summaryrefslogtreecommitdiff
path: root/numpy/core/src/common/simd/sse/memory.h
blob: 3ff64848d281629876e0a488273ffa6a21c48b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#ifndef NPY_SIMD
    #error "Not a standalone header"
#endif

#ifndef _NPY_SIMD_SSE_MEMORY_H
#define _NPY_SIMD_SSE_MEMORY_H

#include "misc.h"

/***************************
 * load/store
 ***************************/
// stream load
#ifdef NPY_HAVE_SSE41
    #define npyv__loads(PTR) _mm_stream_load_si128((__m128i *)(PTR))
#else
    #define npyv__loads(PTR) _mm_load_si128((const __m128i *)(PTR))
#endif
#define NPYV_IMPL_SSE_MEM_INT(CTYPE, SFX)                                    \
    NPY_FINLINE npyv_##SFX npyv_load_##SFX(const CTYPE *ptr)                 \
    { return _mm_loadu_si128((const __m128i*)ptr); }                         \
    NPY_FINLINE npyv_##SFX npyv_loada_##SFX(const CTYPE *ptr)                \
    { return _mm_load_si128((const __m128i*)ptr); }                          \
    NPY_FINLINE npyv_##SFX npyv_loads_##SFX(const CTYPE *ptr)                \
    { return npyv__loads(ptr); }                                             \
    NPY_FINLINE npyv_##SFX npyv_loadl_##SFX(const CTYPE *ptr)                \
    { return _mm_loadl_epi64((const __m128i*)ptr); }                         \
    NPY_FINLINE void npyv_store_##SFX(CTYPE *ptr, npyv_##SFX vec)            \
    { _mm_storeu_si128((__m128i*)ptr, vec); }                                \
    NPY_FINLINE void npyv_storea_##SFX(CTYPE *ptr, npyv_##SFX vec)           \
    { _mm_store_si128((__m128i*)ptr, vec); }                                 \
    NPY_FINLINE void npyv_stores_##SFX(CTYPE *ptr, npyv_##SFX vec)           \
    { _mm_stream_si128((__m128i*)ptr, vec); }                                \
    NPY_FINLINE void npyv_storel_##SFX(CTYPE *ptr, npyv_##SFX vec)           \
    { _mm_storel_epi64((__m128i *)ptr, vec); }                               \
    NPY_FINLINE void npyv_storeh_##SFX(CTYPE *ptr, npyv_##SFX vec)           \
    { _mm_storel_epi64((__m128i *)ptr, _mm_unpackhi_epi64(vec, vec)); }

NPYV_IMPL_SSE_MEM_INT(npy_uint8,  u8)
NPYV_IMPL_SSE_MEM_INT(npy_int8,   s8)
NPYV_IMPL_SSE_MEM_INT(npy_uint16, u16)
NPYV_IMPL_SSE_MEM_INT(npy_int16,  s16)
NPYV_IMPL_SSE_MEM_INT(npy_uint32, u32)
NPYV_IMPL_SSE_MEM_INT(npy_int32,  s32)
NPYV_IMPL_SSE_MEM_INT(npy_uint64, u64)
NPYV_IMPL_SSE_MEM_INT(npy_int64,  s64)

// unaligned load
#define npyv_load_f32 _mm_loadu_ps
#define npyv_load_f64 _mm_loadu_pd
// aligned load
#define npyv_loada_f32 _mm_load_ps
#define npyv_loada_f64 _mm_load_pd
// load lower part
#define npyv_loadl_f32(PTR) _mm_castsi128_ps(npyv_loadl_u32((const npy_uint32*)(PTR)))
#define npyv_loadl_f64(PTR) _mm_castsi128_pd(npyv_loadl_u32((const npy_uint32*)(PTR)))
// stream load
#define npyv_loads_f32(PTR) _mm_castsi128_ps(npyv__loads(PTR))
#define npyv_loads_f64(PTR) _mm_castsi128_pd(npyv__loads(PTR))
// unaligned store
#define npyv_store_f32 _mm_storeu_ps
#define npyv_store_f64 _mm_storeu_pd
// aligned store
#define npyv_storea_f32 _mm_store_ps
#define npyv_storea_f64 _mm_store_pd
// stream store
#define npyv_stores_f32 _mm_stream_ps
#define npyv_stores_f64 _mm_stream_pd
// store lower part
#define npyv_storel_f32(PTR, VEC) _mm_storel_epi64((__m128i*)(PTR), _mm_castps_si128(VEC));
