summaryrefslogtreecommitdiff
path: root/doc/sphinxext/numpydoc/tests/test_docscrape.py
blob: ce99754da59c85372a9531ac79fc95872b28f73d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
# -*- encoding:utf-8 -*-
from __future__ import division, absolute_import

import sys, textwrap

from numpydoc.docscrape import NumpyDocString, FunctionDoc, ClassDoc
from numpydoc.docscrape_sphinx import SphinxDocString, SphinxClassDoc
from nose.tools import *

doc_txt = '''\
  numpy.multivariate_normal(mean, cov, shape=None, spam=None)

  Draw values from a multivariate normal distribution with specified
  mean and covariance.

  The multivariate normal or Gaussian distribution is a generalisation
  of the one-dimensional normal distribution to higher dimensions.

  Parameters
  ----------
  mean : (N,) ndarray
      Mean of the N-dimensional distribution.

      .. math::

         (1+2+3)/3

  cov : (N,N) ndarray
      Covariance matrix of the distribution.
  shape : tuple of ints
      Given a shape of, for example, (m,n,k), m*n*k samples are
      generated, and packed in an m-by-n-by-k arrangement.  Because
      each sample is N-dimensional, the output shape is (m,n,k,N).

  Returns
  -------
  out : ndarray
      The drawn samples, arranged according to `shape`.  If the
      shape given is (m,n,...), then the shape of `out` is is
      (m,n,...,N).

      In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
      value drawn from the distribution.

  Other Parameters
  ----------------
  spam : parrot
      A parrot off its mortal coil.

  Raises
  ------
  RuntimeError
      Some error

  Warns
  -----
  RuntimeWarning
      Some warning

  Warnings
  --------
  Certain warnings apply.

  Notes
  -----

  Instead of specifying the full covariance matrix, popular
  approximations include:

    - Spherical covariance (`cov` is a multiple of the identity matrix)
    - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

  This geometrical property can be seen in two dimensions by plotting
  generated data-points:

  >>> mean = [0,0]
  >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

  >>> x,y = multivariate_normal(mean,cov,5000).T
  >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

  Note that the covariance matrix must be symmetric and non-negative
  definite.

  References
  ----------
  .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
         Processes," 3rd ed., McGraw-Hill Companies, 1991
  .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
         2nd ed., Wiley, 2001.

  See Also
  --------
  some, other, funcs
  otherfunc : relationship

  Examples
  --------
  >>> mean = (1,2)
  >>> cov = [[1,0],[1,0]]
  >>> x = multivariate_normal(mean,cov,(3,3))
  >>> print x.shape
  (3, 3, 2)

  The following is probably true, given that 0.6 is roughly twice the
  standard deviation:

  >>> print list( (x[0,0,:] - mean) < 0.6 )
  [True, True]

  .. index:: random
     :refguide: random;distributions, random;gauss

  '''
doc = NumpyDocString(doc_txt)


def test_signature():
    assert doc['Signature'].startswith('numpy.multivariate_normal(')
    assert doc['Signature'].endswith('spam=None)')

def test_summary():
    assert doc['Summary'][0].startswith('Draw values')
    assert doc['Summary'][-1].endswith('covariance.')

def test_extended_summary():
    assert doc['Extended Summary'][0].startswith('The multivariate normal')

def test_parameters():
    assert_equal(len(doc['Parameters']), 3)
    assert_equal([n for n,_,_ in doc['Parameters']], ['mean','cov','shape'])

    arg, arg_type, desc = doc['Parameters'][1]
    assert_equal(arg_type, '(N,N) ndarray')
    assert desc[0].startswith('Covariance matrix')
    assert doc['Parameters'][0][-1][-2] == '   (1+2+3)/3'

def test_other_parameters():
    assert_equal(len(doc['Other Parameters']), 1)
    assert_equal([n for n,_,_ in doc['Other Parameters']], ['spam'])
    arg, arg_type, desc = doc['Other Parameters'][0]
    assert_equal(arg_type, 'parrot')
    assert desc[0].startswith('A parrot off its mortal coil')

def test_returns():
    assert_equal(len(doc['Returns']), 1)
    arg, arg_type, desc = doc['Returns'][0]
    assert_equal(arg, 'out')
    assert_equal(arg_type, 'ndarray')
    assert desc[0].startswith('The drawn samples')
    assert desc[-1].endswith('distribution.')

