summaryrefslogtreecommitdiff
path: root/doc/source/user/how-to-partition.rst
blob: 2245193646505a141319e3dd987119fdb21f2d8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
.. _how-to-partition:

=================================================
How to create arrays with regularly-spaced values
=================================================

There are a few NumPy functions that are similar in application, but which
provide slightly different results, which may cause confusion if one is not sure
when and how to use them. The following guide aims to list these functions and
describe their recommended usage.

The functions mentioned here are

* `numpy.linspace`
* `numpy.arange`
* `numpy.geomspace`
* `numpy.logspace`
* `numpy.meshgrid`
* `numpy.mgrid`
* `numpy.ogrid`

1D domains (intervals)
======================

``linspace`` vs. ``arange``
---------------------------

Both `numpy.linspace` and `numpy.arange` provide ways to partition an interval
(a 1D domain) into equal-length subintervals. These partitions will vary
depending on the chosen starting and ending points, and the **step** (the length 
of the subintervals).

* **Use** `numpy.arange` **if you want integer steps.**

  `numpy.arange` relies on step size to determine how many elements are in the
  returned array, which excludes the endpoint. This is determined through the
  ``step`` argument to ``arange``.

  Example::

    >>> np.arange(0, 10, 2)  # np.arange(start, stop, step)
    array([0, 2, 4, 6, 8])

  The arguments ``start`` and ``stop`` should be integer or real, but not
  complex numbers. `numpy.arange` is similar to the Python built-in
  :py:class:`range`.

  Floating-point inaccuracies can make ``arange`` results with floating-point
  numbers confusing. In this case, you should use `numpy.linspace` instead.

* **Use** `numpy.linspace` **if you want the endpoint to be included in the
  result, or if you are using a non-integer step size.**

  `numpy.linspace` *can* include the endpoint and determines step size from the
  `num` argument, which specifies the number of elements in the returned
  array.
  
  The inclusion of the endpoint is determined by an optional boolean
  argument ``endpoint``, which defaults to ``True``. Note that selecting
  ``endpoint=False`` will change the step size computation, and the subsequent
  output for the function.

  Example::

    >>> np.linspace(0.1, 0.2, num=5)  # np.linspace(start, stop, num)
    array([0.1  , 0.125, 0.15 , 0.175, 0.2  ])
    >>> np.linspace(0.1, 0.2, num=5, endpoint=False)
    array([0.1, 0.12, 0.14, 0.16, 0.18])

  `numpy.linspace` can also be used with complex arguments::

    >>> np.linspace(1+1.j, 4, 5, dtype=np.complex64)
    array([1.  +1.j  , 1.75+0.75j, 2.5 +0.5j , 3.25+0.25j, 4.  +0.j  ],
          dtype=complex64)

Other examples
--------------

1. Unexpected results may happen if floating point values are used as ``step``
   in ``numpy.arange``. To avoid this, make sure all floating point conversion
   happens after the computation of results. For example, replace

   ::

     >>> list(np.arange(0.1,0.4,0.1).round(1))
     [0.1, 0.2, 0.3, 0.4]  # endpoint should not be included!

   with

   ::

     >>> list(np.arange(1, 4, 1) / 10.0)
     [0.1, 0.2, 0.3]  # expected result

2. Note that

   ::

     >>> np.arange(0, 1.12, 0.04)
     array([0.  , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 ,
            0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84,
            0.88, 0.92, 0.96, 1.  , 1.04, 1.08, 1.12])

   and

   ::

     >>> np.arange(0, 1.08, 0.04)
     array([0.  , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 ,
            0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84,
            0.88, 0.92, 0.96, 1.  , 1.04])

   These differ because of numeric noise. When using floating point values, it
   is possible that ``0 + 0.04 * 28 < 1.12``, and so ``1.12`` is in the
   interval. In fact, this is exactly the case::

     >>> 1.12/0.04
     28.000000000000004

   But ``0 + 0.04 * 27 >= 1.08`` so that 1.08 is excluded::

     >>> 1.08/0.04
     27.0

   Alternatively, you could use ``np.arange(0, 28)*0.04`` which would always
   give you precise control of the end point since it is integral::

    >>> np.arange(0, 28)*0.04
    array([0.  , 0.04, 0.08, 0.12, 0.16, 0.2 , 0.24, 0.28, 0.32, 0.36, 0.4 ,
           0.44, 0.48, 0.52, 0.56, 0.6 , 0.64, 0.68, 0.72, 0.76, 0.8 , 0.84,
           0.88, 0.92, 0.96, 1.  , 1.04, 1.08])


``geomspace`` and ``logspace``
------------------------------

``numpy.geomspace`` is similar to ``numpy.linspace``, but with numbers spaced
evenly on a log scale (a geometric progression). The endpoint is included in the
result.