#define npyv_storel_f64(PTR, VEC) _mm_storel_epi64((__m128i*)(PTR), _mm_castpd_si128(VEC));
// store higher part
#define npyv_storeh_f32(PTR, VEC) npyv_storeh_u32((npy_uint32*)(PTR), _mm_castps_si128(VEC))
#define npyv_storeh_f64(PTR, VEC) npyv_storeh_u32((npy_uint32*)(PTR), _mm_castpd_si128(VEC))
/***************************
 * Non-contiguous Load
 ***************************/
//// 32
NPY_FINLINE npyv_s32 npyv_loadn_s32(const npy_int32 *ptr, npy_intp stride)
{
    __m128i a = _mm_cvtsi32_si128(*ptr);
#ifdef NPY_HAVE_SSE41
    a = _mm_insert_epi32(a, ptr[stride],   1);
    a = _mm_insert_epi32(a, ptr[stride*2], 2);
    a = _mm_insert_epi32(a, ptr[stride*3], 3);
#else
    __m128i a1 = _mm_cvtsi32_si128(ptr[stride]);
    __m128i a2 = _mm_cvtsi32_si128(ptr[stride*2]);
    __m128i a3 = _mm_cvtsi32_si128(ptr[stride*3]);
    a = _mm_unpacklo_epi32(a, a1);
    a = _mm_unpacklo_epi64(a, _mm_unpacklo_epi32(a2, a3));
#endif
    return a;
}
NPY_FINLINE npyv_u32 npyv_loadn_u32(const npy_uint32 *ptr, npy_intp stride)
{ return npyv_loadn_s32((const npy_int32*)ptr, stride); }
NPY_FINLINE npyv_f32 npyv_loadn_f32(const float *ptr, npy_intp stride)
{ return _mm_castsi128_ps(npyv_loadn_s32((const npy_int32*)ptr, stride)); }
//// 64
NPY_FINLINE npyv_f64 npyv_loadn_f64(const double *ptr, npy_intp stride)
{ return _mm_loadh_pd(npyv_loadl_f64(ptr), ptr + stride); }
NPY_FINLINE npyv_u64 npyv_loadn_u64(const npy_uint64 *ptr, npy_intp stride)
{ return _mm_castpd_si128(npyv_loadn_f64((const double*)ptr, stride)); }
NPY_FINLINE npyv_s64 npyv_loadn_s64(const npy_int64 *ptr, npy_intp stride)
{ return _mm_castpd_si128(npyv_loadn_f64((const double*)ptr, stride)); }
/***************************
 * Non-contiguous Store
 ***************************/
//// 32
NPY_FINLINE void npyv_storen_s32(npy_int32 *ptr, npy_intp stride, npyv_s32 a)
{
    ptr[stride * 0] = _mm_cvtsi128_si32(a);
#ifdef NPY_HAVE_SSE41
    ptr[stride * 1] = _mm_extract_epi32(a, 1);
    ptr[stride * 2] = _mm_extract_epi32(a, 2);
    ptr[stride * 3] = _mm_extract_epi32(a, 3);
#else
    ptr[stride * 1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 1)));
    ptr[stride * 2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 2)));
    ptr[stride * 3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 3)));
#endif
}
NPY_FINLINE void npyv_storen_u32(npy_uint32 *ptr, npy_intp stride, npyv_u32 a)
{ npyv_storen_s32((npy_int32*)ptr, stride, a); }
NPY_FINLINE void npyv_storen_f32(float *ptr, npy_intp stride, npyv_f32 a)
{ npyv_storen_s32((npy_int32*)ptr, stride, _mm_castps_si128(a)); }
//// 64
NPY_FINLINE void npyv_storen_f64(double *ptr, npy_intp stride, npyv_f64 a)
{
    _mm_storel_pd(ptr, a);
    _mm_storeh_pd(ptr + stride, a);
}
NPY_FINLINE void npyv_storen_u64(npy_uint64 *ptr, npy_intp stride, npyv_u64 a)
{ npyv_storen_f64((double*)ptr, stride, _mm_castsi128_pd(a)); }
NPY_FINLINE void npyv_storen_s64(npy_int64 *ptr, npy_intp stride, npyv_s64 a)
{ npyv_storen_f64((double*)ptr, stride, _mm_castsi128_pd(a)); }

/*********************************
 * Partial Load
 *********************************/
#if defined(__clang__) && __clang_major__ > 7
    /**
     * Clang >=8 perform aggressive optimization that tends to
     * zero the bits of upper half part of vectors even
     * when we try to fill it up with certain scalars,
     * which my lead to zero division errors.