def test_notes():
    assert doc['Notes'][0].startswith('Instead')
    assert doc['Notes'][-1].endswith('definite.')
    assert_equal(len(doc['Notes']), 17)

def test_references():
    assert doc['References'][0].startswith('..')
    assert doc['References'][-1].endswith('2001.')

def test_examples():
    assert doc['Examples'][0].startswith('>>>')
    assert doc['Examples'][-1].endswith('True]')

def test_index():
    assert_equal(doc['index']['default'], 'random')
    assert_equal(len(doc['index']), 2)
    assert_equal(len(doc['index']['refguide']), 2)

def non_blank_line_by_line_compare(a,b):
    a = textwrap.dedent(a)
    b = textwrap.dedent(b)
    a = [l for l in a.split('\n') if l.strip()]
    b = [l for l in b.split('\n') if l.strip()]
    for n,line in enumerate(a):
        if not line == b[n]:
            raise AssertionError("Lines %s of a and b differ: "
                                 "\n>>> %s\n<<< %s\n" %
                                 (n,line,b[n]))
def test_str():
    non_blank_line_by_line_compare(str(doc),
"""numpy.multivariate_normal(mean, cov, shape=None, spam=None)

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

Parameters
----------
mean : (N,) ndarray
    Mean of the N-dimensional distribution.

    .. math::

       (1+2+3)/3

cov : (N,N) ndarray
    Covariance matrix of the distribution.
shape : tuple of ints
    Given a shape of, for example, (m,n,k), m*n*k samples are
    generated, and packed in an m-by-n-by-k arrangement.  Because
    each sample is N-dimensional, the output shape is (m,n,k,N).

Returns
-------
out : ndarray
    The drawn samples, arranged according to `shape`.  If the
    shape given is (m,n,...), then the shape of `out` is is
    (m,n,...,N).

    In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
    value drawn from the distribution.

Other Parameters
----------------
spam : parrot
    A parrot off its mortal coil.

Raises
------
RuntimeError : 
    Some error

Warns
-----
RuntimeWarning : 
    Some warning

Warnings
--------
Certain warnings apply.

See Also
--------
`some`_, `other`_, `funcs`_

`otherfunc`_
    relationship

Notes
-----
Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

References
----------
.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

Examples
--------
>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]

.. index:: random
   :refguide: random;distributions, random;gauss""")


def test_sphinx_str():
    sphinx_doc = SphinxDocString(doc_txt)
    non_blank_line_by_line_compare(str(sphinx_doc),
"""
.. index:: random
   single: random;distributions, random;gauss

Draw values from a multivariate normal distribution with specified
mean and covariance.

The multivariate normal or Gaussian distribution is a generalisation
of the one-dimensional normal distribution to higher dimensions.

:Parameters:

    **mean** : (N,) ndarray

        Mean of the N-dimensional distribution.

        .. math::

           (1+2+3)/3

    **cov** : (N,N) ndarray

        Covariance matrix of the distribution.

    **shape** : tuple of ints

        Given a shape of, for example, (m,n,k), m*n*k samples are
        generated, and packed in an m-by-n-by-k arrangement.  Because
        each sample is N-dimensional, the output shape is (m,n,k,N).

:Returns:

    **out** : ndarray

        The drawn samples, arranged according to `shape`.  If the
        shape given is (m,n,...), then the shape of `out` is is
        (m,n,...,N).
        
        In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
        value drawn from the distribution.

:Other Parameters:

    **spam** : parrot

        A parrot off its mortal coil.
 
:Raises:

    **RuntimeError** : 

        Some error

:Warns:

    **RuntimeWarning** : 

        Some warning

.. warning::

    Certain warnings apply.

.. seealso::
    
    :obj:`some`, :obj:`other`, :obj:`funcs`
    
    :obj:`otherfunc`
        relationship
    
.. rubric:: Notes

Instead of specifying the full covariance matrix, popular
approximations include:

  - Spherical covariance (`cov` is a multiple of the identity matrix)
  - Diagonal covariance (`cov` has non-negative elements only on the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> x,y = multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be symmetric and non-negative
definite.

