be wrapped into a universal function using the basic
method
\family typewriter
frompyfunc
\family default
in the umath module.
\end_layout
\begin_layout Description
frompyfunc (func, nin, nout)
\begin_inset LatexCommand index
name "frompyfunc"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
This function returns a new universal function wrapping a Python function
func with nin inputs and nout outputs.
The resulting universal function works using Object arrays for both input
and output.
The vectorize class makes use of frompyfunc internally.
You can view the source code using numpy.source(numpy.vectorize).
\end_layout
\begin_layout Subsection
Broadcasting
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "broadcasting"
\end_inset
Each universal function takes array inputs and produces array outputs by
performing the core function element-wise on the inputs.
The standard broadcasting rules are applied so that inputs without exactly
the same shapes can still be usefully operated on.
Broadcasting can be understood by four rules:
\end_layout
\begin_layout Enumerate
All input arrays with ndim smaller than the input array of largest ndim
have 1's pre-pended to their shapes.
\end_layout
\begin_layout Enumerate
The size in each dimension of the output shape is the maximum of all the
input shapes in that dimension.
\end_layout
\begin_layout Enumerate
An input can be used in the calculation if it's shape in a particular dimension
either matches the output shape or has value exactly 1.
\end_layout
\begin_layout Enumerate
If an input has a dimension size of 1 in its shape, the first data entry
in that dimension will be used for all calculations along that dimension.
In other words, the stepping machinery of the ufunc will simply not step
along that dimension when otherwise needed (the stride will be 0 for that
dimension).
\end_layout
\begin_layout Standard
While perhaps a bit difficult to explain, broadcasting can be quite useful
and becomes second nature rather quickly.
Broadcasting is used throughout NumPy to decide how to handle non equally-shape
d arrays.
\end_layout
\begin_layout Subsection
Output type determination
\end_layout
\begin_layout Standard
The output of the ufunc (and its methods) does not have to be an ndarray.
All output arrays will be passed to the __array_wrap__ method of any input
(besides ndarrays, and scalars) that defines it
\series bold
and
\series default
has the highest __array_priority__ of any other input to the universal
function.
The default __array_priority__ of the ndarray is 0.0, and the default __array_pr
iority__ of a subtype is 1.0.
Matrices have __array_priority__ equal to 10.0.
\end_layout
\begin_layout Standard
The ufuncs can also all take output arguments.
The output will be cast if necessary to the provided output array.
If a class with an __array__ method is used for the output, results will
be written to the object returned by __array__.
Then, if the class also has an __array_wrap__ method, the returned
\family typewriter
ndarray
\family default
result will be passed to that method just before passing control back to
the caller.
\end_layout
\begin_layout Subsection
Use of internal buffers
\end_layout
\begin_layout Standard
Internally, buffers are used for misaligned data, swapped data, and data
that has to be converted from one data type to another.
The size of the internal buffers is settable on a per-thread basis.
There can be up to
\begin_inset Formula $2\left(n_{i}+n_{o}\right)$
\end_inset
buffers of the specified size created to handle the data from all the inputs
and outputs of a ufunc.
The default size of the buffer is 10,000 elements.
Whenever buffer-based calculation would be needed, but all input arrays
are smaller than the buffer size, those misbehaved or incorrect typed arrays
will be copied before the calculation proceeds.
Adjusting the size of the buffer may therefore alter the speed at which
ufunc calculations of various sorts are completed.
A simple interface for setting this variable is accessible using the function
\end_layout
\begin_layout Description
setbufsize (size)
\begin_inset LatexCommand index
name "setbufsize"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Set the buffer size to the given number of elements in the current thread.
Return the old buffer size (so that it can be reset later if desired).
\end_layout
\begin_layout Subsection
Error handling
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "error handling"
\end_inset
Universal functions can trip special floating point status registers in
your hardware (such as divide-by-zero).
If available on your platform, these registers will be regularly checked
during calculation.
The user can determine what should be done if errors are encountered.
Error handling is controlled on a per-thread basis.
Four errors can be individually configured: divide-by-zero, overflow, underflow
, and invalid.
The errors can each be set to ignore, warn, raise, or call.
The easiest way to configure the error mask is using the function
\end_layout
\begin_layout Description
seterr (all=None, divide=None, over=None, under=None, invalid=None)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "seterr"
\end_inset
This will set the current thread so that errors can be handled if desired.
If one of the errors is set to 'call', then a function must be provided
using the seterrcall() routine.
If any of the arguments are None, then that error mask will be unchanged.
The return value of this function is a dictionary with the old error conditions.
Thus, you can restore the old condition after you are finished with your
function by calling seterr(**old).
If all is set, then all errors will be set to the specified value.
\end_layout
\begin_layout Description
seterrcall (callable)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "seterrcall"
\end_inset
This sets the function to call when an error is triggered for an error condition
configured with the
\begin_inset Quotes eld
\end_inset
call
\begin_inset Quotes erd
\end_inset
handler.
This function should take two arguments: a string showing the type of error
that triggered the call, and an integer showing the state of the floating
point status registers.
Any return value of the call function will be ignored, but errors can be
raised by the function.
Only one error function handler can be specified for all the errors.
The status argument shows which errors were raised.
The return value of this routine is the old callable.
The argument passed in to this function must be any callable object with
the right signature or None.
\end_layout
\begin_layout Note
FPE_DIVIDEBYZERO, FPE_OVERFLOW, FPE_UNDERFLOW, and FPE_INVALID, are all
defined constants in NumPy.
The status flag returned for a 'call' error handling type shows which errors
were raised by adding these constants together.
\end_layout
\begin_layout Subsection
Optional keyword arguments
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!keyword arguments"
\end_inset
All ufuncs take optional keyword arguments.
These represent rather advanced usage and will likely not be used by most
users.
\end_layout
\begin_layout Description
sig= either a data-type, a tuple of data-types, or a special signature string
indicating the input and output types of a ufunc.
This argument allows you to specify a specific signature for a the 1-d
loop to use in the underlying calculation.
If the loop specified does not exist for the ufunc, then a TypeError is
raised.
Normally a suitable loop is found automatically by comparing the input
types with what is available and searching for a loop with data-types to
which all inputs can be cast safely.
This key-word argument lets you by-pass that search and choose a loop you
want.
A list of available signatures is available in the
\series bold
types
\series default
attribute of the ufunc object.
\end_layout
\begin_layout Description
extobj= a list of length 1, 2, or 3 specifying the ufunc buffer-size, the
error mode integer, and the error call-back function.
Normally, these values are looked-up in a thread-specific dictionary.
Passing them here bypasses that look-up and uses the low-level specification
provided for the error-mode.
This may be useful as an optimization for calculations requiring lots of
ufuncs on small arrays in a loop.
\end_layout
\begin_layout Section
Attributes
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!attributes"
\end_inset
There are some informational attributes that universal functions possess.
None of the attributes can be set.
\end_layout
\begin_layout Description
__doc__
\end_layout
\begin_layout Description
\InsetSpace ~
A docstring for each ufunc.
The first part of the docstring is dynamically generated from the number
of outputs, the name, and the number of inputs.
The second part of the doc string is provided at creation time and stored
with the ufunc.
\end_layout
\begin_layout Description
__name__
\end_layout
\begin_layout Description
\InsetSpace ~
The name of this ufunc.
\end_layout
\begin_layout Description
nin
\end_layout
\begin_layout Description
\InsetSpace ~
The number of inputs
\end_layout
\begin_layout Description
nout
\end_layout
\begin_layout Description
\InsetSpace ~
The number of outputs
\end_layout
\begin_layout Description
nargs
\end_layout
\begin_layout Description
\InsetSpace ~
The total number of inputs + outputs
\end_layout
\begin_layout Description
ntypes
\end_layout
\begin_layout Description
\InsetSpace ~
The total number of different types for which this ufunc is defined.
\end_layout
\begin_layout Description
types
\end_layout
\begin_layout Description
\InsetSpace ~
A list of length ntypes containing strings showing the types for which
this ufunc is defined.
Other types may still be used as inputs (and as output arrays), they will
just need casting.
For inputs, standard casting rules will be used to determine which of the
supplied internal functions that will be used (and therefore the default
type of the output).
Results will always be force-cast to any array provided to hold the output.
\end_layout
\begin_layout Description
identity
\end_layout
\begin_layout Description
\InsetSpace ~
A 1, 0, or None to show the identity for this universal function.
This identity is used for reduction on zero-sized arrays (arrays with a
shape that includes a 0).
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Universal function (ufunc) attributes.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="9" columns="2">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Name
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Description
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
__doc__
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Dynamic docstring.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
__name__
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Name of ufunc
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
nin
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Number of input arguments
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
nout
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Number of output arguments
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
nargs
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Total number of arguments
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
ntypes
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Number of defined inner loops.
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
types
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
List showing types for which inner loop is defined.
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
identity
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Identity for this ufunc.
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Casting Rules
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!casting rules"
\end_inset
At the core of every ufunc is a one-dimensional strided loop that implements
the actual function for a specific type combination.
When a ufunc is created, it is given a static list of inner loops and a
corresponding list of type signatures over which the ufunc operates.
The ufunc machinery uses this list to determine which inner loop to use
for a particular case.
You can inspect the
\family typewriter
.types
\family default
attribute for a particular ufunc to see which type combinations have a
defined inner loop and which output type they produce (the character codes
are used in that output for brevity).
\end_layout
\begin_layout Standard
Casting must be done on one or more of the inputs whenever the ufunc does
not have a core loop implementation for the input types provided.
If an implementation for the input types cannot be found, then the algorithm
searches for an implementation with a type signature to which all of the
inputs can be cast
\begin_inset Quotes eld
\end_inset
safely.
\begin_inset Quotes erd
\end_inset
The first one it finds in its internal list of loops is selected and performed
with types cast.
Recall that internal copies during ufuncs (even for casting) are limited
to the size of an internal buffer which is user settable.
\end_layout
\begin_layout Note
Universal functions in NumPy are flexible enough to have mixed type signatures.
Thus, for example, a universal function could be defined that works with
floating point and integer values.
See ldexp for an example.
\end_layout
\begin_layout Standard
By the above description, the casting rules are essentially implemented
by the question of when a data type can be cast
\begin_inset Quotes eld
\end_inset
safely
\begin_inset Quotes erd
\end_inset
to another data type.
The answer to this question can be determined in Python with a function
call: can_cast (fromtype, totype).
Figure shows the results of this call for my 32-bit system on the 21 internally
supported types.
You can generate this table for your system with code shown in that Figure.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout MyCode
>>> def print_table(ntypes):
\newline
...
print 'X',
\newline
...
for char in ntypes: print char,
\newline
...
print
\newline
...
for row in ntypes:
\newline
...
print row,
\newline
...
for col in ntypes:
\newline
...
print int(can_cast(row, col)),
\newline
...
print
\newline
>>> print_table(typecodes['All'])
\newline
X ? b h i l q p B H I L Q
P f d g F D G S U V O
\newline
? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\newline
b 0
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
\newline
h 0 0 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
\newline
i 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
\newline
l 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
\newline
q 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1
\newline
p 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
\newline
B 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\newline
H 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
\newline
I 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
\newline
L 0 0 0 0
0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
\newline
Q 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 1 1 1 1 1 1
\newline
P 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
\newline
f 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
\newline
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1
\newline
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
\newline
F 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
\newline
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1
\newline
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
\newline
S 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
\newline
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1
\newline
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
\newline
O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Code segment showing the can cast safely table for a 32-bit system.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
You should note that, while included in the table for completeness, the
'S', 'U', and 'V' types cannot be operated on by ufuncs.
Also, note that on a 64-bit system the integer types may have different
sizes resulting in a slightly altered table.
\end_layout
\begin_layout Standard
Mixed scalar-array operations use a different set of casting rules that
ensure that a scalar cannot upcast an array unless the scalar is of a fundament
ally different kind of data (
\emph on
i.e.
\emph default
under a different hierachy in the data type hierarchy) then the array.
This rule enables you to use scalar constants in your code (which as Python
types are interpreted accordingly in ufuncs) without worrying about whether
the precision of the scalar constant will cause upcasting on your large
(small precision) array.
\end_layout
\begin_layout Section
Methods
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ufunc!methods|("
\end_inset
All ufuncs have 4 methods.
However, these methods only make sense on ufuncs that take two input arguments
and return one output argument.
Attempting to call these methods on other ufuncs will cause a
\family typewriter
ValueError
\family default
.
The reduce-like methods all take an axis keyword and a dtype keyword, and
the arrays must all have dimension >= 1.
The
\emph on
axis
\emph default
keyword specifies which axis of the array the reduction will take place
over and may be negative, but must be an integer.
The
\emph on
dtype
\emph default
keyword allows you to manage a very common problem that arises when naively
using <op>.reduce.
Sometimes you may have an array of a certain data type and wish to add
up all of its elements, but the result does not fit into the data type
of the array.
This commonly happens if you have an array of single-byte integers.
The dtype keyword allows you to alter the data type that the reduction
takes place over (and therefore the type of the output).
Thus, you can ensure that the output is a data type with large-enough precision
to handle your output.
The responsibility of altering the reduce type is mostly up to you.
There is one exception: if no dtype is given for a reduction on the
\begin_inset Quotes eld
\end_inset
add
\begin_inset Quotes erd
\end_inset
or
\begin_inset Quotes eld
\end_inset
multiply
\begin_inset Quotes erd
\end_inset
operations, then if the input type is an integer (or boolean) data-type
and smaller than the size of the int_ data type, it will be internally
upcast to the int_ (or uint) data type.
\end_layout
\begin_layout Warning
A reduce-like operation on an array with a data type that has range
\begin_inset Quotes eld
\end_inset
too small
\begin_inset Quotes erd
\end_inset
to handle the result will silently wrap.
You should use dtype to increase the data type over which reduction takes
place.
\end_layout
\begin_layout Subsection
Reduce
\end_layout
\begin_layout Description
<op>.reduce (array=, axis=0, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "ufunc!methods!reduce"
\end_inset
For each one-dimensional sequence along the
\emph on
axis
\emph default
dimension of the array, return a single number resulting from recursively
applying the operation to succesive elements along that dimension.
If the input array has
\begin_inset Formula $N$
\end_inset
dimensions, then the returned array has
\begin_inset Formula $N-1$
\end_inset
dimensions.
This produces the equivalent of the following Python code :
\end_layout
\begin_layout LyX-Code
>>> indx = [index_exp[:]]*array.ndim
\newline
>>> indx[axis] = 0; N=array.shape[axis]
\newline
>>>
result = array[indx].astype(dtype)
\newline
>>> for i in range(1,N):
\newline
...
indx[axis] = i
\newline
...
<op>(result, array[indx], result)
\end_layout
\begin_layout Description
\InsetSpace ~
Studying the above code can also help you gain an appreciation for how
to do generic indexing in Python using
\family typewriter
index_exp
\family default
.
For example, if <op> is add, then <op>.reduce produces a summation along
the given axis.
If <op> is prod, then a repeated multiply is performed.
\end_layout
\begin_layout Subsection
Accumulate
\end_layout
\begin_layout Description
<op>.accumulate (array=, axis=0, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "ufunc!methods!accumulate"
\end_inset
This method is similar to reduce, except it returns an array of the same
shape as the input, and keeps intermediate calculations.
The operation is still performed along the access.