    */
    #define NPYV__CLANG_ZEROUPPER
#endif
//// 32
NPY_FINLINE npyv_s32 npyv_load_till_s32(const npy_int32 *ptr, npy_uintp nlane, npy_int32 fill)
{
    assert(nlane > 0);
#ifdef NPYV__CLANG_ZEROUPPER
    if (nlane > 3) {
        return npyv_load_s32(ptr);
    }
    npy_int32 NPY_DECL_ALIGNED(16) data[4] = {fill, fill, fill, fill};
    for (npy_uint64 i = 0; i < nlane; ++i) {
        data[i] = ptr[i];
    }
    return npyv_loada_s32(data);
#else
    #ifndef NPY_HAVE_SSE41
        const short *wptr = (const short*)ptr;
    #endif
    const __m128i vfill = npyv_setall_s32(fill);
    __m128i a;
    switch(nlane) {
    case 2:
        return _mm_castpd_si128(
            _mm_loadl_pd(_mm_castsi128_pd(vfill), (double*)ptr)
        );
    #ifdef NPY_HAVE_SSE41
        case 1:
            return _mm_insert_epi32(vfill, ptr[0], 0);
        case 3:
            a = _mm_loadl_epi64((const __m128i*)ptr);
            a = _mm_insert_epi32(a, ptr[2], 2);
            a = _mm_insert_epi32(a, fill, 3);
            return a;
    #else
        case 1:
            a = _mm_insert_epi16(vfill, wptr[0], 0);
            return _mm_insert_epi16(a, wptr[1], 1);
        case 3:
            a = _mm_loadl_epi64((const __m128i*)ptr);
            a = _mm_unpacklo_epi64(a, vfill);
            a = _mm_insert_epi16(a, wptr[4], 4);
            a = _mm_insert_epi16(a, wptr[5], 5);
            return a;
    #endif // NPY_HAVE_SSE41
        default:
            return npyv_load_s32(ptr);
        }
#endif
}
// fill zero to rest lanes
NPY_FINLINE npyv_s32 npyv_load_tillz_s32(const npy_int32 *ptr, npy_uintp nlane)
{
    assert(nlane > 0);
    switch(nlane) {
    case 1:
        return _mm_cvtsi32_si128(*ptr);
    case 2:
        return _mm_loadl_epi64((const __m128i*)ptr);
    case 3:;
        npyv_s32 a = _mm_loadl_epi64((const __m128i*)ptr);
    #ifdef NPY_HAVE_SSE41
        return _mm_insert_epi32(a, ptr[2], 2);
    #else
        return _mm_unpacklo_epi64(a, _mm_cvtsi32_si128(ptr[2]));
    #endif
    default:
        return npyv_load_s32(ptr);
    }
}
//// 64
NPY_FINLINE npyv_s64 npyv_load_till_s64(const npy_int64 *ptr, npy_uintp nlane, npy_int64 fill)
{
    assert(nlane > 0);
#ifdef NPYV__CLANG_ZEROUPPER
    if (nlane <= 2) {
        npy_int64 NPY_DECL_ALIGNED(16) data[2] = {fill, fill};
        for (npy_uint64 i = 0; i < nlane; ++i) {
            data[i] = ptr[i];
        }
        return npyv_loada_s64(data);
    }
#else
    if (nlane == 1) {
        const __m128i vfill = npyv_setall_s64(fill);
        return _mm_castpd_si128(
            _mm_loadl_pd(_mm_castsi128_pd(vfill), (double*)ptr)
        );
    }
#endif
    return npyv_load_s64(ptr);
}
// fill zero to rest lanes
NPY_FINLINE npyv_s64 npyv_load_tillz_s64(const npy_int64 *ptr, npy_uintp nlane)
{
    assert(nlane > 0);
    if (nlane == 1) {
        return _mm_loadl_epi64((const __m128i*)ptr);
    }
    return npyv_load_s64(ptr);
}
/*********************************
 * Non-contiguous partial load
 *********************************/
//// 32
NPY_FINLINE npyv_s32
npyv_loadn_till_s32(const npy_int32 *ptr, npy_intp stride, npy_uintp nlane, npy_int32 fill)
{
    assert(nlane > 0);
#ifdef NPYV__CLANG_ZEROUPPER
    if (nlane > 3) {
        return npyv_loadn_s32(ptr, stride);
    }
    npy_int32 NPY_DECL_ALIGNED(16) data[4] = {fill, fill, fill, fill};
    for (npy_uint64 i = 0; i < nlane; ++i) {
        data[i] = ptr[stride*i];
    }
    return npyv_loada_s32(data);
#else
    __m128i vfill = npyv_setall_s32(fill);
    #ifndef NPY_HAVE_SSE41
        const short *wptr = (const short*)ptr;
    #endif
    switch(nlane) {
    #ifdef NPY_HAVE_SSE41
        case 3:
            vfill = _mm_insert_epi32(vfill, ptr[stride*2], 2);
        case 2:
            vfill = _mm_insert_epi32(vfill, ptr[stride], 1);
        case 1:
            vfill = _mm_insert_epi32(vfill, ptr[0], 0);
