summaryrefslogtreecommitdiff
path: root/numpy/core/numeric.pyi
blob: 19720fbdcc9b0673d7a04d73b580a8bd9d7dfaf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Any, Optional, Union, Sequence, Tuple

from numpy import ndarray, dtype, bool_, _OrderKACF, _OrderCF
from numpy.typing import ArrayLike, DtypeLike, _ShapeLike

def zeros_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[Union[int, Sequence[int]]] = ...,
) -> ndarray: ...
def ones(
    shape: _ShapeLike,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def ones_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def empty_like(
    a: ArrayLike,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def full(
    shape: _ShapeLike,
    fill_value: Any,
    dtype: DtypeLike = ...,
    order: _OrderCF = ...,
    *,
    like: ArrayLike = ...,
) -> ndarray: ...
def full_like(
    a: ArrayLike,
    fill_value: Any,
    dtype: DtypeLike = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    shape: Optional[_ShapeLike] = ...,
) -> ndarray: ...
def count_nonzero(
    a: ArrayLike, axis: Optional[Union[int, Tuple[int], Tuple[int, int]]] = ...
) -> Union[int, ndarray]: ...
def isfortran(a: ndarray) -> bool: ...
def argwhere(a: ArrayLike) -> ndarray: ...
def flatnonzero(a: ArrayLike) -> ndarray: ...

_CorrelateMode = Literal["valid", "same", "full"]

def correlate(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
def convolve(a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ...) -> ndarray: ...
def outer(a: ArrayLike, b: ArrayLike, out: ndarray = ...) -> ndarray: ...
def tensordot(
    a: ArrayLike,
    b: ArrayLike,
    axes: Union[
        int, Tuple[int, int], Tuple[Tuple[int, int], ...], Tuple[List[int, int], ...]
    ] = ...,
) -> ndarray: ...
def roll(
    a: ArrayLike,
    shift: Union[int, Tuple[int, ...]],
    axis: Optional[Union[int, Tuple[int, ...]]] = ...,
) -> ndarray: ...
def rollaxis(a: ArrayLike, axis: int, start: int = ...) -> ndarray: ...
def moveaxis(
    a: ndarray,
    source: Union[int, Sequence[int]],
    destination: Union[int, Sequence[int]],
) -> ndarray: ...
def cross(
    a: ArrayLike,
    b: ArrayLike,
    axisa: int = ...,
    axisb: int = ...,
    axisc: int = ...,
    axis: Optional[int] = ...,
) -> ndarray: ...
def indices(
    dimensions: Sequence[int], dtype: dtype = ..., sparse: bool = ...
) -> Union[ndarray, Tuple[ndarray, ...]]: ...
def fromfunction(
    function: Callable,
    shape: Tuple[int, int],
    *,
    like: ArrayLike = ...,
    **kwargs,
) -> Any: ...
def isscalar(element: Any) -> bool: ...
def binary_repr(num: int, width: Optional[int] = ...) -> str: ...
def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ...
def identity(n: int, dtype: DtypeLike = ..., *, like: ArrayLike = ...) -> ndarray: ...
def allclose(
    a: ArrayLike,
    b: ArrayLike,
    rtol: float = ...,
    atol: float = ...,
    equal_nan: bool = ...,
) -> bool: ...
def isclose(
    a: ArrayLike,
    b: ArrayLike,
    rtol: float = ...,
    atol: float = ...,
    equal_nan: bool = ...,
) -> Union[bool_, ndarray]: ...
def array_equal(a1: ArrayLike, a2: ArrayLike) -> bool: ...
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...