This method underlies the operations of the cumsum and cumprod methods
of arrays.
The following Python code implements an equivalent of the accumulate method.
\end_layout
\begin_layout LyX-Code
>>> i1 = [index_exp[:]]*array.ndim
\newline
>>> i2 = [index_exp[:]]*array.ndim
\newline
>>> i1[axis]
= 0; N=array.shape[axis]
\newline
>>> result = array.astype(dtype)
\newline
>>> for i in range(1,N):
\newline
...
i1[axis] = i
\newline
...
i2[axis] = i-1
\newline
...
<op>(result[i1], array[i1], result[i2])
\end_layout
\begin_layout Subsection
Reduceat
\end_layout
\begin_layout Description
<op>.reduceat (array=, indices=, axis=0, dtype=None)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "ufunc!methods!reduceat"
\end_inset
This method is a generalization of both reduce and accumulate.
It offers the ability to reduce along an axis but only between certain
indices.
The indices input must be a one dimensional (index) sequence.
Then, if
\begin_inset Formula $I_{k}$
\end_inset
is the
\begin_inset Formula $k^{\textrm{th}}$
\end_inset
element of indices, the reduceat method computes <op>.reduce(array[
\begin_inset Formula $I_{k}$
\end_inset
:
\begin_inset Formula $I_{k+1}$
\end_inset
]).
This formula assumes
\begin_inset Formula $I_{k+1}>I_{k}$
\end_inset
, and also that
\begin_inset Formula $I_{k+1}$
\end_inset
is the length of the input array when
\begin_inset Formula $I_{k}$
\end_inset
is the last element.
There is no requirement that the indices be monotonic.
If
\begin_inset Formula $I_{k+1}\leq I_{k},$
\end_inset
then reduceat simply returns array[
\begin_inset Formula $I_{k}$
\end_inset
] for that particular element of indices.
In these formulas, we have assumed that array is one dimensional (or axis
is 0).
If the array is
\begin_inset Formula $N$
\end_inset
-dimensional and axis>0, then the index expression needs axis ':' (full
slice objects) inserted (i.e.
array[
\begin_inset Formula $\underbrace{:,\ldots,:}_{\textrm{axis}},I_{k}:I_{k+1}$
\end_inset
]).
The effect is to slice along the axis dimension.
Equivalent Python code is
\end_layout
\begin_layout LyX-Code
>>> i1 = [index_exp[:]]*array.ndim
\newline
>>> i2 = [index_exp[:]]*array.ndim
\newline
>>> outshape
= list(array.shape)
\newline
>>> N = array.shape[axis]
\newline
>>> outshape[axis] = len(indices)
\newline
>>>
result = zeros(outshape, dtype or array.dtype)
\newline
>>> for k,Ik in enumerate(indices
):
\newline
...
i1[axis] = k
\newline
...
try:
\newline
...
Ikp1 = indices[k+1]
\newline
...
except IndexError:
\newline
...
Ikp1 = N
\newline
...
if (Ikp1 > Ik):
\end_layout
\begin_layout LyX-Code
...
i2[axis] = index_exp[Ik:Ikp1]
\newline
...
result[i1] = <op>.reduce(array[i2],axis=axis,dtype=dtype)
\newline
...
else:
\newline
...
result[i1] = array[Ik].astype(dtype)
\end_layout
\begin_layout Description
\InsetSpace ~
The returned array has as many dimensions as the input array, and is the
same shape except for the
\emph on
axis
\emph default
dimension which has shape equal to the length of indices (the number of
reduce operations that were performed).
If you ever have a need to compute multiple reductions over portions of
an array, then (if you can get your mind around what it is doing) reduceat
may be just what you were looking for.
\end_layout
\begin_deeper
\begin_layout Description
Example: Suppose a is a two-dimensional array of shape
\begin_inset Formula $10\times20$
\end_inset
.
Then, res=add.reduce (a, [0,3,1]) returns a
\begin_inset Formula $3\times20$
\end_inset
array with res[0,:] = add.reduce(a[:,0:3]), res[1,:] = a[:,3], and res[2,:]
= add.reduce(a[:,1:]).
\end_layout
\end_deeper
\begin_layout Subsection
Outer
\end_layout
\begin_layout Description
<op>.outer (a, b)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "ufunc!methods!outer"
\end_inset
This method computes an outer operation on <op>.
It computes <op>(a2, b2) where a2 is 'a' with b.ndim 1's post-pended to
it's shape and b2 is 'b' with a.ndim 1's pre-pended to its shape (broadcasting
takes care of this automatically in the code below).
The return shape has a.ndim + b.ndim dimensions.
Equivalent Python code is
\end_layout
\begin_layout LyX-Code
>>> a.shape += (1,)*b.ndim
\newline
>>> <op>(a,b)
\newline
>>> a = a.squeeze()
\end_layout
\begin_layout Standard
\InsetSpace ~
Among many other uses, arithmetic tables can be conveniently built using
outer:
\begin_inset LatexCommand index
name "ufunc!methods|)"
\end_inset
\end_layout
\begin_layout MyCode
>>> multiply.outer([1,7,9,12],arange(5,12))
\newline
array([[ 5, 6, 7, 8,
9, 10, 11],
\newline
[ 35, 42, 49, 56, 63, 70, 77],
\newline
[ 45, 54,
63, 72, 81, 90, 99],
\newline
[ 60, 72, 84, 96, 108, 120, 132]])
\end_layout
\begin_layout Section
Available ufuncs
\end_layout
\begin_layout Standard
There are currently more than 60 universal functions defined on one or more
types, covering a wide variety of operations.
Some of these ufuncs are called automatically on arrays when the relevant
infix notation is used (i.e.
add(a,b) is called internally when a + b is written and a or b is an ndarray).
Nonetheless, you may still want to use the ufunc call in order to use the
optional output argument(s) to place the output(s) in an object (or in
objects) of your choice.
\end_layout
\begin_layout Standard
Recall that each ufunc operates element-by-element.
Therefore, each ufunc will be described as if acting on a set of scalar
inputs to return a set of scalar outputs.
\end_layout
\begin_layout Note
The ufunc still returns its output(s) even if you use the optional output
argument(s).
\end_layout
\begin_layout Subsection
Math operations
\end_layout
\begin_layout Description
add (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "add"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x_{1}+x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1+x2
\family default
for arrays
\end_layout
\begin_layout Description
subtract (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "subtract"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x_{1}-x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1-x2
\family default
for arrays
\end_layout
\begin_layout Description
multiply (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "multiply"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x_{1}\cdot x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1*x2
\family default
for arrays.
\end_layout
\begin_layout Description
divide (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "divide"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x_{1}/x_{2}$
\end_inset
Integer division results in truncation.
Floating-point does not.
Called to implement
\family typewriter
x1/x2
\family default
for arrays (when __future__.division is not active).
\end_layout
\begin_layout Description
true_divide (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "true\\_divide"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
This version of division always returns an inexact number so that integer
division returns floating point.
Called with __future__.division is active to implement
\family typewriter
x1/x2
\family default
for arrays.
\end_layout
\begin_layout Description
floor_divide (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "floor\\_divide"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
This version of division always results in truncation of an fractional
part remaining.
Called to implement
\family typewriter
x1//x2
\family default
for arrays.
\end_layout
\begin_layout Description
negative (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "negative"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=-x$
\end_inset
.
Called to implement
\family typewriter
-x
\family default
for arrays.
\end_layout
\begin_layout Description
power (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "power"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x_{1}^{x_{2}}$
\end_inset
.
There is no three-term power ufunc defined.
This two-term power function is called to implement
\family typewriter
pow(x1,x2,<any>)
\family default
or
\family typewriter
x1**x2
\family default
for arrays.
Note that the third term in
\family typewriter
pow
\family default
is ignored for array arguments.
\end_layout
\begin_layout Description
remainder (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "remainder"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Returns
\begin_inset Formula $x-y$
\end_inset
*floor(
\begin_inset Formula $x/y$
\end_inset
).
Result has the sign of
\begin_inset Formula $y$
\end_inset
.
Called to implement
\family typewriter
x1%x2
\family default
.
\end_layout
\begin_layout Description
mod (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
Same as remainder (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
]).
\end_layout
\begin_layout Description
fmod (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $x_{1}=kx_{2}+y$
\end_inset
where
\begin_inset Formula $k$
\end_inset
is the largest integer satisfying this equation.
Computes C-like
\begin_inset Formula $x_{1}\%x_{2}$
\end_inset
element-wise.
This was the behavior of
\family typewriter
x1%x2
\family default
in old Numeric.
\end_layout
\begin_layout Description
absolute (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "absolute"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\left|x\right|.$
\end_inset
Called to implement
\family typewriter
abs(x)
\family default
for arrays.
\end_layout
\begin_layout Description
rint (x, [, y])
\end_layout
\begin_layout Description
\InsetSpace ~
Round
\begin_inset Formula $x$
\end_inset
to the nearest integer.
Rounds half-way cases to the nearest even integer.
\end_layout
\begin_layout Description
sign (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
Sets
\begin_inset Formula $y$
\end_inset
according to
\begin_inset Formula \[
\textrm{sign}\left(x\right)=\left\{ \begin{array}{cc}
1 & x:>0,\\
0 & x=0,\\
-1 & x<0.\end{array}\right.\]
\end_inset
\end_layout
\begin_layout Description
conj (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "conj"
\end_inset
\end_layout
\begin_layout Description
conjugate (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "conjugate"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\overline{x}$
\end_inset
; in other words, the complex conjugate of
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout Description
exp (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "exp"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=e^{x}.$
\end_inset
\end_layout
\begin_layout Description
log (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "log"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\log\left(x\right)$
\end_inset
.
In other words,
\begin_inset Formula $y$
\end_inset
is the number so that
\begin_inset Formula $e^{y}=x$
\end_inset
.
\end_layout
\begin_layout Description
expm1 (
\begin_inset Formula $x$
\end_inset
, [,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=e^{x}-1.$
\end_inset
Calculated so that it is accurate for small
\begin_inset Formula $\left|x\right|.$
\end_inset
\end_layout
\begin_layout Description
log1p (
\begin_inset Formula $x$
\end_inset
, [,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\log\left(1+x\right)$
\end_inset
but accurate for small
\begin_inset Formula $\left|x\right|.$
\end_inset
Returns the number
\begin_inset Formula $y$
\end_inset
such that
\begin_inset Formula $e^{y}-1=x$
\end_inset
\end_layout
\begin_layout Description
log10 (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "log10"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\log10\left(x\right)$
\end_inset
.
In other words,
\begin_inset Formula $y$
\end_inset
is the number so that
\begin_inset Formula $10^{y}=x.$
\end_inset
\end_layout
\begin_layout Description
sqrt (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "sqrt"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=\sqrt{x}.$
\end_inset
\end_layout
\begin_layout Description
square (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=x*x$
\end_inset
\end_layout
\begin_layout Description
reciprocal (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=1/x$
\end_inset
\end_layout
\begin_layout Description
ones_like (
\begin_inset Formula $x$
\end_inset
, [,
\begin_inset Formula $y$
\end_inset
])
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset Formula $y=1$
\end_inset
If an output argument is not given the returned data-type is the same as
the input data type.
\end_layout
\begin_layout Tip
The optional output arguments can be used to help you save memory for large
calculations.
If your arrays are large, complicated expressions can take longer than
absolutely necessary due to the creation and (later) destruction of temporary
calculation spaces.
For example, the expression 'G=a*b+c' is equivalent to t1=A*B; G=T1+C;
del t1; It will be more quickly executed as G=A*B; add(G,C,G) which is
the same as G=A*B; G+=C.
\end_layout
\begin_layout Subsection
Trigonometric functions
\end_layout
\begin_layout Standard
All trigonometric functions use radians when an angle is called for.
The ratio of degrees to radians is
\begin_inset Formula $180^{\circ}/\pi.$
\end_inset
\end_layout
\begin_layout Description
sin (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "sin"
\end_inset
\end_layout
\begin_layout Description
cos (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "cos"
\end_inset
\end_layout
\begin_layout Description
tan (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "tan"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The standard trignometric functions.
\begin_inset Formula $y=\sin\left(x\right),$
\end_inset
\begin_inset Formula $y=\cos\left(x\right),$
\end_inset
and
\begin_inset Formula $y=\tan\left(x\right).$
\end_inset
\end_layout
\begin_layout Description
arcsin (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arcsin"
\end_inset
\end_layout
\begin_layout Description
arccos (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arccos"
\end_inset
\end_layout
\begin_layout Description
arctan (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arctan"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The inverse trigonometric functions:
\begin_inset Formula $y=\sin^{-1}\left(x\right),$
\end_inset
\begin_inset Formula $y=\cos^{-1}\left(x\right)$
\end_inset
,
\begin_inset Formula $y=\tan^{-1}\left(x\right).$
\end_inset
These return the value of
\begin_inset Formula $y$
\end_inset
(in radians) such that
\begin_inset Formula $\sin\left(y\right)=x$
\end_inset
with
\begin_inset Formula $y\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
\end_inset
;
\begin_inset Formula $\cos\left(y\right)=x$
\end_inset
with
\begin_inset Formula $y\in\left[0,\pi\right]$
\end_inset
; and
\begin_inset Formula $\tan\left(y\right)=x$
\end_inset
with
\begin_inset Formula $y\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
\end_inset
, respectively.
\end_layout
\begin_layout Description
arctan2 (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arctan2"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Returns
\begin_inset Formula $\tan^{-1}\left(\frac{x_{1}}{x_{2}}\right)$
\end_inset
but takes into account the sign on
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
to place the angle in the correct quadrant.
The angle
\begin_inset Formula $y$
\end_inset
is returned in the full range
\begin_inset Formula $-\pi<y\leq\pi$
\end_inset
.
The angle is chosen so that
\begin_inset Formula $\sin\left(y\right)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}},$
\end_inset
and
\begin_inset Formula $\cos\left(y\right)=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}.$
\end_inset
Particular values are showin in the following table:
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="5" columns="3">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{1}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{2}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $y=\textrm{arctan2}\left(x_{1},x_{2}\right)$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{\pi}{2}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
-1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\pi$
\end_inset
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
-1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $-\frac{\pi}{2}$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Description
hypot (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "hypot"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Returns
\begin_inset Formula $y=\sqrt{x_{1}^{2}+x_{2}^{2}}.$
\end_inset
Given a complex number in cartesian form, arctan2 and hypot can be used
to compute phase and magnitude, quickly.
\end_layout
\begin_layout Description
sinh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "sinh"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Computes
\begin_inset Formula $y=\sinh\left(x\right)$
\end_inset
which is defined as
\begin_inset Formula $\frac{1}{2}\left(e^{x}-e^{-x}\right).$
\end_inset
\end_layout
\begin_layout Description
cosh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "cosh"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Computes
\begin_inset Formula $y=\cosh\left(x\right)$
\end_inset
which is defined as
\begin_inset Formula $\frac{1}{2}\left(e^{x}+e^{-x}\right).$
\end_inset
\end_layout
\begin_layout Description
tanh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "tanh"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Computes
\begin_inset Formula $y=\tanh\left(x\right)$
\end_inset
which is defined as
\begin_inset Formula $\left(e^{x}-e^{-x}\right)/\left(e^{x}+e^{-x}\right).$
\end_inset
\end_layout
\begin_layout Description
arcsinh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arcsinh"
\end_inset
\end_layout
\begin_layout Description
arccosh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arccosh"
\end_inset
\end_layout
\begin_layout Description
arctanh (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "arctanh"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
These compute the inverse hyperpolic functions.