.. rubric:: References

.. [1] A. Papoulis, "Probability, Random Variables, and Stochastic
       Processes," 3rd ed., McGraw-Hill Companies, 1991
.. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification,"
       2nd ed., Wiley, 2001.

.. only:: latex

   [1]_, [2]_

.. rubric:: Examples

>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = multivariate_normal(mean,cov,(3,3))
>>> print x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]
""")

       
doc2 = NumpyDocString("""
    Returns array of indices of the maximum values of along the given axis.

    Parameters
    ----------
    a : {array_like}
        Array to look in.
    axis : {None, integer}
        If None, the index is into the flattened array, otherwise along
        the specified axis""")

def test_parameters_without_extended_description():
    assert_equal(len(doc2['Parameters']), 2)

doc3 = NumpyDocString("""
    my_signature(*params, **kwds)

    Return this and that.
    """)

def test_escape_stars():
    signature = str(doc3).split('\n')[0]
    assert_equal(signature, 'my_signature(\*params, \*\*kwds)')

doc4 = NumpyDocString(
    """a.conj()

    Return an array with all complex-valued elements conjugated.""")

def test_empty_extended_summary():
    assert_equal(doc4['Extended Summary'], [])

doc5 = NumpyDocString(
    """
    a.something()

    Raises
    ------
    LinAlgException
        If array is singular.

    Warns
    -----
    SomeWarning
        If needed
    """)

def test_raises():
    assert_equal(len(doc5['Raises']), 1)
    name,_,desc = doc5['Raises'][0]
    assert_equal(name,'LinAlgException')
    assert_equal(desc,['If array is singular.'])

def test_warns():
    assert_equal(len(doc5['Warns']), 1)
    name,_,desc = doc5['Warns'][0]
    assert_equal(name,'SomeWarning')
    assert_equal(desc,['If needed'])

def test_see_also():
    doc6 = NumpyDocString(
    """
    z(x,theta)

    See Also
    --------
    func_a, func_b, func_c
    func_d : some equivalent func
    foo.func_e : some other func over
             multiple lines
    func_f, func_g, :meth:`func_h`, func_j,
    func_k
    :obj:`baz.obj_q`
    :class:`class_j`: fubar
        foobar
    """)

    assert len(doc6['See Also']) == 12
    for func, desc, role in doc6['See Also']:
        if func in ('func_a', 'func_b', 'func_c', 'func_f',
                    'func_g', 'func_h', 'func_j', 'func_k', 'baz.obj_q'):
            assert(not desc)
        else:
            assert(desc)

        if func == 'func_h':
            assert role == 'meth'
        elif func == 'baz.obj_q':
            assert role == 'obj'
        elif func == 'class_j':
            assert role == 'class'
        else:
            assert role is None

        if func == 'func_d':
            assert desc == ['some equivalent func']
        elif func == 'foo.func_e':
            assert desc == ['some other func over', 'multiple lines']
        elif func == 'class_j':
            assert desc == ['fubar', 'foobar']

def test_see_also_print():
    class Dummy(object):
        """
        See Also
        --------
        func_a, func_b
        func_c : some relationship
                 goes here
        func_d
        """
        pass

    obj = Dummy()
    s = str(FunctionDoc(obj, role='func'))
    assert(':func:`func_a`, :func:`func_b`' in s)
    assert('    some relationship' in s)
    assert(':func:`func_d`' in s)

doc7 = NumpyDocString("""

        Doc starts on second line.