            break;
    #else
        case 3:
            vfill = _mm_unpacklo_epi32(_mm_cvtsi32_si128(ptr[stride*2]), vfill);
        case 2:
            vfill = _mm_unpacklo_epi64(_mm_unpacklo_epi32(
                _mm_cvtsi32_si128(*ptr), _mm_cvtsi32_si128(ptr[stride])
            ), vfill);
            break;
        case 1:
            vfill = _mm_insert_epi16(vfill, wptr[0], 0);
            vfill = _mm_insert_epi16(vfill, wptr[1], 1);
            break;
    #endif // NPY_HAVE_SSE41
    default:
        return npyv_loadn_s32(ptr, stride);
    } // switch
    return vfill;
#endif
}
// fill zero to rest lanes
NPY_FINLINE npyv_s32
npyv_loadn_tillz_s32(const npy_int32 *ptr, npy_intp stride, npy_uintp nlane)
{
    assert(nlane > 0);
    switch(nlane) {
    case 1:
        return _mm_cvtsi32_si128(ptr[0]);
    case 2:;
        npyv_s32 a = _mm_cvtsi32_si128(ptr[0]);
#ifdef NPY_HAVE_SSE41
        return _mm_insert_epi32(a, ptr[stride], 1);
#else
        return _mm_unpacklo_epi32(a, _mm_cvtsi32_si128(ptr[stride]));
#endif // NPY_HAVE_SSE41
    case 3:;
        a = _mm_cvtsi32_si128(ptr[0]);
#ifdef NPY_HAVE_SSE41
        a = _mm_insert_epi32(a, ptr[stride], 1);
        a = _mm_insert_epi32(a, ptr[stride*2], 2);
        return a;
#else
        a = _mm_unpacklo_epi32(a, _mm_cvtsi32_si128(ptr[stride]));
        a = _mm_unpacklo_epi64(a, _mm_cvtsi32_si128(ptr[stride*2]));
        return a;
#endif // NPY_HAVE_SSE41
    default:
        return npyv_loadn_s32(ptr, stride);
    }
}
//// 64
NPY_FINLINE npyv_s64
npyv_loadn_till_s64(const npy_int64 *ptr, npy_intp stride, npy_uintp nlane, npy_int64 fill)
{
    assert(nlane > 0);
#ifdef NPYV__CLANG_ZEROUPPER
    if (nlane <= 2) {
        npy_int64 NPY_DECL_ALIGNED(16) data[2] = {fill, fill};
        for (npy_uint64 i = 0; i < nlane; ++i) {
            data[i] = ptr[i*stride];
        }
        return npyv_loada_s64(data);
    }
#else
    if (nlane == 1) {
        const __m128i vfill = npyv_setall_s64(fill);
        return _mm_castpd_si128(
            _mm_loadl_pd(_mm_castsi128_pd(vfill), (double*)ptr)
        );
    }
#endif
    return npyv_loadn_s64(ptr, stride);
}
// fill zero to rest lanes
NPY_FINLINE npyv_s64 npyv_loadn_tillz_s64(const npy_int64 *ptr, npy_intp stride, npy_uintp nlane)
{
    assert(nlane > 0);
    if (nlane == 1) {
        return _mm_loadl_epi64((const __m128i*)ptr);
    }
    return npyv_loadn_s64(ptr, stride);
}
/*********************************
 * Partial store
 *********************************/
//// 32
NPY_FINLINE void npyv_store_till_s32(npy_int32 *ptr, npy_uintp nlane, npyv_s32 a)
{
    assert(nlane > 0);
    switch(nlane) {
    case 1:
        *ptr = _mm_cvtsi128_si32(a);
        break;
    case 2:
        _mm_storel_epi64((__m128i *)ptr, a);
        break;
    case 3:
        _mm_storel_epi64((__m128i *)ptr, a);
    #ifdef NPY_HAVE_SSE41
        ptr[2] = _mm_extract_epi32(a, 2);
    #else
        ptr[2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 2)));
    #endif
        break;
    default:
        npyv_store_s32(ptr, a);
    }
}
//// 64
NPY_FINLINE void npyv_store_till_s64(npy_int64 *ptr, npy_uintp nlane, npyv_s64 a)
{
    assert(nlane > 0);
    if (nlane == 1) {
        _mm_storel_epi64((__m128i *)ptr, a);
        return;
    }
    npyv_store_s64(ptr, a);
}
/*********************************
 * Non-contiguous partial store
 *********************************/
//// 32
NPY_FINLINE void npyv_storen_till_s32(npy_int32 *ptr, npy_intp stride, npy_uintp nlane, npyv_s32 a)
{
    assert(nlane > 0);
    switch(nlane) {
#ifdef NPY_HAVE_SSE41
    default:
        ptr[stride*3] = _mm_extract_epi32(a, 3);
    case 3:
        ptr[stride*2] = _mm_extract_epi32(a, 2);
    case 2:
        ptr[stride*1] = _mm_extract_epi32(a, 1);
#else
    default:
        ptr[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 3)));
    case 3:
        ptr[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 2)));
    case 2:
        ptr[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 0, 1)));
#endif
    case 1:
        ptr[stride*0] = _mm_cvtsi128_si32(a);
        break;
    }
}
//// 64
NPY_FINLINE void npyv_storen_till_s64(npy_int64 *ptr, npy_intp stride, npy_uintp nlane, npyv_s64 a)
{
    assert(nlane > 0);
    if (nlane == 1) {
        _mm_storel_epi64((__m128i *)ptr, a);
        return;
    }
    npyv_storen_s64(ptr, stride, a);
}
/*****************************************************************
 * Implement partial load/store for u32/f32/u64/f64... via casting
 *****************************************************************/
#define NPYV_IMPL_SSE_REST_PARTIAL_TYPES(F_SFX, T_SFX)                                      \
    NPY_FINLINE npyv_##F_SFX npyv_load_till_##F_SFX                                         \
    (const npyv_lanetype_##F_SFX *ptr, npy_uintp nlane, npyv_lanetype_##F_SFX fill)         \
    {                                                                                       \
        union {                                                                             \
            npyv_lanetype_##F_SFX from_##F_SFX;                                             \
            npyv_lanetype_##T_SFX to_##T_SFX;                                               \
        } pun = {.from_##F_SFX = fill};                                                     \
        return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_load_till_##T_SFX(                   \
            (const npyv_lanetype_##T_SFX *)ptr, nlane, pun.to_##T_SFX                       \
        ));                                                                                 \
    }                                                                                       \
    NPY_FINLINE npyv_##F_SFX npyv_loadn_till_##F_SFX                                        \
    (const npyv_lanetype_##F_SFX *ptr, npy_intp stride, npy_uintp nlane,                    \
     npyv_lanetype_##F_SFX fill)                                                            \
    {                                                                                       \
        union {                                                                             \
            npyv_lanetype_##F_SFX from_##F_SFX;                                             \
            npyv_lanetype_##T_SFX to_##T_SFX;                                               \
        } pun = {.from_##F_SFX = fill};                                                     \
        return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_loadn_till_##T_SFX(                  \
            (const npyv_lanetype_##T_SFX *)ptr, stride, nlane, pun.to_##T_SFX               \
        ));                                                                                 \
    }                                                                                       \
    NPY_FINLINE npyv_##F_SFX npyv_load_tillz_##F_SFX                                        \
    (const npyv_lanetype_##F_SFX *ptr, npy_uintp nlane)                                     \
    {                                                                                       \
        return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_load_tillz_##T_SFX(                  \
            (const npyv_lanetype_##T_SFX *)ptr, nlane                                       \
        ));                                                                                 \
    }                                                                                       \
    NPY_FINLINE npyv_##F_SFX npyv_loadn_tillz_##F_SFX                                       \