\begin_inset Formula $y=\textrm{arc}func\left(x\right)$
\end_inset
is the (principal) value of
\begin_inset Formula $y$
\end_inset
such that
\begin_inset Formula $func\left(y\right)=x.$
\end_inset
\end_layout
\begin_layout Subsection
Bit-twiddling functions
\end_layout
\begin_layout Standard
These function all need integer arguments and they maniuplate the bit-pattern
of those arguments.
\end_layout
\begin_layout Description
bitwise_and (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "bitwise\\_and"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Each bit in
\begin_inset Formula $y$
\end_inset
is the result of a bit-wise 'and' operation on the corresponding bits in
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1&x2
\family default
for arrays.
\end_layout
\begin_layout Description
bitwise_or (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "bitwise\\_or"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Each bit in
\begin_inset Formula $y$
\end_inset
is the result of a bit-wise 'or' operation on the corresponding bits in
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1|x2
\family default
for arrays.
\end_layout
\begin_layout Description
bitwise_xor (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "bitwise\\_xor"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Each bit in
\begin_inset Formula $y$
\end_inset
is the result of a bit-wise 'xor' operation on the corresponding bits in
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
.
An xor operation sets the output to 1 if one and only one of the input
bits is 1.
Called to implement
\family typewriter
x1^x2
\family default
for arrays.
Using the bitwise_xor operation and the optional output argument you can
swap the values of two integer arrays of equivalent types without using
temporary arrays.
\end_layout
\begin_layout MyCode
>>> a=arange(10)
\newline
>>> b=arange(10,20)
\newline
>>> bitwise_xor(a,b,a); bitwise_xor(a,b,b);
\newline
>>
> bitwise_xor(a,b,a)
\newline
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
\newline
>>> print
a; print b
\newline
[10 11 12 13 14 15 16 17 18 19]
\newline
[0 1 2 3 4 5 6 7 8 9]
\end_layout
\begin_layout Description
invert (
\begin_inset Formula $x$
\end_inset
, [,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "invert"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Each bit in
\begin_inset Formula $y$
\end_inset
is the opposite of the corresponding bit in
\begin_inset Formula $x$
\end_inset
.
Called to implement
\family typewriter
~x
\family default
for arrays.
\end_layout
\begin_layout Description
left_shift (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "left\\_shift"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Shifts the bits of
\begin_inset Formula $x_{1}$
\end_inset
to the left by
\begin_inset Formula $x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1<<x2
\family default
for arrays.
Provided there is no overflow, the result is equal to
\begin_inset Formula $y=x_{1}2^{x_{2}}.$
\end_inset
\end_layout
\begin_layout Description
right_shift (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "right\\_shift"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Shifts the bits of
\begin_inset Formula $x_{1}$
\end_inset
to the right by
\begin_inset Formula $x_{2}$
\end_inset
.
Called to implement
\family typewriter
x1>>x2
\family default
for arrays.
Absent overflow, the result is equal to
\begin_inset Formula $y=x_{1}2^{-x_{2}}$
\end_inset
.
\end_layout
\begin_layout Subsection
Comparison functions
\end_layout
\begin_layout Standard
All of these functions (except maximum, minimum, and sign) return Boolean
arrays.
\end_layout
\begin_layout Description
greater (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "greater"
\end_inset
\end_layout
\begin_layout Description
greater_equal (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "greater\\_equal"
\end_inset
\end_layout
\begin_layout Description
less (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "less"
\end_inset
\end_layout
\begin_layout Description
less_equal (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "less\\_equal"
\end_inset
\end_layout
\begin_layout Description
not_equal (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "not\\_equal"
\end_inset
\end_layout
\begin_layout Description
equal (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "equal"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
These functions are called to implement
\family typewriter
x1>x2
\family default
,
\family typewriter
x1>=x2
\family default
,
\family typewriter
x1<x2
\family default
,
\family typewriter
x1<=x2
\family default
,
\family typewriter
x1!=x2
\family default
(or
\family typewriter
x1<>x2
\family default
), and
\family typewriter
x1==x2
\family default
, respectively, for arrays.
\end_layout
\begin_layout Description
\InsetSpace ~
The fact that these functions return Boolean arrays make them very useful
in combination with advanced array indexing.
Thus, for example, arr[arr>10] = 10 clips large values to 10.
Used in conjunction with bitwise operators quite complicated expressions
are possible.
For example, arr[~((arr<10)&(arr>5))] = 0 clips all values outside of the
range
\begin_inset Formula $\left(5,10\right)$
\end_inset
to 0.
\end_layout
\begin_layout Warning
Do not use the Python keywords
\family typewriter
and
\family default
and
\family typewriter
or
\family default
to combine logical array expressions.
These keywords will test the truth value of the entire array (not element-by-el
ement as you might expect).
Use the bitwise operators: & and | instead.
\end_layout
\begin_layout Description
logical_and (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "logical\\_and"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output is the truth value of
\begin_inset Formula $x_{1}$
\end_inset
\series bold
and
\series default
\begin_inset Formula $x_{2}$
\end_inset
.
Numbers equal to 0 are considered False.
Nonzero numbers are True.
\end_layout
\begin_layout Description
logical_or (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "logical\\_or"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output,
\begin_inset Formula $y$
\end_inset
, is the truth value of
\begin_inset Formula $x_{1}$
\end_inset
\series bold
or
\begin_inset Formula $x_{2}$
\end_inset
\series default
.
\end_layout
\begin_layout Description
logical_xor (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "logical\\_xor"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output,
\begin_inset Formula $y$
\end_inset
, is the truth value of
\begin_inset Formula $x_{1}$
\end_inset
\series bold
xor
\begin_inset Formula $x_{2}$
\end_inset
\series default
, which is the same as (
\begin_inset Formula $x_{1}$
\end_inset
and not
\begin_inset Formula $x_{2}$
\end_inset
) or (not
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
).
\end_layout
\begin_layout Description
logical_not (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "logical\\_not"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output,
\begin_inset Formula $y$
\end_inset
is the truth value of
\series bold
not
\series default
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout Warning
The Bitwise operators (& and |) are the proper way to combine element-by-element
array comparisons.
Be sure to understand the operator precedence: (a>2) & (a<5) is the proper
syntax because a>2 & a<5 will result in an error due to the fact that 2
& a is evaluated first.
\end_layout
\begin_layout Description
maximum (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "maximum"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output,
\begin_inset Formula $y$
\end_inset
, is the larger of
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
.
\end_layout
\begin_layout MyCode
>>> maximum([1,0,5,10],[3,2,4,5])
\newline
array([ 3, 2, 5, 10])
\newline
>>> max([1,0,5,10],[3,2,
4,5])
\newline
[3, 2, 4, 5]
\end_layout
\begin_layout Tip
The Python function max() will find the maximum over a one-dimensional array,
but it will do so using a slower sequence interface.
The reduce method of the maximum ufunc is much faster.
Also, the max() method will not give answers you might expect for arrays
with greater than one dimension.
The reduce method of minimum also allows you to compute a total minimum
over an array.
\end_layout
\begin_layout Description
minimum (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "minimum"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
The output,
\begin_inset Formula $y$
\end_inset
, is the smaller of
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{2}$
\end_inset
.
\end_layout
\begin_layout MyCode
>>> minimum([1,0,5,10],[3,2,4,5])
\newline
array([1, 0, 4, 5])
\newline
>>> min([1,0,5,10],[3,2,4,5]
)
\newline
[1, 0, 5, 10]
\end_layout
\begin_layout Warning
the behavior of maximum(a,b) is than that of max(a,b).
As a ufunc, maximum(a,b) performs an element-by-element comparison of a
and b and chooses each element of the result according to which element
in the two arrays is larger.
In contrast, max(a,b) treats the objects a and b as a whole, looks at the
(total) truth value of a>b and uses it to return either a or b (as a whole).
A similar difference exists between minimum(a,b) and min(a,b).
\end_layout
\begin_layout Subsection
Floating functions
\end_layout
\begin_layout Standard
Recall that all of these functions work element-by-element over an array,
returning an array output.
The description details only a single operation.
\end_layout
\begin_layout Description
isreal (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "isreal"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x$
\end_inset
has an imaginary part that is 0.
\end_layout
\begin_layout Description
iscomplex (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "iscomplex"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x$
\end_inset
has an imaginary part that is non-zero.
\end_layout
\begin_layout Description
isfinite (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "isfinite"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x$
\end_inset
is a finite floating point number (not a NaN or an Inf).
\end_layout
\begin_layout Description
isinf (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "isinf"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x$
\end_inset
is
\begin_inset Formula $\pm\infty$
\end_inset
.
\end_layout
\begin_layout Description
isnan (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "isnan"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True if
\begin_inset Formula $x$
\end_inset
is Not-a-Number.
This represents invalid results.
When a NaN is created, the invalid flag is set.
If you set the error mode of invalid to 'warn', 'raise', or 'call', then
the appropriate action will be performed on NaN creation.
\end_layout
\begin_layout Description
signbit (
\begin_inset Formula $x$
\end_inset
)
\begin_inset LatexCommand index
name "signbit"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
True where the sign bit of the floating point number is set.
This should correspond to
\begin_inset Formula $x>0$
\end_inset
when
\begin_inset Formula $x$
\end_inset
is a finite number.
When,
\begin_inset Formula $x$
\end_inset
is NaN or infinite, then this tests the actual signbit.
\end_layout
\begin_layout Description
modf (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y_{1}$
\end_inset
,
\begin_inset Formula $y_{2}$
\end_inset
])
\begin_inset LatexCommand index
name "modf"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Breaks up the floating point value
\begin_inset Formula $x$
\end_inset
into its fractional,
\begin_inset Formula $y_{1}$
\end_inset
, and integral,
\begin_inset Formula $y_{2}$
\end_inset
, parts.
Thus,
\begin_inset Formula $x=y_{1}+y_{2}$
\end_inset
with
\family typewriter
floor(y2)==y2
\family default
.
\end_layout
\begin_layout Description
ldexp (
\begin_inset Formula $x$
\end_inset
,
\begin_inset Formula $n$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "ldexp"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Fast multiply of a floating point number by an integral power of 2:
\begin_inset Formula $y=2^{n}x.$
\end_inset
\end_layout
\begin_layout Description
frexp (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
,
\begin_inset Formula $n$
\end_inset
])
\begin_inset LatexCommand index
name "frexp"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Breaks up the floating point value
\begin_inset Formula $x$
\end_inset
into a normalized fraction,
\begin_inset Formula $y$
\end_inset
and an exponent,
\begin_inset Formula $n$
\end_inset
which corresponds to how the value is represented in the computer.
The results are such that
\begin_inset Formula $x=y2^{n}.$
\end_inset
Effectively, the inverse of ldexp.
\end_layout
\begin_layout Description
fmod (
\begin_inset Formula $x_{1}$
\end_inset
,
\begin_inset Formula $x_{2}$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "fmod"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Computes the remainder of dividing
\begin_inset Formula $x_{1}$
\end_inset
by
\begin_inset Formula $x_{2}$
\end_inset
.
The result,
\begin_inset Formula $y$
\end_inset
, is
\begin_inset Formula $x_{1}-nx_{2}$
\end_inset
where
\begin_inset Formula $n$
\end_inset
is the quotient (rounded towards zero to an integer) of
\begin_inset Formula $x_{1}/x_{2}.$
\end_inset
\end_layout
\begin_layout Description
floor (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "floor"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Return
\begin_inset Formula $y=\left\lfloor x\right\rfloor $
\end_inset
where
\begin_inset Formula $y$
\end_inset
is the nearest integer smaller-than or equal to
\begin_inset Formula $x.$
\end_inset
Thus,
\begin_inset Formula $ $
\end_inset
\begin_inset Formula $\left\lfloor x\right\rfloor \leq x<\left\lfloor x\right\rfloor +1$
\end_inset
.
\end_layout
\begin_layout Description
ceil (
\begin_inset Formula $x$
\end_inset
[,
\begin_inset Formula $y$
\end_inset
])
\begin_inset LatexCommand index
name "ceil"
\end_inset
\end_layout
\begin_layout Description
\InsetSpace ~
Return
\begin_inset Formula $y=\left\lceil x\right\rceil $
\end_inset
where
\begin_inset Formula $y$
\end_inset
is the nearest integer greater-than or equal to
\begin_inset Formula $x$
\end_inset
.
Thus,
\begin_inset Formula $x\leq\left\lceil x\right\rceil <x+1.$
\end_inset
\begin_inset LatexCommand index
name "ufunc|)"
\end_inset
\end_layout
\begin_layout Chapter
Basic Modules
\end_layout
\begin_layout Quotation
It is the mark of an educated mind to rest satisfied with the degree of
precision which the nature of the subject admits and not to seek exactness
where only an approximation is possible.
\end_layout
\begin_layout Right Address
---
\emph on
Aristotle
\end_layout
\begin_layout Quotation
"Oh no.
We're in the hands of engineers!"
\end_layout
\begin_layout Right Address
---
\emph on
Malcolm, Ian in 'Jurassic Park'
\end_layout
\begin_layout Standard
The NumPy distribution contains some basic functionality equivalent to what
was available in the Numeric packages previously.
This section documents the new interfaces.
These are sub-packages of the NumPy namespace.
The linalg and fft capabilities are useful but limited.
You should install the full SciPy package to access more functionality.
The numpy.dual module contains functions that are defined in both SciPy
and NumPy.
If SciPy defines func, then numpy.dual.func will point to the SciPy version,
otherwise it will point to the NumPy version.
It must be imported specifically to be used.
Table
\begin_inset LatexCommand ref
reference "cap:Functions-in-numpy.dual"
\end_inset
shows the functions defined in numpy.dual that are in both NumPy and SciPy.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
\begin_inset LatexCommand label
name "cap:Functions-in-numpy.dual"
\end_inset
Functions in numpy.dual (both in NumPy and SciPy)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="2">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="middle" leftline="true" rightline="true" width="55text%">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Family
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Functions
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Fourier Transforms
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
fft, ifft, fft2, ifft2, fftn, ifftn
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Linear Algebra
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
norm, det, inv, pinv, solve, eig, eigh, eigvals, eigvalsh, lstsq, cholesky,
svd
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Special Functions
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
i0
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Linear Algebra (
\family typewriter
linalg
\family default
)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "linalg|("
\end_inset
These functions are in the numpy.linalg sub-package.
\end_layout
\begin_layout Description
inv (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the (matrix) inverse of the 2-d array A.
The result, X, is such that dot(A,X) is equal to eye(*A.shape) (to within
machine precision).
\end_layout
\begin_layout Description
solve (A,b)
\end_layout
\begin_layout Description
\InsetSpace ~
Find the solution to the linear equation
\begin_inset Formula $\mathbf{Ax}=\mathbf{b}$
\end_inset
, where
\begin_inset Formula $A$
\end_inset
is a 2-d array and
\begin_inset Formula $b$
\end_inset
is a 1-d or 2-d array.
\end_layout
\begin_layout Description
tensorsolve (A, b, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Find the solution,
\begin_inset Formula $x_{kl}$
\end_inset
, to the multi-index linear equation
\begin_inset Formula \[
\sum_{kl}A_{ijkl}x_{kl}=b_{ij}.\]
\end_inset
The axes argument specifies which dimensions of
\begin_inset Formula $A$
\end_inset
are summed over.