Example::

  >>> np.geomspace(2, 3, num=5)
  array([2.        , 2.21336384, 2.44948974, 2.71080601, 3.        ])

``numpy.logspace`` is similar to ``numpy.geomspace``, but with the start and end
points specified as logarithms (with base 10 as default)::

  >>> np.logspace(2, 3, num=5)
  array([ 100.        ,  177.827941  ,  316.22776602,  562.34132519, 1000.        ])

In linear space, the sequence starts at ``base ** start`` (``base`` to the power
of ``start``) and ends with ``base ** stop``::

  >>> np.logspace(2, 3, num=5, base=2)
  array([4.        , 4.75682846, 5.65685425, 6.72717132, 8.        ])

nD domains
==========

nD domains can be partitioned into *grids*. This can be done using one of the
following functions.

``meshgrid``
------------

The purpose of ``numpy.meshgrid`` is to create a rectangular grid out of a set
of one-dimensional coordinate arrays.

Given arrays

 ::
   
   >>> x = np.array([0, 1, 2, 3])
   >>> y = np.array([0, 1, 2, 3, 4, 5])

``meshgrid`` will create two coordinate arrays, which can be used to generate
the coordinate pairs determining this grid.

 ::

   >>> xx, yy = np.meshgrid(x, y)
   >>> xx
   array([[0, 1, 2, 3],
          [0, 1, 2, 3],
          [0, 1, 2, 3],
          [0, 1, 2, 3],
          [0, 1, 2, 3],
          [0, 1, 2, 3]])
   >>> yy
   array([[0, 0, 0, 0],
          [1, 1, 1, 1],
          [2, 2, 2, 2],
          [3, 3, 3, 3],
          [4, 4, 4, 4],
          [5, 5, 5, 5]])

   >>> import matplotlib.pyplot as plt
   >>> plt.plot(xx, yy, marker='.', color='k', linestyle='none')

.. plot:: user/plots/meshgrid_plot.py
  :align: center
  :include-source: 0

``mgrid``
---------

``numpy.mgrid`` can be used as a shortcut for creating meshgrids. It is not a
function, but when indexed, returns a multidimensional meshgrid.

::

  >>> xx, yy = np.meshgrid(np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3, 4, 5]))
  >>> xx.T, yy.T
  (array([[0, 0, 0, 0, 0, 0],
          [1, 1, 1, 1, 1, 1],
          [2, 2, 2, 2, 2, 2],
          [3, 3, 3, 3, 3, 3]]),
   array([[0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5]]))

  >>> np.mgrid[0:4, 0:6]
  array([[[0, 0, 0, 0, 0, 0],
          [1, 1, 1, 1, 1, 1],
          [2, 2, 2, 2, 2, 2],
          [3, 3, 3, 3, 3, 3]],
  <BLANKLINE>
         [[0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5],
          [0, 1, 2, 3, 4, 5]]])


``ogrid``
---------

Similar to ``numpy.mgrid``, ``numpy.ogrid`` returns an *open* multidimensional
meshgrid. This means that when it is indexed, only one dimension of each
returned array is greater than 1. This avoids repeating the data and thus saves
memory, which is often desirable.

These sparse coordinate grids are intended to be use with :ref:`broadcasting`.
When all coordinates are used in an expression, broadcasting still leads to a
fully-dimensonal result array.

::

   >>> np.ogrid[0:4, 0:6]
   [array([[0],
           [1],
           [2],
           [3]]), array([[0, 1, 2, 3, 4, 5]])]

All three methods described here can be used to evaluate function values on a
grid.

::

   >>> g = np.ogrid[0:4, 0:6]
   >>> zg = np.sqrt(g[0]**2 + g[1]**2)
   >>> g[0].shape, g[1].shape, zg.shape
   ((4, 1), (1, 6), (4, 6))
   >>> m = np.mgrid[0:4, 0:6]
   >>> zm = np.sqrt(m[0]**2 + m[1]**2)
   >>> np.array_equal(zm, zg)
   True