        """)

def test_empty_first_line():
    assert doc7['Summary'][0].startswith('Doc starts')


def test_no_summary():
    str(SphinxDocString("""
    Parameters
    ----------"""))


def test_unicode():
    doc = SphinxDocString("""
    öäöäöäöäöåååå

    öäöäöäööäååå

    Parameters
    ----------
    ååå : äää
        ööö

    Returns
    -------
    ååå : ööö
        äää

    """)
    assert isinstance(doc['Summary'][0], str)
    if sys.version_info[0] >= 3:
        assert doc['Summary'][0] == u'öäöäöäöäöåååå'
    else:
        assert doc['Summary'][0] == u'öäöäöäöäöåååå'.encode('utf-8')

def test_plot_examples():
    cfg = dict(use_plots=True)

    doc = SphinxDocString("""
    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> plt.plot([1,2,3],[4,5,6])
    >>> plt.show()
    """, config=cfg)
    assert 'plot::' in str(doc), str(doc)

    doc = SphinxDocString("""
    Examples
    --------
    .. plot::
    
       import matplotlib.pyplot as plt
       plt.plot([1,2,3],[4,5,6])
       plt.show()
    """, config=cfg)
    assert str(doc).count('plot::') == 1, str(doc)

def test_class_members():

    class Dummy(object):
        """
        Dummy class.

        """
        def spam(self, a, b):
            """Spam\n\nSpam spam."""
            pass
        def ham(self, c, d):
            """Cheese\n\nNo cheese."""
            pass
        @property
        def spammity(self):
            """Spammity index"""
            return 0.95

        class Ignorable(object):
            """local class, to be ignored"""
            pass

    for cls in (ClassDoc, SphinxClassDoc):
        doc = cls(Dummy, config=dict(show_class_members=False))
        assert 'Methods' not in str(doc), (cls, str(doc))
        assert 'spam' not in str(doc), (cls, str(doc))
        assert 'ham' not in str(doc), (cls, str(doc))
        assert 'spammity' not in str(doc), (cls, str(doc))
        assert 'Spammity index' not in str(doc), (cls, str(doc))

        doc = cls(Dummy, config=dict(show_class_members=True))
        assert 'Methods' in str(doc), (cls, str(doc))
        assert 'spam' in str(doc), (cls, str(doc))
        assert 'ham' in str(doc), (cls, str(doc))
        assert 'spammity' in str(doc), (cls, str(doc))

        if cls is SphinxClassDoc:
            assert '.. autosummary::' in str(doc), str(doc)
        else:
            assert 'Spammity index' in str(doc), str(doc)

def test_duplicate_signature():
    # Duplicate function signatures occur e.g. in ufuncs, when the
    # automatic mechanism adds one, and a more detailed comes from the
    # docstring itself.

    doc = NumpyDocString(
    """
    z(x1, x2)

    z(a, theta)
    """)

    assert doc['Signature'].strip() == 'z(a, theta)'


class_doc_txt = """
    Foo

    Parameters
    ----------
    f : callable ``f(t, y, *f_args)``
        Aaa.
    jac : callable ``jac(t, y, *jac_args)``
        Bbb.

    Attributes
    ----------
    t : float
        Current time.
    y : ndarray
        Current variable values.

    Methods
    -------
    a
    b
    c

    Examples
    --------
    For usage examples, see `ode`.
"""

def test_class_members_doc():
    doc = ClassDoc(None, class_doc_txt)
    non_blank_line_by_line_compare(str(doc),
    """
    Foo

    Parameters
    ----------
    f : callable ``f(t, y, *f_args)``
        Aaa.
    jac : callable ``jac(t, y, *jac_args)``
        Bbb.

    Examples
    --------
    For usage examples, see `ode`.

    Attributes
    ----------
    t : float
        Current time.
    y : ndarray
        Current variable values.

    Methods
    -------
    a : 

    b : 

    c : 

    .. index:: 

    """)

def test_class_members_doc_sphinx():
    doc = SphinxClassDoc(None, class_doc_txt)
    non_blank_line_by_line_compare(str(doc),
    """
    Foo

    :Parameters:

        **f** : callable ``f(t, y, *f_args)``

            Aaa.

        **jac** : callable ``jac(t, y, *jac_args)``

            Bbb.

    .. rubric:: Examples

    For usage examples, see `ode`.

    .. rubric:: Attributes

    ===  ==========
      t  (float) Current time.  
      y  (ndarray) Current variable values.  
    ===  ==========

    .. rubric:: Methods

    ===  ==========
      a    
      b    
      c    
    ===  ==========

    """)

if __name__ == "__main__":
    import nose
    nose.run()