If it is None, then the last A.ndim - b.ndim dimensions are summed over.
The result, therefore, has dimension x.ndim = A.ndim-b.ndim.
\end_layout
\begin_layout Description
tensorinv (A, ind=2)
\end_layout
\begin_layout Description
\InsetSpace ~
Find the tensor inverse of
\begin_inset Formula $A$
\end_inset
, defined to be the tensor such that tensordot (Ainv, A) is an identity
operator.
\end_layout
\begin_layout Description
cholesky (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Return,
\begin_inset Formula $\mathbf{L}$
\end_inset
, the Cholesky decomposition of
\begin_inset Formula $\mathbf{A}$
\end_inset
.
Cholesky decomposition is applicable to a Hermitian, positive definite
matrices.
When
\begin_inset Formula $\mathbf{A}=\mathbf{A}^{H}$
\end_inset
and
\begin_inset Formula $\mathbf{x}^{H}\mathbf{Ax}\geq0$
\end_inset
for all
\begin_inset Formula $\mathbf{x}$
\end_inset
, then decompositions of
\begin_inset Formula $\mathbf{A}$
\end_inset
can be found so that
\begin_inset Formula $\mathbf{A}=\mathbf{LL}^{H}$
\end_inset
, where
\begin_inset Formula $\mathbf{L}$
\end_inset
is lower-triangular.
\end_layout
\begin_layout Description
eigvals (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Return all solutions (
\begin_inset Formula $\lambda$
\end_inset
) to the equation
\begin_inset Formula $\mathbf{Ax}=\lambda\mathbf{x}$
\end_inset
.
\end_layout
\begin_layout Description
eig (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Return all solutions
\begin_inset Formula $\left(\lambda,\mathbf{x}\right)$
\end_inset
to the equation
\begin_inset Formula $\mathbf{Ax}=\lambda\mathbf{x}$
\end_inset
.
The first element of the return tuple contains all the eigenvalues.
The second element of the return tuple contains the eigenvectors in the
columns (x[:,i] is the ith eigenvector).
\end_layout
\begin_layout Description
eigvalsh (U)
\end_layout
\begin_layout Description
eigh (U)
\end_layout
\begin_layout Description
\InsetSpace ~
These functions are identical to eigvals and eig except they only work
with Hermitian matrices where
\begin_inset Formula $\mathbf{U}^{H}=\mathbf{U}$
\end_inset
(only the lower-triangular part of the array is used).
\end_layout
\begin_layout Description
svd (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the singular value decomposition of the 2-d array
\begin_inset Formula $\mathbf{A}$
\end_inset
.
Every
\begin_inset Formula $m\times n$
\end_inset
matrix can be decomposed into a pair of unitary matrices,
\begin_inset Formula $\mathbf{U}=\mathbf{U}^{H}$
\end_inset
(
\begin_inset Formula $m\times m$
\end_inset
) and
\begin_inset Formula $\mathbf{V}=\mathbf{V}^{H}$
\end_inset
(
\begin_inset Formula $n\times n$
\end_inset
) and an
\begin_inset Formula $m\times n$
\end_inset
\begin_inset Quotes eld
\end_inset
diagonal
\begin_inset Quotes erd
\end_inset
matrix
\begin_inset Formula $\boldsymbol{\Sigma}$
\end_inset
, such that
\begin_inset Formula $\mathbf{A}=\mathbf{U\boldsymbol{\Sigma}}\mathbf{V}^{H}$
\end_inset
.
The only non-zero portion of
\begin_inset Formula $\boldsymbol{\Sigma}$
\end_inset
is the upper
\begin_inset Formula $r\times r$
\end_inset
block where
\begin_inset Formula $r=\min\left(m,n\right)$
\end_inset
.
The svd function returns three arrays as a tuple: (
\begin_inset Formula $\mathbf{U}$
\end_inset
,
\begin_inset Formula $\boldsymbol{\sigma}$
\end_inset
,
\begin_inset Formula $\mathbf{V}^{H}$
\end_inset
).
The singular values are returned in the 1-d array
\begin_inset Formula $\boldsymbol{\sigma}$
\end_inset
.
If needed, the array
\begin_inset Formula $\boldsymbol{\Sigma}$
\end_inset
can be found (if really needed) using the command diag(
\begin_inset Formula $\boldsymbol{\sigma}$
\end_inset
) which creates the
\begin_inset Formula $r\times r$
\end_inset
diagonal block and then inserting this into a zeros matrix:
\end_layout
\begin_layout MyCode
>>> A = random.rand(3,5)
\newline
>>> from numpy.dual import svd; U,s,Vh = svd(A)
\newline
>>>
r=min(*A.shape); Sig = zeros_like(A);
\newline
>>> Sig[:r,:r] = diag(s); print Sig
\newline
[[
2.1634 0.
0.
0.
0.
]
\newline
[ 0.
0.7076 0.
0.
0.
]
\newline
[ 0.
0.
0.2098 0.
0.
]]
\end_layout
\begin_layout Description
pinv (A, rcond=
\begin_inset Formula $10^{-10}$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the generalized, pseudo inverse, of
\begin_inset Formula $A$
\end_inset
.
For invertible matrices, this is the same as the inverse.
\end_layout
\begin_layout Description
det (A)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the determinant of the array.
The determinant of an array is the product of its singular values.
\end_layout
\begin_layout Description
lstsq (A, b, rcond=
\begin_inset Formula $10^{-10}$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
Return (x, resids, rank, s) where x minimizes resids=
\begin_inset Formula $\left\Vert \mathbf{Ax}-\mathbf{b}\right\Vert _{2}$
\end_inset
.
The output rank is the rank of A and s is the singular values of a in descendin
g order.
Singular values less than s[0]*rcond are treated as 0.
If the rank of A is less than the number of columns of A or greater than
the number of rows, resids will be returned as an empty array.
\begin_inset LatexCommand index
name "linalg|)"
\end_inset
\end_layout
\begin_layout Section
Discrete Fourier Transforms (
\family typewriter
fft
\family default
)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "fft|("
\end_inset
All of the algorithms here are most efficient if the length of the data
is a power of 2 (or decomposable into low prime factors).
\end_layout
\begin_layout Description
fft (x, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Return, X, the N-point Discrete Fourier Transform (DFT) of x along the
given axis using a fast algorithm.
If N is larger than x.shape[axis], then x will be zero-padded.
If N is smaller than x.shape[axis], then the first N items will be used.
The result is computed for
\begin_inset Formula $k=0\ldots n-1$
\end_inset
from the formula:
\end_layout
\begin_layout Standard
\begin_inset Formula \[
X\left[k\right]=\sum_{m=0}^{n-1}x[m]\exp\left(-j\frac{2\pi km}{n}\right).\]
\end_inset
\end_layout
\begin_layout Tip
The fft returns values for
\begin_inset Formula $k=0\ldots N-1$
\end_inset
.
Because
\begin_inset Formula $X\left[N-k\right]=X[-k]$
\end_inset
in the FFT formula, larger values of k correspond also to negative frequencies.
\end_layout
\begin_layout Description
ifft (X, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the inverse of the fft so that (ifft(fft(a)) == a within numerical
precision.
The order of frequencies must be the same as returned by fft.
The result is computed (using a fast algorithm) for
\begin_inset Formula $m=0\ldots n-1$
\end_inset
from the formula:
\end_layout
\begin_layout Standard
\begin_inset Formula \[
x\left[m\right]=\frac{1}{n}\sum_{k=0}^{n-1}X\left[k\right]\exp\left(j\frac{2\pi km}{n}\right).\]
\end_inset
\end_layout
\begin_layout Standard
Sometimes having the
\begin_inset Quotes eld
\end_inset
negative
\begin_inset Quotes erd
\end_inset
frequencies at the end of the output returned by fft can be a little confusing.
There are two ways to deal with this confusion.
In my opinion, the most useful way is to get a collection of DFT sample
frequencies and use them to keep track of where each frequency is.
The function
\family typewriter
fftfreq
\family default
provides these sample frequencies.
Making an x-y plot, where the sample frequencies are along the
\begin_inset Quotes eld
\end_inset
x
\begin_inset Quotes erd
\end_inset
-axis and the result of the DFT is along the
\begin_inset Quotes eld
\end_inset
y
\begin_inset Quotes erd
\end_inset
-axis provides a useful visualization with the zero-frequency at the center
of the plot.
The advantage of this approach is that your data is still in proper order
for using the
\family typewriter
ifft
\family default
function.
Some people, however, prefer to simply swap one-half of the output with
the other.
This is exactly what the function
\family typewriter
fftshift
\family default
does.
Of course, now the data is not in the proper order for the ifft function,
but to each his own.
\end_layout
\begin_layout Standard
The reason that the
\begin_inset Quotes eld
\end_inset
negative
\begin_inset Quotes erd
\end_inset
frequencies are in the upper part of the return signal was given in the
description of the DFT.
The reason is that the output of the DFT is just one period of a periodic
function (with period
\begin_inset Formula $n$
\end_inset
).
The traditional output of the FFT algorithm is to provide the portion of
the function from from
\begin_inset Formula $k=0$
\end_inset
to
\begin_inset Formula $k=n-1$
\end_inset
.
\end_layout
\begin_layout Description
fftshift (x, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Shift zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all of
them).
\end_layout
\begin_layout Description
ifftshift (x, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Reverse the effect of the fftshift operation.
Thus, it takes zero-centered data and shifts it into the correct order
for the ifft operation.
\end_layout
\begin_layout Description
fftfreq (n, d=1.0)
\end_layout
\begin_layout Description
\InsetSpace ~
Provide the DFT sample frequencies.
The returned float array contains the frequency bins in the order returned
from the fft function.
If given,
\begin_inset Formula $d$
\end_inset
represents the sample-spacing.
The units on the frequency bins are cycles / unit.
For example, the following example computes the output frequencies (in
Hz) of the fft of
\begin_inset Formula $256$
\end_inset
samples of a voice signal sampled at 20000Hz.
\end_layout
\begin_layout MyCode
>>> from numpy.fft import fftfreq; f=fftfreq(256,d=1./20e3)
\newline
>>> print f[0],
f[1], f[2], f[128]
\newline
0.0 78.125 156.25 -10000.0
\end_layout
\begin_layout Description
fft2 (x, s=None, axes=(-2,-1))
\end_layout
\begin_layout Description
\InsetSpace ~
Return the two-dimensional fft of the array x for each 2-d array formed
by axes.
The 2-d fft is computed as
\begin_inset Formula \[
X\left[k_{0},k_{1}\right]=\sum_{m_{0}=0}^{s[0]-1}\sum_{m_{1}=0}^{s[1]-1}x\left[m_{0},m_{1}\right]\exp\left(-j\frac{2\pi k_{0}m_{0}}{s[0]}\right)\exp\left[-j\frac{2\pi k_{1}m_{1}}{s\left[1\right]}\right]\]
\end_inset
and can be realized by repeated application of the 1-d fft (first over
the axes[0] and then over axes[1]).
In other-words fft2(x,s,axes) is equivalent to fft(fft(x, s[0], axes[0]),
s[1], axes[1]).
The 2-d fft is returned for
\begin_inset Formula $k_{0}=0\ldots s[0]-1$
\end_inset
and
\begin_inset Formula $k_{1}=0\ldots s[1]-1.$
\end_inset
Symmetry (
\begin_inset Formula $X\left[s[0]-k_{0},s[1]-k_{1}\right]=X[-k_{0},-k_{1}]$
\end_inset
) ensures that higher values of
\begin_inset Formula $k_{i}$
\end_inset
correspond to negative frequencies.
\end_layout
\begin_layout Description
ifft2 (X, s=None, axes=(-2,-1))
\end_layout
\begin_layout Description
\InsetSpace ~
Return the inverse of the two-dimension fft.
Thus, ifft2(fft2(x)) == x to within numerical precision.
Note that the
\begin_inset Quotes eld
\end_inset
negative frequencies
\begin_inset Quotes erd
\end_inset
must be
\end_layout
\begin_layout Description
fftn (x, s=None, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the
\begin_inset Formula $N$
\end_inset
-dimensional fft of x.
If s is not given, then if axes is given, then
\begin_inset Formula $N$
\end_inset
=len(axes), otherwise
\begin_inset Formula $N$
\end_inset
=x.ndim.
If s is given, then
\begin_inset Formula $N$
\end_inset
=len(s).
Results are computed using a similar formula as for the 1- and 2-d FFT
with
\begin_inset Formula $N$
\end_inset
summations.
\end_layout
\begin_layout Description
ifftn (X, s=None, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return the
\begin_inset Formula $N$
\end_inset
-dimensional inverse fft of
\begin_inset Formula $X$
\end_inset
.
Note that ifftn(fftn(x)) == x to within machine precision.
\end_layout
\begin_layout Standard
The Discrete Fourier transform returns complex-valued data (even for real-valued
input).
If the data was originally real-valued, then much of the output of the
full DFT is redundant.
Notice that if
\begin_inset Formula $x\left[m\right]$
\end_inset
is real, then
\begin_inset Formula \begin{eqnarray*}
X\left[n-k\right] & = & \sum_{m=0}^{n-1}x[m]\exp\left(-j\frac{2\pi\left(n-k\right)m}{n}\right)\\
& = & \left[\sum_{m=0}^{n-1}x\left[m\right]\exp\left(-j\frac{2\pi km}{n}\right)\right]^{*}\\
& = & X^{*}\left[k\right],\end{eqnarray*}
\end_inset
where
\begin_inset Formula $a^{*}$
\end_inset
denotes the complex-conjugate of
\begin_inset Formula $a$
\end_inset
.
So, the upper half of the fft output (the negative frequencies) is determined
exactly by the lower half of the output when the input is purely real.
This kind of symmetry is called Hermitian symmetry.
The real-valued Fourier transforms described next take advantage of Hermitian
symmetry to compute only the unique outputs more quickly.
\end_layout
\begin_layout Standard
The symmetry in higher dimensions is always about the origin.
If
\begin_inset Formula $N$
\end_inset
is the number of dimensions, then:
\begin_inset Formula \[
X[n_{1}-k_{1},n_{2}-k_{2},\ldots n_{N}-k_{N}]=X^{*}\left[k_{1},k_{2},\ldots,k_{N}\right].\]
\end_inset
Thus, the data-savings remains constant at about 1/2 for higher dimensions
as well.
\end_layout
\begin_layout Description
rfft (x, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the first n//2+1 points of the
\begin_inset Formula $n$
\end_inset
-point discrete Fourier transform of the real valued data along the given
axis.
The returned array will be just the first half of the
\family typewriter
fft
\family default
, corresponding to positive frequencies: rfft(x) == fft(x)[:n//2+1]
\end_layout
\begin_layout Description
irfft (X, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the inverse
\begin_inset Formula $n$
\end_inset
-point discrete Fourier transform along the given axis using the first n//2+1
points.
To within numerical precision, irfft(rfft(x))==x.
\end_layout
\begin_layout Description
rfft2 (x, s=None, axes=(-2, -1))
\end_layout
\begin_layout Description
\InsetSpace ~
Compute only the first half-plane of the two-dimensional discrete Fourier
transform corresponding to unique values.
s[0] and
\begin_inset Formula $s[1]$
\end_inset
-point DFTs will be computed along axes[0] and axes[1] dimensions, respectively.