    (const npyv_lanetype_##F_SFX *ptr, npy_intp stride, npy_uintp nlane)                    \
    {                                                                                       \
        return npyv_reinterpret_##F_SFX##_##T_SFX(npyv_loadn_tillz_##T_SFX(                 \
            (const npyv_lanetype_##T_SFX *)ptr, stride, nlane                               \
        ));                                                                                 \
    }                                                                                       \
    NPY_FINLINE void npyv_store_till_##F_SFX                                                \
    (npyv_lanetype_##F_SFX *ptr, npy_uintp nlane, npyv_##F_SFX a)                           \
    {                                                                                       \
        npyv_store_till_##T_SFX(                                                            \
            (npyv_lanetype_##T_SFX *)ptr, nlane,                                            \
            npyv_reinterpret_##T_SFX##_##F_SFX(a)                                           \
        );                                                                                  \
    }                                                                                       \
    NPY_FINLINE void npyv_storen_till_##F_SFX                                               \
    (npyv_lanetype_##F_SFX *ptr, npy_intp stride, npy_uintp nlane, npyv_##F_SFX a)          \
    {                                                                                       \
        npyv_storen_till_##T_SFX(                                                           \
            (npyv_lanetype_##T_SFX *)ptr, stride, nlane,                                    \
            npyv_reinterpret_##T_SFX##_##F_SFX(a)                                           \
        );                                                                                  \
    }

NPYV_IMPL_SSE_REST_PARTIAL_TYPES(u32, s32)
NPYV_IMPL_SSE_REST_PARTIAL_TYPES(f32, s32)
NPYV_IMPL_SSE_REST_PARTIAL_TYPES(u64, s64)
NPYV_IMPL_SSE_REST_PARTIAL_TYPES(f64, s64)

/*********************************
 * Lookup table
 *********************************/
// uses vector as indexes into a table
// that contains 32 elements of float32.
NPY_FINLINE npyv_f32 npyv_lut32_f32(const float *table, npyv_u32 idx)
{
    const int i0 = _mm_cvtsi128_si32(idx);
#ifdef NPY_HAVE_SSE41
    const int i1 = _mm_extract_epi32(idx, 1);
    const int i2 = _mm_extract_epi32(idx, 2);
    const int i3 = _mm_extract_epi32(idx, 3);
#else
    const int i1 = _mm_extract_epi16(idx, 2);
    const int i2 = _mm_extract_epi16(idx, 4);
    const int i3 = _mm_extract_epi16(idx, 6);
#endif
    return npyv_set_f32(table[i0], table[i1], table[i2], table[i3]);
}
NPY_FINLINE npyv_u32 npyv_lut32_u32(const npy_uint32 *table, npyv_u32 idx)
{ return npyv_reinterpret_u32_f32(npyv_lut32_f32((const float*)table, idx)); }
NPY_FINLINE npyv_s32 npyv_lut32_s32(const npy_int32 *table, npyv_u32 idx)
{ return npyv_reinterpret_s32_f32(npyv_lut32_f32((const float*)table, idx)); }

// uses vector as indexes into a table
// that contains 16 elements of float64.
NPY_FINLINE npyv_f64 npyv_lut16_f64(const double *table, npyv_u64 idx)
{
    const int i0 = _mm_cvtsi128_si32(idx);
#ifdef NPY_HAVE_SSE41
    const int i1 = _mm_extract_epi32(idx, 2);
#else
    const int i1 = _mm_extract_epi16(idx, 4);
#endif
    return npyv_set_f64(table[i0], table[i1]);
}
NPY_FINLINE npyv_u64 npyv_lut16_u64(const npy_uint64 *table, npyv_u64 idx)
{ return npyv_reinterpret_u64_f64(npyv_lut16_f64((const double*)table, idx)); }
NPY_FINLINE npyv_s64 npyv_lut16_s64(const npy_int64 *table, npyv_u64 idx)
{ return npyv_reinterpret_s64_f64(npyv_lut16_f64((const double*)table, idx)); }

#endif // _NPY_SIMD_SSE_MEMORY_H