1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
from __future__ import annotations
from ._types import (Optional, SupportsDLPack, SupportsBufferProtocol, Tuple,
Union, array, device, dtype)
import numpy as np
def asarray(obj: Union[float, NestedSequence[bool|int|float], SupportsDLPack, SupportsBufferProtocol], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None, copy: Optional[bool] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
See its docstring for more information.
"""
from ._array_object import ndarray
from . import _dtypes
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
if copy is not None:
# Note: copy is not yet implemented in np.asarray
raise NotImplementedError("The copy keyword argument to asarray is not yet implemented")
if isinstance(obj, ndarray):
return obj
res = np.asarray(obj, dtype=dtype)
if res.dtype not in _dtypes._all_dtypes:
raise TypeError(f"The array_api namespace does not support the dtype '{res.dtype}'")
return ndarray._new(res)
def arange(start: Union[int, float], /, *, stop: Optional[Union[int, float]] = None, step: Union[int, float] = 1, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.arange(start, stop=stop, step=step, dtype=dtype))
def empty(shape: Union[int, Tuple[int, ...]], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.empty(shape, dtype=dtype))
def empty_like(x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.empty_like._implementation(x._array, dtype=dtype))
def eye(N: int, /, *, M: Optional[int] = None, k: Optional[int] = 0, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.eye(N, M=M, k=k, dtype=dtype))
def from_dlpack(x: object, /) -> array:
# Note: dlpack support is not yet implemented on ndarray
raise NotImplementedError("DLPack support is not yet implemented")
def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[int, float], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.full(shape, fill_value, dtype=dtype))
def full_like(x: array, fill_value: Union[int, float], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.full_like._implementation(x._array, fill_value, dtype=dtype))
def linspace(start: Union[int, float], stop: Union[int, float], num: int, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None, endpoint: bool = True) -> array:
"""
Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
def ones(shape: Union[int, Tuple[int, ...]], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.ones(shape, dtype=dtype))
def ones_like(x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.ones_like._implementation(x._array, dtype=dtype))
def zeros(shape: Union[int, Tuple[int, ...]], /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.zeros(shape, dtype=dtype))
def zeros_like(x: array, /, *, dtype: Optional[dtype] = None, device: Optional[device] = None) -> array:
"""
Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
See its docstring for more information.
"""
from ._array_object import ndarray
if device is not None:
# Note: Device support is not yet implemented on ndarray
raise NotImplementedError("Device support is not yet implemented")
return ndarray._new(np.zeros_like._implementation(x._array, dtype=dtype))
|