Requires a real array.
If
\begin_inset Formula $s$
\end_inset
is None it defaults to the shape of
\begin_inset Formula $x.$
\end_inset
The real fft will be computed along the last axis specified in axes while
a full fft will be computed in the other dimension.
\end_layout
\begin_layout Description
irfft2 (X, s=None, axes=(-2, -1))
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the inverse of the 2-d DFT using only the first quadrant.
Returns a real array such that to within numerical precision irfft2(rfft2(x))==
x.
\end_layout
\begin_layout Description
rfftn (x, s=None, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute only the unique part of the
\begin_inset Formula $N$
\end_inset
-dimensional DFT from a real-valued array.
If
\begin_inset Formula $s$
\end_inset
is None it defaults to the shape of x.
If axes is not given it defaults to all the axes (-n,
\begin_inset Formula $\ldots$
\end_inset
, -1).
The length of axes provides the dimensionality of the DFT.
The unique part of the real
\begin_inset Formula $N$
\end_inset
-dimensional DFT is obtained by slicing the full fft along the last axis
specified and taking n//2+1 slices.
rfftn(x) == fft(x)[sliceobj] where sliceobj[axes[-1]] = slice(None,s[-1]//2+1,N
one).
\end_layout
\begin_layout Description
irfftn (X, s=None, axes=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Compute the inverse DFT from the unique portions of the N-dimensional DFT
provided by
\family typewriter
rfftn
\family default
.
\end_layout
\begin_layout Standard
Occasionally, the situation may arise where you have complex-valued data
with Hermitian symmetry (or real-valued symmetric data).
This ensures that the Fourier transform will be real.
The two functions below can calculate it without wasting extra space for
the zero-valued imaginary entries of the Discrete Fourier transform, or
the entire signal.
\end_layout
\begin_layout Description
hfft (x, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Calculate the
\begin_inset Formula $n$
\end_inset
-point real-valued Fourier transform from (the first half of Hermitian-symmetric
data, x.
\end_layout
\begin_layout Description
ihfft (X, n=None, axis=-1)
\end_layout
\begin_layout Description
\InsetSpace ~
Return (the first half-of) Hermitian-symmetric data from the real-valued
Fourier transform, X.
\begin_inset LatexCommand index
name "fft|)"
\end_inset
\end_layout
\begin_layout Section
Random Numbers (
\family typewriter
random
\family default
)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "random|("
\end_inset
The random number capabilities surpass those that were available in Numeric.
The random number facilities were generously contributed by Robert Kern,
who has been a dedicated and patient help to many mailing list questioners.
Robert built the random package using Pyrex to build on top of his own
code as well as that of randomkit by Jean-Sebastien Roy as well as code
by Ivan Frohne.
The fundamental random number generator is the Mersenne Twister based on
code written by Makoto Matsumoto and Takuji Nishimura (and modified for
Python by Raymond Hettinger).
Random numbers from discrete and continuous distributions are available,
as well as some useful random-number-related utilities.
Many of the random number generators are based on algorithms published
by Luc Devroye in
\begin_inset Quotes eld
\end_inset
Non-Uniform Random Variate Generation
\begin_inset Quotes erd
\end_inset
available electronically at
\begin_inset LatexCommand htmlurl
target "http://cgm.cs.mcgill.ca/~luc/rnbookindex.html"
\end_inset
\end_layout
\begin_layout Standard
Each of the discrete and continuous random number generators take a size
keyword.
If this is None (default), then the size is determined from the additional
inputs (using ufunc-like broadcasting).
If no additional inputs are needed, or if these additional inputs are scalars,
then a single number is generated from the selected distribution.
If size is an integer, then a 1-d array of that size is generated filled
with random numbers from the selected distribution.
Finally, if size is a tuple, then an array of that shape is returned filled
with random numbers.
\end_layout
\begin_layout Standard
Many distributions take additional inputs as parameters.
These additional inputs must be broadcastable to each other (and to the
size parameter if it is not None).
The broadcasting behavior of the additional inputs is ufunc-like.
\end_layout
\begin_layout Subsection
Discrete Distributions
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "random!discrete|("
\end_inset
Discrete random numbers take on only a countable number of values (typically
integers).
Each distribution has associated with it a probability mass function (pmf),
\begin_inset Formula $p_{m}\left(k;\cdot\right),$
\end_inset
that is defined as the probability that the returned random number is
\begin_inset Formula $k$
\end_inset
.
The arguments after
\begin_inset Formula $k$
\end_inset
represent possible parameters to the distribution.
Thus, let
\begin_inset Formula $X\left(\cdot\right)$
\end_inset
represent the random number generator for a particular distribution.
Then,
\begin_inset Formula \[
p_{m}\left(k;\cdot\right)=\textrm{Probability}\left\{ X\left(\cdot\right)=k\right\} .\]
\end_inset
\end_layout
\begin_layout Standard
It will be useful to define the discrete indicator function,
\begin_inset Formula $I_{S}\left(k\right),$
\end_inset
where
\begin_inset Formula $S$
\end_inset
is a set of integers (often represented by an interval).
\begin_inset Formula $I_{S}\left(k\right)=1$
\end_inset
if
\begin_inset Formula $k\in S$
\end_inset
, otherwise
\begin_inset Formula $I_{S}\left(k\right)=0.$
\end_inset
This convenient notation isolates the relevance of a particular functional
form to a certain range.
Also, the formulas below make use of the following definition:
\begin_inset Formula \[
\left(\begin{array}{c}
n\\
k\end{array}\right)=\frac{n!}{k!\left(n-k\right)!}\]
\end_inset
where
\begin_inset Formula $k!=k\cdot\left(k-1\right)\cdot\cdots\cdot2\cdot1.$
\end_inset
\end_layout
\begin_layout Description
binomial (n, p, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This random number models the number of successes in
\begin_inset Formula $n$
\end_inset
independent trials of a random experiment where the probability of success
in each experiment is
\begin_inset Formula $p$
\end_inset
.
\begin_inset Formula \[
p_{m}\left(k\right)=\left(\begin{array}{c}
n\\
k\end{array}\right)p^{k}\left(1-p\right)^{n-k}I_{\left[0,n\right]}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
geometric (p, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This random number models the number of (independent) attempts required
to obtain a success where the probability of success on each attempt is
\begin_inset Formula $p$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
p_{m}\left(k;p\right)=\left(1-p\right)^{k-1}p\, I_{\left[1,\infty\right)}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
hypergeometric (ngood, nbad, nsample, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Imagine a probability theorists favorite urn filled with
\begin_inset Formula $n_{g}$
\end_inset
\begin_inset Quotes eld
\end_inset
good
\begin_inset Quotes erd
\end_inset
objects and
\begin_inset Formula $n_{b}$
\end_inset
\begin_inset Quotes eld
\end_inset
bad
\begin_inset Quotes erd
\end_inset
objects.
In other words there are two types of objects in a jar.
The hypergeometric random number models how many
\begin_inset Quotes eld
\end_inset
good
\begin_inset Quotes erd
\end_inset
objects will be present when
\begin_inset Formula $N$
\end_inset
items are taken out of the urn without replacement.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
p\left(k;n_{g},n_{b},N\right)=\frac{\left(\begin{array}{c}
n_{g}\\
k\end{array}\right)\left(\begin{array}{c}
n_{b}\\
N-k\end{array}\right)}{\left(\begin{array}{c}
n_{g}+n_{b}\\
N\end{array}\right)}I_{\left[N-n_{b},\textrm{min}\left(n,N\right)\right]}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
logseries (p, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A random number whose pmf with terms proportional to the Taylor series
expansion of
\begin_inset Formula $\log\left(1-p\right)$
\end_inset
.
It has been used in biological studies to model the species abundance distribut
ion.
\begin_inset Formula \[
p_{m}\left(k;p\right)=-\frac{p^{k}}{k\log\left(1-p\right)}\, I_{\left[1,\infty\right)}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
multinomial (n, pvals, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This generator produces random vectors of length
\begin_inset Formula $N$
\end_inset
where
\begin_inset Formula $N=\textrm{len}\left(pvals\right)$
\end_inset
.
The shape of the returned array is always the shape indicated by size +
(
\begin_inset Formula $N,$
\end_inset
).
The multinomial distribution is a generalization of the binomial distribution.
This time,
\begin_inset Formula $n$
\end_inset
trials of an experiment are independently repeated but each trial results
in
\begin_inset Formula $N$
\end_inset
possible integers
\begin_inset Formula $k_{1},k_{2},\ldots,k_{N}$
\end_inset
with
\begin_inset Formula $\sum_{i=1}^{N}k_{i}=n.$
\end_inset
\begin_inset Formula \begin{eqnarray*}
p_{m}\left(k_{1},k_{2},\ldots,k_{N};\cdot\right) & = & \textrm{Probability}\left\{ X\left(\cdot\right)=\left[k_{1},k_{2},\cdots,k_{N}\right]\right\} \\
& = & \frac{n!}{k_{1}!k_{2}!\cdots k_{N}!}p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{N}^{k_{N}}\end{eqnarray*}
\end_inset
where
\begin_inset Formula $pvals=[p_{1},p_{2},\ldots,p_{N}].$
\end_inset
It must be true that
\begin_inset Formula $\sum_{i=1}^{N}p_{i}=1.$
\end_inset
Therefore, as long as
\begin_inset Formula $\sum_{i=1}^{N-1}p_{i}\leq1,$
\end_inset
the last entry in
\begin_inset Formula $pvals$
\end_inset
is computed as
\begin_inset Formula $1-\sum_{i=1}^{N-1}p_{i}$
\end_inset
.
\end_layout
\begin_layout Description
negative_binomial (n, p, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Models the number of extra independent trials (beyond
\begin_inset Formula $n$
\end_inset
) required to accumulate a total of
\begin_inset Formula $n$
\end_inset
successes where the probability of success on each trial is
\begin_inset Formula $p.$
\end_inset
Equivalently, this random number models the number of failures encountered
while accumulating
\begin_inset Formula $n$
\end_inset
successes during independent trials of the experiment that succeeds with
probability,
\begin_inset Formula $p$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
p_{m}\left(k;n,p\right)=\left(\begin{array}{c}
k+n-1\\
n-1\end{array}\right)p^{n}\left(1-p\right)^{k}\, I_{\left[0,\infty\right)}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
poisson (lam=1.0, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This random number counts the number of successes in
\begin_inset Formula $n$
\end_inset
independent experiments (where the probability of success in each experiment
is
\begin_inset Formula $p$
\end_inset
) in the limit as
\begin_inset Formula $n\rightarrow\infty$
\end_inset
and
\begin_inset Formula $p\rightarrow0$
\end_inset
gets very small such that
\begin_inset Formula $\lambda=np\geq0$
\end_inset
is a constant.
It can be used, for example, to model how many typographical errors are
on each page of a book.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
p\left(k;\lambda\right)=e^{-\lambda}\frac{\lambda^{k}}{k!}\, I_{\left[0,\infty\right)}\left(k\right).\]
\end_inset
\end_layout
\begin_layout Description
zipf (a, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The probability mass function of this random number (also called the zeta
distribution) is
\begin_inset Formula \[
p_{m}\left(k;a\right)=\frac{1}{\zeta\left(a\right)k^{a}}\, I_{\left[1,\infty\right)}\left(k\right),\]
\end_inset
where
\begin_inset Formula \[
\zeta\left(a\right)=\sum_{n=1}^{\infty}\frac{1}{n^{a}}\]
\end_inset
is the Riemann zeta function.
Zipf distributions have been shown to characterize use of words in a natural
language (like English), the popularity of library books, and even the
use of the web.
The Zipf distribution describes collections that have a few items whose
probability of selection is very high, a medium number of items whose probabili
ty of selection is medium, and a huge number of items whose probability
of selection is very low.
\begin_inset LatexCommand index
name "random!discrete|)"
\end_inset
\end_layout
\begin_layout Subsection
Continuous Distributions
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "random!continuous|("
\end_inset
Continuous random numbers can take on an uncountable number of values.
Therefore, the value returned by a continuous distribution is denoted
\begin_inset Formula $x$
\end_inset
.
Because there is an uncountable number of possibilities for the random
number
\begin_inset Foot
status open
\begin_layout Standard
A computer actually always generates a random number from a discrete distributio
n because there are only a finite set of numbers that can be represented
by a computer.
However, for continuous random number generators, the resulting random
numbers usually approximate the continuous distribution well enough to
ignore the subtlety.
\end_layout
\end_inset
, a continuous distribution is modeled by a probability density function,
\begin_inset Formula $f\left(x;\cdot\right).$
\end_inset
To obtain the probability that the random number generated by
\begin_inset Formula $X\left(\cdot\right)$
\end_inset
is in a certain interval, we integrate this density function:
\begin_inset Formula \[
\int_{-\infty}^{b}f\left(x\right)dx=\textrm{Probability}\left\{ X\left(\cdot\right)\leq b\right\} .\]
\end_inset
\end_layout
\begin_layout Standard
To obtain a probability, we have to integrate
\begin_inset Formula $f\left(x\right)$
\end_inset
which is why it is called a density function.
Most continuous distributions are defined by their probability density
functions (pdf).
Some have basic origins, a few are derived from other distributions, and
some are used mainly for modelling unknown distributions.
\end_layout
\begin_layout Standard
Some of the parameters of the distributions are labeled as location (
\emph on
loc
\emph default
) and
\emph on
scale
\emph default
parameters.
These parameters are not shown in the equation for the pdf.
because they affect the distribution in a known way.
This is due to the fact that if
\begin_inset Formula $X$
\end_inset
is a number drawn from a distribution with pdf
\begin_inset Formula $f_{X}\left(x\right),$
\end_inset
then
\begin_inset Formula $Y=Sx+L$
\end_inset
is a number drawn from a distribution with pdf
\begin_inset Formula \[
f_{Y}\left(y\right)=\frac{1}{S}f_{X}\left(\frac{y-L}{S}\right).\]
\end_inset
Thus, from the standard from provided, the pdf of the actual random numbers
generated by fixing the location and scale parameters can be quickly found.
\end_layout
\begin_layout Standard
In this section, the indicator function
\begin_inset Formula $I_{A}\left(x\right)$
\end_inset
will be used where
\begin_inset Formula $A$
\end_inset
is a set defined over all the real numbers.
For clarity,
\begin_inset Formula \[
I_{A}\left(x\right)=\left\{ \begin{array}{cc}
1 & x\in A,\\
0 & x\not\in A.\end{array}\right.\]
\end_inset
Also, the following functions are used in the definitions:
\begin_inset Formula \begin{eqnarray*}
\Gamma\left(x\right) & = & \int_{0}^{\infty}t^{x-1}e^{-t}dt=\left(x-1\right)\Gamma\left(x-1\right),\\
B\left(a,b\right) & = & \frac{\Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}.\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Description
beta (
\begin_inset Formula $a$
\end_inset
,
\begin_inset Formula $b$
\end_inset
, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;a,b\right)=\frac{1}{B\left(a,b\right)}x^{a-1}\left(1-x\right)^{b-1}I_{\left(0,1\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
chisquare (
\begin_inset Formula $\nu$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
If
\begin_inset Formula $Z_{1},\ldots,Z_{\nu}$
\end_inset
are random numbers from standard normal distributions, then
\begin_inset Formula $W=\sum_{k=1}^{\nu}Z_{k}^{2}$
\end_inset
is a random number from the chi-square
\begin_inset Formula $\left(\chi^{2}\right)$
\end_inset
distribution with
\begin_inset Formula $\nu$
\end_inset
degrees of freedom.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;\nu\right)=\frac{1}{2\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{x}{2}\right)^{\nu/2-1}e^{-x/2}I_{\left[0,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
dirichlet (
\begin_inset Formula $\boldsymbol{\alpha},$
\end_inset
size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A vector of random numbers which are drawn from a multivariate Dirichlet
distribution.
