summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
blob: 0200538966fec8fb580f85bdfc32c9a6c6d8964a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from __future__ import annotations

from ._types import Optional, Tuple, Union, array

import numpy as np

def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
    return np.max(x, axis=axis, keepdims=keepdims)

def mean(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
    return np.mean(x, axis=axis, keepdims=keepdims)

def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
    return np.min(x, axis=axis, keepdims=keepdims)

def prod(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
    return np.prod(x, axis=axis, keepdims=keepdims)

def std(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
    # Note: the keyword argument correction is different here
    return np.std(x, axis=axis, ddof=correction, keepdims=keepdims)

def sum(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
    return np.sum(x, axis=axis, keepdims=keepdims)

def var(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
    # Note: the keyword argument correction is different here
    return np.var(x, axis=axis, ddof=correction, keepdims=keepdims)