The length of the parameter vector,
\begin_inset Formula $\boldsymbol{\alpha},$
\end_inset
is the length,
\begin_inset Formula $N$
\end_inset
, of the random vector.
The joint pdf is:
\end_layout
\begin_layout Description
\begin_inset Formula \[
f\left(\mathbf{x},\boldsymbol{\alpha}\right)=\frac{\prod_{i=1}^{N}\Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{N}\alpha_{i}\right)}\prod_{i=1}^{N}x_{i}^{\alpha_{i}-1}.\]
\end_inset
\series medium
\end_layout
\begin_layout Description
exponential (scale=1.0, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=e^{-x}I_{\left[0,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
f (
\begin_inset Formula $\nu_{1}$
\end_inset
,
\begin_inset Formula $\nu_{2}$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The distribution of
\begin_inset Formula $\frac{X_{1}/\nu_{1}}{X_{2}/\nu_{2}}$
\end_inset
where
\begin_inset Formula $X_{i}$
\end_inset
is chi-squared with
\begin_inset Formula $\nu_{i}$
\end_inset
degrees of freedom.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;\nu_{1},\nu_{2}\right)=\frac{\nu_{2}^{\nu_{2}/2}\nu_{1}^{\nu_{1}/2}x^{\nu_{1}/2-1}}{\left(\nu_{2}+\nu_{1}x\right)^{\left(\nu_{1}+\nu_{2}\right)/2}B\left(\frac{\nu_{1}}{2},\frac{\nu_{2}}{2}\right)}I_{\left[0,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
gamma (
\begin_inset Formula $a$
\end_inset
, scale=1.0, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;a\right)=\frac{1}{\Gamma\left(a\right)}x^{a-1}e^{-x}I_{\left[0,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
gumbel (loc=0.0, scale=1.0, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A right-skewed extreme value distribution.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=\exp\left[-x-e^{-x}\right].\]
\end_inset
\end_layout
\begin_layout Description
laplace (loc=0.0, scale=1.0, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=\frac{1}{2}e^{-\left|x\right|}.\]
\end_inset
\end_layout
\begin_layout Description
lognormal (
\begin_inset Formula $\mu$
\end_inset
=0.0,
\begin_inset Formula $\sigma$
\end_inset
=1.0, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;\mu,\sigma\right)=\frac{1}{\sigma x\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{\log x-\mu}{\sigma}\right)^{2}\right]I_{\left[0,\infty\right)}\left(x\right),\]
\end_inset
The parameters,
\begin_inset Formula $\mu$
\end_inset
and
\begin_inset Formula $\sigma$
\end_inset
are not the mean and variance of this distribution, but the parameters
of the underlying normal distribution.
Random numbers from this distribution are generated as
\begin_inset Formula $e^{\sigma Z+\mu}$
\end_inset
where
\begin_inset Formula $Z$
\end_inset
is a standard normal random number.
\end_layout
\begin_layout Description
logistic (loc=0.0, scale=1.0, size=None)
\begin_inset Formula \[
f\left(x\right)=\frac{e^{-x}}{\left[1+e^{-x}\right]^{2}}I_{\left[0,\infty\right)}\left(x\right)\]
\end_inset
\end_layout
\begin_layout Description
multivariate_normal (
\begin_inset Formula $\mathbf{\boldsymbol{\mu}}$
\end_inset
,
\begin_inset Formula $\mathbf{C}$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns a vector of random numbers which are jointly drawn from a multivariate
normal distribution.
The last-dimension of the output array contains the sample vector, which
is of length
\begin_inset Formula $N=\textrm{len}\left(mean\right).$
\end_inset
The covariance matrix must be
\begin_inset Formula $N\times N$
\end_inset
.
If
\begin_inset Formula $\boldsymbol{\mu}\equiv mean$
\end_inset
and
\begin_inset Formula $\mathbf{C}=cov$
\end_inset
, then the joint-pdf representing the returned random vector(s) is
\begin_inset Formula \[
f\left(\mathbf{x}\right)=\frac{1}{\sqrt{\left(2\pi\right)^{N}\left|\mathbf{C}\right|}}\exp\left[-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}\right)^{T}\mathbf{C}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}\right)\right].\]
\end_inset
\end_layout
\begin_layout Description
noncentral_chisquare (
\begin_inset Formula $\nu$
\end_inset
,
\begin_inset Formula $\lambda$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This is the distribution of
\begin_inset Formula $\sum_{i=1}^{\nu}\left(Z_{i}+\delta_{i}\right)^{2}$
\end_inset
where
\begin_inset Formula $Z_{i}$
\end_inset
are independent standard normal random numbers and
\begin_inset Formula $\delta_{i}$
\end_inset
are constants.
It is a a generalized Rayleigh-Rice distribution:
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Formula \[
f\left(x;\nu,\lambda\right)=e^{-\left(\lambda+x\right)/2}\frac{1}{2}\left(\frac{x}{\lambda}\right)^{\left(\nu-2\right)/4}I_{\left(\nu-2\right)/2}\left(\sqrt{\lambda x}\right)I_{\left(0,\infty\right)}\left(x\right),\]
\end_inset
where
\begin_inset Formula $I_{\nu}\left(z\right)$
\end_inset
(a real-number in the subscript, not an interval) is the modified Bessel
Function of the first kind.
\end_layout
\end_deeper
\begin_layout Description
noncentral_f (
\begin_inset Formula $\nu_{1}$
\end_inset
,
\begin_inset Formula $\nu_{2}$
\end_inset
,
\begin_inset Formula $\lambda$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The pdf of this distribution is
\begin_inset Formula \begin{eqnarray*}
f\left(x;\nu_{1},\nu_{2},\lambda\right) & = & \exp\left[\frac{\lambda}{2}+\frac{\lambda v_{1}x}{2\left(\nu_{1}x+\nu_{2}\right)}\right]\nu_{1}^{\nu_{1}/2}\nu_{2}^{\nu_{2}/2}x^{\nu_{1}/2-1}\\
& & \times\left(\nu_{2}+\nu_{1}x\right)^{-\left(\nu_{1}+\nu_{2}\right)/2}\\
& & \times\frac{\Gamma\left(\frac{\nu_{1}}{2}\right)\Gamma\left(1+\frac{\nu_{2}}{2}\right)L_{n_{2}/2}^{n_{1}/2-1}\left(-\frac{\lambda\nu_{1}x}{2\left(\nu_{1}x+\nu_{2}\right)}\right)}{B\left(\frac{\nu_{1}}{2},\frac{\nu_{2}}{2}\right)\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}.\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Description
normal (loc=0.0, scale=1.0, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
The normal, or Gaussian, distribution is the limiting distribution of independe
nt samples from any sufficiently well-behaved distributions (this is the
content of the celebrated central limit theorem).
The normal distribution is also the distribution of maximum entropy when
the mean and variance alone are fixed.
These two facts account for its name as well as the wide variety of situations
that can be usefully modelled using the normal distribution.
Because it is so widely used, the full pdf with the location
\begin_inset Formula $\left(\mu\right)$
\end_inset
and scale
\begin_inset Formula $\left(\sigma\right)$
\end_inset
parameters is provided:
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}\right].\]
\end_inset
\end_layout
\begin_layout Description
pareto (
\begin_inset Formula $a$
\end_inset
, size=None)
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;a\right)=\frac{a}{x^{a+1}}I_{\left[1,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
power (
\begin_inset Formula $a$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A special case of the beta distribution with
\begin_inset Formula $b=1.$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;a\right)=ax^{a-1}I_{\left[0,1\right]}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
rand (
\begin_inset Formula $d_{1}$
\end_inset
,
\begin_inset Formula $d_{2}$
\end_inset
,
\begin_inset Formula $\ldots$
\end_inset
,
\begin_inset Formula $d_{n}$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
A convenient interface to obtain an array of shape
\begin_inset Formula $\left(d_{1},d_{2},\ldots,d_{n}\right)$
\end_inset
of uniform random numbers in the interval
\begin_inset Formula $\left[0,1\right).$
\end_inset
Notice the different convention for passing in the shape (as separate arguments
instead of a tuple).
The standard convention is used in the function numpy.random.random(shape)
for which this function is merely a convenient short-hand.
If you have a tuple named shape, then rand(*shape) will work correctly.
\end_layout
\begin_layout Description
randint (low, high=None, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Equally probably random integers in the range
\begin_inset Formula $low\leq x<high$
\end_inset
.
If
\begin_inset Formula $high$
\end_inset
is None, then the range is
\begin_inset Formula $0\leq x<low$
\end_inset
.
Similar to random_integers, but check the difference on the bounds.
\end_layout
\begin_layout Description
randn (
\begin_inset Formula $d_{1}$
\end_inset
,
\begin_inset Formula $d_{2}$
\end_inset
,
\begin_inset Formula $\ldots$
\end_inset
,
\begin_inset Formula $d_{n}$
\end_inset
)
\end_layout
\begin_layout Description
\InsetSpace ~
A convenient interface to obtain an array of shape
\begin_inset Formula $\left(d_{1},d_{2},\ldots,d_{n}\right)$
\end_inset
of standard normal
\begin_inset Formula $\left(\mu=0,\,\sigma=1\right)$
\end_inset
random numbers.
Notice the different convention for passing in the shape (as separate arguments
intead of a tuple).
The standard convention is used in the function numpy.random.standard_normal(shap
e) for which this function is merely a convenient short-hand.
If you have a tuple named shape, then randn(*shape) will work correctly.
\end_layout
\begin_layout Description
random_integers (low, high=None, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Equally probably random integers in the range
\begin_inset Formula $low\leq x\leq high$
\end_inset
.
If high is None, then the range is
\begin_inset Formula $1\leq x\leq low$
\end_inset
.
Similar to randint, but check the difference on the bounds.
\end_layout
\begin_layout Description
rayleigh (scale=1.0, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Rayleigh-distributed random numbers can be obtained as
\begin_inset Formula $X=\sqrt{Z_{1}^{2}+Z_{2}^{2}}$
\end_inset
where
\begin_inset Formula $Z_{i}$
\end_inset
are independent standard normal random numbers.
The scale parameter is also the mode of the distribution (the value of
\begin_inset Formula $X$
\end_inset
with highest probability).
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=xe^{-x^{2}/2}I_{[0,\infty)}\left(x\right)\]
\end_inset
\end_layout
\begin_layout Description
standard_cauchy (size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A Cauchy distribution is a heavy-tailed distribution with no variance.
It's distribution is that of the ratio of two standard normal distributions
\begin_inset Formula $Z_{1}/Z_{2}.$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}.\]
\end_inset
\end_layout
\begin_layout Description
standard_exponential (size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A standard exponetial random number with scale=1.0.
The pdf was given under the description of
\family typewriter
random.exponential
\family default
.
\end_layout
\begin_layout Description
standard_gamma (
\begin_inset Formula $a$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A standard gamma random number with scale=1.0.
The pdf was given under the description of
\family typewriter
random.gamma
\family default
.
\end_layout
\begin_layout Description
standard_normal (size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A zero-mean, unit-variance, normally distributed random number often denoted
\begin_inset Formula $Z.$
\end_inset
\begin_inset Formula \[
f\left(x\right)=\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}.\]
\end_inset
\end_layout
\begin_layout Description
standard_t (
\begin_inset Formula $\nu$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Often called Student's t distribution, this random number distribution
arises in the problem of estimating the mean of normally distributed samples
when the sample-size is small.
The first parameter,
\begin_inset Formula $\nu$
\end_inset
, is the number of degrees of freedom of the distribution.
\begin_inset Formula \[
f\left(x;\nu\right)\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)\left[1+\frac{x^{2}}{\nu}\right]^{\frac{\nu+1}{2}}}.\]
\end_inset
\end_layout
\begin_layout Description
triangular (left, mode, right, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns random numbers according to a triangularly-shaped density that
starts at left, peaks at mode, and ends at right.
\end_layout
\begin_layout Description
uniform (low=0.0, high=1.0, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns random numbers that are equally probable over the range
\begin_inset Formula $\left[low,\, high\right).$
\end_inset
\end_layout
\begin_layout Description
vonmises (
\begin_inset Formula $\mu$
\end_inset
,
\begin_inset Formula $\kappa$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
A continuous distribution that is well suited for circular attributes such
as angles, time of day, day of the year, etc.
The mean direction is
\begin_inset Formula $\mu$
\end_inset
and concentration (or dispersion) parameter is
\begin_inset Formula $\kappa.$
\end_inset
For small
\begin_inset Formula $\kappa$
\end_inset
the distribution tends towards a uniform distribution over
\begin_inset Formula $\left[-\pi,\pi\right].$
\end_inset
For large
\begin_inset Formula $\kappa$
\end_inset
, the distribution tends towards a normal distribution with mean
\begin_inset Formula $\mu$
\end_inset
and variance
\begin_inset Formula $1/\kappa.$
\end_inset
\begin_inset Formula \[
f\left(x\right)=\frac{e^{\kappa\cos\left(x-\mu\right)}}{2\pi I_{0}\left(\kappa\right)}I_{\left[-\pi,\pi\right]}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Description
wald (
\begin_inset Formula $\mu$
\end_inset
,
\begin_inset Formula $\lambda$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
This distribution is also called the inverse Gaussian distribution (and
the Wald distribution considered as a special case when
\begin_inset Formula $\mu=\lambda$
\end_inset
).
It can be generated by noticing that if
\begin_inset Formula $X$
\end_inset
is a wald random number then
\begin_inset Formula $\frac{\lambda\left(X-\mu\right)^{2}}{\mu^{2}X}$
\end_inset
is the square of a standard normal random number (i.e.
it is chi-square with one degree of freedom).
The pdf is
\begin_inset Formula \[
f\left(x\right)=\sqrt{\frac{\lambda}{2\pi x^{3}}}e^{-\frac{\lambda\left(x-\mu\right)^{2}}{2\mu^{2}x}}.\]
\end_inset
\end_layout
\begin_layout Description
weibull (
\begin_inset Formula $a$
\end_inset
, size=None)
\end_layout
\begin_layout Description
\InsetSpace ~
An extreme-value distribution:
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f\left(x;c\right)=ax^{a-1}\exp\left(-x^{a}\right)I_{\left(0,\infty\right)}\left(x\right).\]
\end_inset
\end_layout
\begin_layout Subsection
Miscellaneous utilities
\end_layout
\begin_layout Description
bytes (length)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a string of random bytes of the provided length.
\end_layout
\begin_layout Description
get_state ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return an object that holds the state of the random number generator (allows
you to restart simulations where you left off).
\end_layout
\begin_layout Description
set_state (state)
\end_layout
\begin_layout Description
\InsetSpace ~
Set the state of the random number generator.
The argument should be the returned object of a previous get_state command.
\end_layout
\begin_layout Description
shuffle (sequence)
\end_layout
\begin_layout Description
\InsetSpace ~
Randomly permute the items of any sequence.
If sequence is an array, then it must be 1-d.
\end_layout
\begin_layout Description
permutation (n)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a permutation of the integers from 0 to n-1.
\begin_inset LatexCommand index
name "random!continuous|)"
\end_inset
\begin_inset LatexCommand index
name "random|)"
\end_inset
\end_layout
\begin_layout Section
Matrix-specific functions (matlib)
\end_layout
\begin_layout Standard
This module contains functions that are geared specifically toward matrix
objects.
In particular it includes the functions
\series bold
empty
\series default
,
\series bold
ones
\series default
,
\series bold
zeros
\series default
,
\series bold
identity
\series default
,
\series bold
eye
\series default
,
\series bold
rand
\series default
, and
\series bold
randn
\series default
each of which returns a matrix object by default instead of an ndarray
object.
\end_layout
\begin_layout Section
Ctypes utiltity functions (ctypeslib)
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "ctypeslib"
\end_inset
This module contains utility functions that make it easier to work with
the ctypes module.
\end_layout
\begin_layout Description
load_library (name, path)
\end_layout
\begin_layout Description
\InsetSpace ~
Load a shared library named
\begin_inset Quotes eld
\end_inset
name
\begin_inset Quotes erd
\end_inset
(use the full name including any prefix but excluding the extension) located
in the directory indicated by path and return a ctypes library object whose
attributes are the functions in the library.
If ctypes is not available, this function will raise an ImportError.
If there is an error loading the library, ctypes raises an OSError.
The extension is appended to the library name (on a platform-dependent
basis) unless the name includes the
\begin_inset Quotes eld
\end_inset
.
\begin_inset Quotes erd
\end_inset
character in which case name is assumed to be the
\begin_inset Quotes eld
\end_inset
full-name
\begin_inset Quotes erd
\end_inset
of the library.
\end_layout
\begin_layout Description
ndpointer (dtype=None, ndim=None, shape=None, flags=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Create a class object that can be used in the argtypes list of a ctypes
function that will do basic type, number-of-dimensions, shape, and flags
checking on input array objects.
Setting an argtypes entry with the result of this function allows passing
arrays directly to ctypes-wrapped functions.
The returned class object will contain a from_param method as required
by ctypes.
This from_param method takes the array object, does data-type, number-of-dimens
ions, shape, and flags checking on the object and if all tests pass returns
an object that ctypes can use as the data area of the array.
Checking is not performed for any entries which are None in this class
creation function.
\end_layout
\begin_layout Chapter
Testing and Packaging
\end_layout
\begin_layout Quotation
Research is what I'm doing when I don't know what I'm doing.
\end_layout
\begin_layout Right Address
---
\emph on
Werner von Braun
\end_layout
\begin_layout Quotation
The most likely way for the world to be destroyed, most experts agree, is
by accident.
That's where we come in; we're computer professionals.
We cause accidents.
\end_layout
\begin_layout Right Address
---
\emph on
Nathaniel Borenstein
\end_layout
\begin_layout Standard
There are two additional sub-packages distributed with NumPy that simplify
the process of distributing and testing code based on NumPy.
The numpy.distutils sub-package extends the standard distutils package to
handle Fortran code along with providing support for the auto-generated
code in NumPy.
The numpy.testing sub-package defines a few functions and classes for standardiz
ing unit-tests in NumPy.
These facilities can be used in your own packages that build on top of
NumPy.
\end_layout
\begin_layout Section
Testing
\end_layout
\begin_layout Standard
In this sub-package are two classes and some useful utilities for writing
unit-tests
\end_layout
\begin_layout Description
NumpyTestCase a subclass of unittest.TestCase which adds a measure method
that can determine the elasped time to execute a code string and enhances
the __call__ method
\end_layout
\begin_layout Description
NumpyTest the test manager for NumPy which was extracted originally from
the SciPy code base.
This test manager makes it easy to add unit-tests to a package simply by
creating a tests sub-directory with files named test_<module>.py.
These test files should then define sub-classes of NumpyTestCase (or unittest.Te
stCase) named
\begin_inset Quotes eld
\end_inset
test*
\begin_inset Quotes erd
\end_inset
.
These classes should then define functions named
\begin_inset Quotes eld
\end_inset
test*
\begin_inset Quotes erd
\end_inset
or
\begin_inset Quotes eld
\end_inset
bench*
\begin_inset Quotes erd
\end_inset
or
\begin_inset Quotes eld
\end_inset
check*
\begin_inset Quotes erd
\end_inset
that contain the actual unit-tests.
The first keyword argument should specify the level above which this test
should be run.
\end_layout
\begin_layout Description
\InsetSpace ~
To run the tests excecute NumpyTest(<package>).test(level=1, verbosity=1)
which will run all tests above the given level using the given verbosity.
Here <package> can be either a string or a previously imported module.
You can get the level and verbosity arguments from sys.argv using NumpyTest(<pac
kage>).run() with -v or --verbosity and -l or --level as command-line arguments.
\end_layout
\begin_layout Description
set_local_path (reldir='', level=1)
\end_layout
\begin_layout Description
\InsetSpace ~
prepend local directory (+ reldir) to sys.path.
The caller is responsible for removing this path using restore_path().
\end_layout
\begin_layout Description
set_package_path (level=1)
\end_layout
\begin_layout Description
\InsetSpace ~
prepend package directory to sys.path.
This should be called from a test_file.py that satisfies the tree structure:
<somepath>/<somedir>/test_file.py.
The, the first existing path name from the list <somepath>/build/lib.<platform>-
<version>, <somepath>/..
is pre-pended to sys.path.
The caller is responsible for removing this path using restore_path().
\end_layout
\begin_layout Description
restore_path ()
\end_layout
\begin_layout Description
\InsetSpace ~
Remove the first entry from sys.path.
\end_layout
\begin_layout Description
assert_equal (actual, desired, err_msg='', verbose=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an assertion error if the two items are not equal.
Automatically calls assert_array_equal if actual or desired is an ndarray.
\end_layout
\begin_layout Description
assert_almost_equal (actual, desired, decimal=7, err_msg='', verbose=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an assertion error if the two items are not equal within decimal
places.
Automatically calls assert_array_almost_equal if actual or desired is an
ndarray.
\end_layout
\begin_layout Description
assert_approx_equal (actual, desired, significant=7, err_msg='', verbose=1)
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an assertion error if the two items are not equal to within the given
significant digits.
Does not work on arrays.
\end_layout
\begin_layout Description
assert_array_equal (x, y, err_msg='')
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an error if the two arrays x and y are not equal at every element.
\end_layout
\begin_layout Description
assert_array_less (x, y, err_msg='')
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an error if the two arrays x and y have different shapes or if x
is not less than y at every element.
\end_layout
\begin_layout Description
assert_array_almost_equal (x, y, decimal=6, err_msg='')
\end_layout
\begin_layout Description
\InsetSpace ~
Raise an error if x and y are not equal to decimal places at every element.
\end_layout
\begin_layout Description
jiffies ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return a number of 1/100ths of a second that this process has been scheduled
in user mode.
Implemented using time.time() unless on Linux where the special /proc directory
filesystem is used.
\end_layout
\begin_layout Description
memusage ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the virtual memory size in bytes of the running python.
If the operation is not supported on the platform, then return None.
This works only on linux for now.
\end_layout
\begin_layout Description
rand (*args)
\end_layout
\begin_layout Description
\InsetSpace ~
Return an array of random numbers with the given shape using only the standard
library random number generator.
\end_layout
\begin_layout Description
runstring (astr, dict)
\end_layout
\begin_layout Description
\InsetSpace ~
Run the given string in the dictionary provided.
Functional form for (exec astr in dict) that is useful for the failUnlessRaises
method of unittest.TestCase class.
\end_layout
\begin_layout Section
NumPy Distutils
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "distutils"
\end_inset
NumPy provides enhanced distutils functionality to make it easier to build
and install sub-packages, auto-generate code, and extension modules that
use Fortran-compiled libraries.
To use features of numpy distutils use the setup command from numpy.distutils.cor
e.
A useful Configuration class is also provided in numpy.distutils.misc_util
that can make it easier to construct keyword arguments to pass to the setup
function (by passing the dictionary obtained from the todict() method of
the class).
More information is available in the NumPy Distutils Users Guide in <site-packa
ges>/numpy/doc/DISTUTILS.txt.
\end_layout
\begin_layout Subsection
misc_util
\end_layout
\begin_layout Description
Configuration (package_name=None, parent_name=None, top_path=None, package_path=
None, **attrs)
\end_layout
\begin_layout Description
\InsetSpace ~
\begin_inset LatexCommand index
name "Configuration"
\end_inset
Construct a configuration instance for the given package name.
If parent_name is not None, then construct the package as a sub-package
of the parent_name package.
If top_path and package_path are None then they are assumed equal to the
path of the file this instance was created in.
The setup.py files in the numpy distribution are good examples of how to
use the Configuration instance.
\end_layout
\begin_deeper
\begin_layout Description
self.todict ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return a dictionary compatible with the keyword arguments of distutils
setup function.
Thus, this method may be used as setup(**config.todict()).
\end_layout
\begin_layout Description
self.get_distribution ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the distutils distribution object for self.
\end_layout
\begin_layout Description
self.get_subpackage (subpackage_name, subpackage_path=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a Configuration instance for the sub-package given.
If subpackage_path is None then the path is assumed to be the local path
plus the subpackage_name.
If a setup.py file is not found in the subpackage_path, then a default configura
tion is used.
\end_layout
\begin_layout Description
self.add_subpackage (subpackage_name, subpackage_path=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Add a sub-package to the current Configuration instance.
This is useful in a setup.py script for adding sub-packages to a package.
The sub-package is contained in subpackage_path / subpackage_name and this
directory may contain a setup.py script or else a default setup (suitable
for Python-code-only subpackages) is assumed.
If the subpackage_path is None, then it is assumed to be located in the
local path / subpackage_name.
\end_layout
\begin_layout Description
self.add_data_files (*files)
\end_layout
\begin_layout Description
\InsetSpace ~
Add files to the list of data_files to be included with the package.
The form of each element of the files sequence is very flexible allowing
many combinations of where to get the files from the package and where
they should ultimately be installed on the system.
The most basic usage is for an element of the files argument sequence to
be a simple filename.
This will cause that file from the local path to be installed to the installati
on path of the self.name package (package path).
The file argument can also be a relative path in which case the entire
relative path will be installed into the package directory.
Finally, the file can be an absolute path name in which case the file will
be found at the absolute path name but installed to the package path.
\end_layout
\begin_layout Description
\InsetSpace ~
This basic behavior can be augmented by passing a 2-tuple in as the file
argument.
The first element of the tuple should specify the relative path (under
the package install directory) where the remaining sequence of files should
be installed to (it has nothing to do with the file-names in the source
distribution).
The second element of the tuple is the sequence of files that should be
installed.
The files in this sequence can be filenames, relative paths, or absolute
paths.
For absolute paths the file will be installed in the top-level package
installation directory (regardless of the first argument).
Filenames and relative path names will be installed in the package install
directory under the path name given as the first element of the tuple.
An example may clarify:
\end_layout
\begin_deeper
\begin_layout LyX-Code
self.add_data_files('foo.dat',
\newline
('fun', ['gun.dat', 'nun/pun.dat', '/tmp/sun.dat']),
\newline
'bar/cat.dat',
\newline
'/full/path/to/can.dat')
\end_layout
\begin_layout Standard
will install these data files to:
\end_layout
\begin_layout LyX-Code
<package install directory>/
\newline
foo.dat
\newline
fun/
\newline
gun.dat
\newline
nun/
\newline
pun.dat
\newline
sun.dat
\newline
bar/
\newline
car.dat
\newline
can.dat
\end_layout
\begin_layout Standard
where <package install directory> is the package (or sub-package) directory
such as '/usr/lib/python2.4/site-packages/mypackage' ('C:
\backslash
\backslash
Python2.4
\backslash
\backslash
Lib
\backslash
\backslash
site-packages
\backslash
\backslash
mypackage') or '/usr/lib/python2.4/site-packages/mypackage/mysubpackage'
('C:
\backslash
\backslash
Python2.4
\backslash
\backslash
Lib
\backslash
\backslash
site-packages
\backslash
\backslash
mypackage
\backslash
\backslash
mysubpackage').
\end_layout
\end_deeper
\begin_layout Standard
\InsetSpace ~
An additional feature is that the path to a data-file can actually be a
function that takes no arguments and returns the actual path(s) to the
data-files.
This is useful when the data files are generated while building the package.
\end_layout
\begin_layout Description
self.add_data_dir (data_path)
\end_layout
\begin_layout Description
\InsetSpace ~
Recursively add files under data_path to the list of data_files to be installed
(and distributed).
The data_path can be either a relative path-name, or an absolute path-name,
or a 2-tuple where the first argument shows where in the install directory
the data directory should be installed to.
For example suppose the source directory contains fun/foo.dat and fun/bar/car.dat
\end_layout
\begin_layout LyX-Code
self.add_data_dir('fun')
\newline
self.add_data_dir(('sun', 'fun'))
\newline
self.add_data_dir(('gun',
'/full/path/to/fun'))
\end_layout
\begin_layout Standard
\InsetSpace ~
Will install data-files to the locations
\end_layout
\begin_layout LyX-Code
<package install directory>/
\newline
fun/
\newline
foo.dat
\newline
bar/
\newline
car.dat
\newline
sun/
\newline
foo.dat
\newline
bar/
\newline
car.dat
\newline
gun/
\newline
foo.dat
\newline
car.dat
\end_layout
\begin_layout Description
self.add_include_dirs (*paths)
\end_layout
\begin_layout Description
\InsetSpace ~
Add the given sequence of paths to the beginning of the include_dirs list.
This list will be visible to all extension modules of the current package.
\end_layout
\begin_layout Description
self.add_headers (*files)
\end_layout
\begin_layout Description
\InsetSpace ~
Add the given sequence of files to the beginning of the headers list.
By default, headers will be installed under <python-include>/<self.name.replace('.
','/')>/ directory.
If an item of files is a tuple, then its first argument specifies the actual
installation location relative to the <python-include> path.
\end_layout
\begin_layout Description
self.add_extension (name, sources, **kw)
\end_layout
\begin_layout Description
\InsetSpace ~
Create and add an Extension instance to the ext_modules list.
The first argument defines the name of the extension module that will be
installed under the self.name package.
The second argument is a list of sources.
This method also takes the following optional keyword arguments that are
passed on to the Extension constructor: include_dirs, define_macros, undef_macr
os, library_dirs, libraries, runtime_library_dirs, extra_objects, swig_opts,
depends, language, f2py_options, module_dirs, and extra_info.
\end_layout
\begin_layout Description
\InsetSpace ~
The self.paths(...) method is applied to all lists that may contain paths.
The extra_info is a dictionary or a list of dictionaries whose content
will be appended to the keyword arguments.
The depends list contains paths to files or directories that the sources
of the extension module depend on.
If any path in the depends list is newer than the extension module, then
the module will be rebuilt.
\end_layout
\begin_layout Description
\InsetSpace ~
The list of sources may contain functions (called source generators) which
must take an extension instance and a build directory as inputs and return
a source file or list of source files or None.
If None is returned then no sources are generated.
If the Extension instance has no sources after processing all source generators
, then no extension module is built.
\end_layout
\begin_layout Description
self.add_library (name, sources, **build_info)
\end_layout
\begin_layout Description
\InsetSpace ~
Add a library to the list of libraries.
Allowed keyword arguments are depends, macros, include_dirs, extra_compiler_arg
s, and f2py_options.
The name is the name of the library to be built and sources is a list of
sources (or source generating functions) to add to the library.
\end_layout
\begin_layout Description
self.add_scripts (*files)
\end_layout
\begin_layout Description
\InsetSpace ~
Add the sequence of files to the beginning of the scripts list.
Scripts will be installed under the <prefix>/bin/ directory.
\end_layout
\begin_layout Description
self.paths (*paths)
\end_layout
\begin_layout Description
\InsetSpace ~
Applies glob.glob(...) to each path in the sequence (if needed) and pre-pends
the local_path if needed.
Because this is called on all source lists, this allows wildcard characters
to be specified in lists of sources for extension modules and libraries
and scripts and allows path-names be relative to the source directory.
\end_layout
\begin_layout Description
self.get_config_cmd ()
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the numpy.distutils config command instance.
\end_layout
\begin_layout Description
self.get_build_temp_dir ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return a path to a temporary directory where temporary files should be
placed.
\end_layout
\begin_layout Description
self.have_f77c ()
\end_layout
\begin_layout Description
\InsetSpace ~
True if a Fortran 77 compiler is available (because a simple Fortran 77
code was able to be compiled successfully).
\end_layout
\begin_layout Description
self.have_f90c ()
\end_layout
\begin_layout Description
\InsetSpace ~
True if a Fortran 90 compiler is available (because a simple Fortran 90
code was able to be compiled successfully)
\end_layout
\begin_layout Description
self.get_version ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return a version string of the current package or None if the version informati
on could not be detected.
This method scans files named __version__.py, <packagename>_version.py, version.py
, and __svn_version__.py for string variables version, __version__, and <packagen
ame>_version, until a version number is found.
\end_layout
\begin_layout Description
self.make_svn_version_py ()
\end_layout
\begin_layout Description
\InsetSpace ~
Appends a data function to the data_files list that will generate __svn_version
__.py file to the current package directory.
This file will be removed from the source directory when Python exits (so
that it can be re-generated next time the package is built).
This is intended for working with source directories that are in an SVN
repository.
\end_layout
\begin_layout Description
self.make_config_py ()
\end_layout
\begin_layout Description
\InsetSpace ~
Generate a package __config__.py file containing system information used
during the building of the package.
This file is installed to the package installation directory.
\end_layout
\begin_layout Description
self.get_info (*names)
\end_layout
\begin_layout Description
\InsetSpace ~
Return information (from system_info.get_info) for all of the names in the
argument list in a single dictionary.
\end_layout
\end_deeper
\begin_layout Description
get_numpy_include_dirs ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the include directory where the numpy/arrayobject.h and numpy/ufuncobject.
h files are found.
This should be added to the include_dirs of any extension module built
using NumPy.
If numpy.distutils is used to build the extension, then this directory is
added automatically.
\end_layout
\begin_layout Description
get_numarray_include_dirs ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the include directory where the numpy/libnumarray.h file is found.
This should be added to the include_dirs of any extension module that relies
on the Numarray-compatible C-API.
\end_layout
\begin_layout Description
dict_append (d, **kwds)
\end_layout
\begin_layout Description
\InsetSpace ~
Add the keyword arguments given as entries in the dictionary provided as
the first argument.
If the entry is already present, then assume it is a list and extend the
list with the keyword value.
\end_layout
\begin_layout Description
appendpath (prefix, path)
\end_layout
\begin_layout Description
\InsetSpace ~
Platform-independent intelligence for appending path to prefix.
It replaces '/' in the prefix and the path with the correct path-separator
on the platform ad returns a full path name that will be valid for the
platform.
\end_layout
\begin_layout Description
allpath (name)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert a '/' separated pathname to one using the platform's path separator.
\end_layout
\begin_layout Description
dot_join (*args)
\end_layout
\begin_layout Description
\InsetSpace ~
Converts a sequence of string arguments to a string joined by '.' (removing
any empty strings).
\end_layout
\begin_layout Description
generate_config_py (extension, build_dir)
\end_layout
\begin_layout Description
\InsetSpace ~
A suitable function that can be used in a source list.
This constructs a python file that contains system_info information used
during building the package.
Generally easier to use a Configuration instance and the config.make_config_py()
method.
\end_layout
\begin_layout Description
get_cmd (cmdname, _cache={})
\end_layout
\begin_layout Description
\InsetSpace ~
Returns an instance of the distutils command object named cmdname if the
setup distribution instance has been initialized.
Caches the result in _cache[cmdname] and gets it from there if present.
\end_layout
\begin_layout Description
terminal_has_colors ()
\end_layout
\begin_layout Description
\InsetSpace ~
Tries to determine if the stdout terminal can be written to using ANSI
colors.
Returns 1 if it can be determined that ANSI colors are acceptable or 0
if not.
\end_layout
\begin_layout Description
red_text (s)
\end_layout
\begin_layout Description
green_text (s)
\end_layout
\begin_layout Description
yellow_text (s)
\end_layout
\begin_layout Description
blue_text (s)
\end_layout
\begin_layout Description
cyan_text (s)
\end_layout
\begin_layout Description
\InsetSpace ~
If terminal_has_colors() is true, then these commands return a string with
the necessary codes prepended to display the given string argument in the
specified color on an ANSI terminal.
If terminal_has_colors() is false, then these functions simply return the
input argument.
\end_layout
\begin_layout Description
cyg2win32 (path)
\end_layout
\begin_layout Description
\InsetSpace ~
Convert a cygwin path beginning with /cygdrive to a standard win32 path
name.
\end_layout
\begin_layout Description
all_strings (lst)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if all items in the input list are string objects otherwise
return False.
\end_layout
\begin_layout Description
has_f_sources (sources)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if any of the source files listed in the input argument are
Fortran files because its name matches against the compiled regular expression
\series bold
fortran_ext_match
\series default
.
\end_layout
\begin_layout Description
has_cxx_sources (sources)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if any of the source files listed in the input argument are
C++ files because its name matches against the compiled regular expression
\series bold
cxx_ext_match
\series default
.
\end_layout
\begin_layout Description
filter_sources (sources)
\end_layout
\begin_layout Description
\InsetSpace ~
From the provided list of sources, return four lists of filenames containing
C, C++, Fortran, and Fortran 90 module sources respectively.
The compiled regular expressions used in this search (which are also available
in the misc_util module) are cxx_ext_match, fortran_ext_match, f90_ext_match,
and f90_module_name_match.
\end_layout
\begin_layout Description
get_dependencies (sources)
\end_layout
\begin_layout Description
\InsetSpace ~
Scan the files in the sources list for include statements.
\end_layout
\begin_layout Description
is_local_src_dir (directory)
\end_layout
\begin_layout Description
\InsetSpace ~
Return True if the provided directory is the local current working directory.
\end_layout
\begin_layout Description
get_ext_source_files (ext)
\end_layout
\begin_layout Description
\InsetSpace ~
Get sources and any include files in the same directory from an Extension
instance.
\end_layout
\begin_layout Description
get_script_files (scripts)
\end_layout
\begin_layout Description
\InsetSpace ~
Returns the list scripts with all non-string arguments removed.
\end_layout
\begin_layout Subsection
Other modules
\end_layout
\begin_layout Description
system_info.get_info (name)
\end_layout
\begin_layout Description
\InsetSpace ~
For the given string representing a particular resource, return a dictionary
that is compatible with the distutils.setup keyword arguments.
If this is an empty dictionary, then the requested resource is not available.
Some of the names that can be checked are 'lapack_opt', 'blas_opt', 'fft_opt',
'fftw', 'fftw3', 'fftw2', 'djbfft', 'numpy', 'numarray', 'boost_python',
'agg2', 'wx', 'gdk', 'xft', 'freetype2'.
\end_layout
\begin_layout Description
system_info.get_standard_file (filename)
\end_layout
\begin_layout Description
\InsetSpace ~
Return a list of length 0 to 3 containing the full-path filenames for the
filename provided.
The filename is searched for in three places in the following order 1)
the system-wide location which is the directory that the system_info file
is located in; 2) the directory specified by the environment variable HOME;
and 3) the current local directory.
\end_layout
\begin_layout Description
cpuinfo.cpu an instance of a cpuinfo class that defines methods for checking
various aspects of the cpu.
The info attribute is a list of length (# of CPUs).
Each entry is a dictionary providing technical information about that CPU.
\end_layout
\begin_layout Description
log.set_verbosity (level)
\end_layout
\begin_layout Description
\InsetSpace ~
Set the distutils logging threshold and return the previously stored value.
The level is an integer that corresponds to distutils.log thresholds: -1
<--> ERROR, 0 <--> WARN, 1 <--> INFO, and 2 <--> DEBUG.
\end_layout
\begin_layout Description
exec_command
\end_layout
\begin_deeper
\begin_layout Description
exec_command (command, execute_in='', use_shell=None, use_tee=None, _with_python
=1, **env)
\end_layout
\begin_layout Description
\InsetSpace ~
Return (status, output) of the executed command.
The command input is a string of executable and arguments.
The output contains both stderr and stdout messages.
If execute_in is given, then change to the provided directory prior to
executing the command and afterwords restore to the current directory.
On NT, and DOS systems the returned status is correct for external commands.
However, wild cards will not work for non-posix systems.
\end_layout
\begin_layout Description
splitcmdline (line)
\end_layout
\begin_layout Description
\InsetSpace ~
Inverse of ' '.join(sys.argv)
\end_layout
\begin_layout Description
find_executable (exe, path=None)
\end_layout
\begin_layout Description
\InsetSpace ~
Return full path of an executable using information from the PATH environment
variable.
Equivalent to the POSIX 'which' command.
\end_layout
\begin_layout Description
get_pythonexe ()
\end_layout
\begin_layout Description
\InsetSpace ~
Return the full path to the python executable with some fixes for nt and
dos to replace pythonw with python if it is encountered.
A basic wrapper around sys.executable.
\end_layout
\end_deeper
\begin_layout Section
Conversion of .src files
\end_layout
\begin_layout Standard
\begin_inset LatexCommand index
name "code generation"
\end_inset
NumPy distutils supports automatic conversion of source files named <somefile>.sr
c.
This facility can be used to maintain very similar code blocks requiring
only simple changes between blocks.
During the build phase of setup, if a template file named <somefile>.src
is encountered, a new file named <somefile> is constructed from the template
and placed in the build directory to be used instead.
Two forms of template conversion are supported.
The first form occurs for files named named <file>.ext.src where ext is a
recognized Fortran extension (f, f90, f95, f77, for, ftn, pyf).
The second form is used for all other cases.
\end_layout
\begin_layout Subsection
Fortran files
\end_layout
\begin_layout Standard
This template converter will replicate all
\series bold
function
\series default
and
\series bold
subroutine
\series default
blocks in the file with names that contain '<...>' according to the rules
in '<...>'.
The number of comma-separated words in '<...>' determines the number of times
the block is repeated.
What these words are indicates what that repeat rule, '<...>', should be replaced
with in each block.
All of the repeat rules in a block must contain the same number of comma-separa
ted words indicating the number of times that block should be repeated.
If the word in the repeat rule needs a comma, leftarrow, or rightarrow,
then prepend it with a backslash '
\backslash
'.
If a word in the repeat rule matches '
\backslash
\backslash
<index>' then it will be replaced with the <index>-th word in the same repeat
specification.
There are two forms for the repeat rule: named and short.
\end_layout
\begin_layout Subsubsection
Named repeat rule
\end_layout
\begin_layout Standard
A named repeat rule is useful when the same set of repeats must be used
several times in a block.
It is specified using <rule1=item1, item2, item3,..., itemN>, where N is the
number of times the block should be repeated.
On each repeat of the block, the entire expression, '<...>' will be replaced
first with item1, and then with item2, and so forth until N repeats are
accomplished.
Once a named repeat specification has been introduced, the same repeat
rule may be used
\series bold
in the current block
\series default
by referring only to the name (i.e.
<rule1>.
\end_layout
\begin_layout Subsubsection
Short repeat rule
\end_layout
\begin_layout Standard
A short repeat rule looks like <item1, item2, item3, ..., itemN>.
The rule specifies that the entire expression, '<...>' should be replaced
first with item1, and then with item2, and so forth until N repeats are
accomplished.
\end_layout
\begin_layout Subsubsection
Pre-defined names
\end_layout
\begin_layout Standard
The following predefined named repeat rules are available:
\end_layout
\begin_layout Itemize
<prefix=s,d,c,z>
\end_layout
\begin_layout Itemize
<_c=s,d,c,z>
\end_layout
\begin_layout Itemize
<_t=real, double precision, complex, double complex>
\end_layout
\begin_layout Itemize
<ftype=real, double precision, complex, double complex>
\end_layout
\begin_layout Itemize
<ctype=float, double, complex_float, complex_double>
\end_layout
\begin_layout Itemize
<ftypereal=float, double precision,
\backslash
\backslash
0,
\backslash
\backslash
1>
\end_layout
\begin_layout Itemize
<ctypereal=float, double,
\backslash
\backslash
0,
\backslash
\backslash
1>
\end_layout
\begin_layout Subsection
Other files
\end_layout
\begin_layout Standard
Non-Fortran files use a separate syntax for defining template blocks that
should be repeated using a variable expansion similar to the named repeat
rules of the Fortran-specific repeats.
The template rules for these files are:
\end_layout
\begin_layout Enumerate
\begin_inset Quotes eld
\end_inset
/**begin repeat
\begin_inset Quotes erd
\end_inset
on a line by itself marks the beginning of a segment that should be repeated.
\end_layout
\begin_layout Enumerate
Named variable expansions are defined using #name=item1, item2, item3, ...,
itemN# and placed on successive lines.
These variables are replaced in each repeat block with corresponding word.
All named variables in the same repeat block must define the same number
of words.
\end_layout
\begin_layout Enumerate
In specifying the repeat rule for a named variable, item*N is short-hand
for item, item, ..., item repeated N times.
In addition, parenthesis in combination with *N can be used for grouping
several items that should be repeated.
Thus, #name=(item1, item2)*4# is equivalent to #name=item1, item2, item1,
item2, item1, item2, item1, item2#
\end_layout
\begin_layout Enumerate
\begin_inset Quotes eld
\end_inset
*/
\begin_inset Quotes erd
\end_inset
on a line by itself marks the end of the the variable expansion naming.
The next line is the first line that will be repeated using the named rules.
\end_layout
\begin_layout Enumerate
Inside the block to be repeated, the variables that should be expanded are
specified as @name@.
\end_layout
\begin_layout Enumerate
\begin_inset Quotes eld
\end_inset
/**end repeat**/
\begin_inset Quotes erd
\end_inset
on a line by itself marks the previous line as the last line of the block
to be repeated.
\end_layout
\begin_layout Standard
\begin_inset Include \input{capi.lyx}
preview false
\end_inset
\end_layout
\begin_layout Standard
\begin_inset LatexCommand printindex
\end_inset
\end_layout
\end_body
\end_document
|