summaryrefslogtreecommitdiff
path: root/numpy/core/src/npysort/x86-qsort.dispatch.cpp
blob: 8e88cc667094afa2a02bdab1cb48491db41bc25a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/*@targets
 * $maxopt $keep_baseline avx512_skx
 */
// policy $keep_baseline is used to avoid skip building avx512_skx
// when its part of baseline features (--cpu-baseline), since
// 'baseline' option isn't specified within targets.

#include "x86-qsort.h"
#define NPY_NO_DEPRECATED_API NPY_API_VERSION

#ifdef NPY_HAVE_AVX512_SKX
#include "numpy/npy_math.h"

#include "npy_sort.h"
#include "numpy_tag.h"

#include "simd/simd.h"
#include <immintrin.h>

template <typename Tag, typename type>
NPY_NO_EXPORT int
heapsort_(type *start, npy_intp n);

/*
 * Quicksort using AVX-512 for int, uint32 and float. The ideas and code are
 * based on these two research papers:
 * (1) Fast and Robust Vectorized In-Place Sorting of Primitive Types
 *     https://drops.dagstuhl.de/opus/volltexte/2021/13775/
 * (2) A Novel Hybrid Quicksort Algorithm Vectorized using AVX-512 on Intel
 * Skylake https://arxiv.org/pdf/1704.08579.pdf
 *
 * High level idea: Vectorize the quicksort partitioning using AVX-512
 * compressstore instructions. The algorithm to pick the pivot is to use median
 * of 72 elements picked at random. If the array size is < 128, then use
 * Bitonic sorting network. Good resource for bitonic sorting network:
 * http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&fn=Chapter%2027.pdf&id=8030
 *
 * Refer to https://github.com/numpy/numpy/pull/20133#issuecomment-958110340
 * for potential problems when converting this code to universal intrinsics
 * framework.
 */

/*
 * Constants used in sorting 16 elements in a ZMM registers. Based on Bitonic
 * sorting network (see
 * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg)
 */
#define NETWORK1 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1
#define NETWORK2 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3
#define NETWORK3 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7
#define NETWORK4 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2
#define NETWORK5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define NETWORK6 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4
#define NETWORK7 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
#define ZMM_MAX_FLOAT _mm512_set1_ps(NPY_INFINITYF)
#define ZMM_MAX_UINT _mm512_set1_epi32(NPY_MAX_UINT32)
#define ZMM_MAX_INT _mm512_set1_epi32(NPY_MAX_INT32)
#define SHUFFLE_MASK(a, b, c, d) (a << 6) | (b << 4) | (c << 2) | d
#define SHUFFLE_ps(ZMM, MASK) _mm512_shuffle_ps(zmm, zmm, MASK)
#define SHUFFLE_epi32(ZMM, MASK) _mm512_shuffle_epi32(zmm, MASK)

#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))

/*
 * Vectorized random number generator xoroshiro128+. Broken into 2 parts:
 * (1) vnext generates 2 64-bit random integers
 * (2) rnd_epu32 converts this to 4 32-bit random integers and bounds it to
 *     the length of the array
 */
#define VROTL(x, k) /* rotate each uint64_t value in vector */ \
    _mm256_or_si256(_mm256_slli_epi64((x), (k)),               \
                    _mm256_srli_epi64((x), 64 - (k)))

static inline __m256i
vnext(__m256i *s0, __m256i *s1)
{
    *s1 = _mm256_xor_si256(*s0, *s1); /* modify vectors s1 and s0 */
    *s0 = _mm256_xor_si256(_mm256_xor_si256(VROTL(*s0, 24), *s1),
                           _mm256_slli_epi64(*s1, 16));
    *s1 = VROTL(*s1, 37);
    return _mm256_add_epi64(*s0, *s1); /* return random vector */
}

/* transform random numbers to the range between 0 and bound - 1 */
static inline __m256i
rnd_epu32(__m256i rnd_vec, __m256i bound)
{
    __m256i even = _mm256_srli_epi64(_mm256_mul_epu32(rnd_vec, bound), 32);
    __m256i odd = _mm256_mul_epu32(_mm256_srli_epi64(rnd_vec, 32), bound);
    return _mm256_blend_epi32(odd, even, 0b01010101);
}

template <typename type>
struct vector;

template <>
struct vector<npy_int> {
    using tag = npy::int_tag;
    using type_t = npy_int;
    using zmm_t = __m512i;
    using ymm_t = __m256i;

    static type_t type_max() { return NPY_MAX_INT32; }
    static type_t type_min() { return NPY_MIN_INT32; }
    static zmm_t zmm_max() { return _mm512_set1_epi32(type_max()); }

    static __mmask16 ge(zmm_t x, zmm_t y)
    {
        return _mm512_cmp_epi32_mask(x, y, _MM_CMPINT_NLT);
    }
    template <int scale>
    static ymm_t i64gather(__m512i index, void const *base)
    {
        return _mm512_i64gather_epi32(index, base, scale);
    }
    static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); }
    static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epi32(x, y); }
    static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_compressstoreu_epi32(mem, mask, x);
    }
    static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem)
    {
        return _mm512_mask_loadu_epi32(x, mask, mem);
    }
    static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y)
    {
        return _mm512_mask_mov_epi32(x, mask, y);
    }
    static void mask_storeu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_storeu_epi32(mem, mask, x);
    }
    static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epi32(x, y); }
    static zmm_t permutexvar(__m512i idx, zmm_t zmm)
    {
        return _mm512_permutexvar_epi32(idx, zmm);
    }
    static type_t reducemax(zmm_t v) { return npyv_reduce_max_s32(v); }
    static type_t reducemin(zmm_t v) { return npyv_reduce_min_s32(v); }
    static zmm_t set1(type_t v) { return _mm512_set1_epi32(v); }
    template<__mmask16 mask>
    static zmm_t shuffle(zmm_t zmm)
    {
        return _mm512_shuffle_epi32(zmm, (_MM_PERM_ENUM)mask);
    }
    static void storeu(void *mem, zmm_t x)
    {
        return _mm512_storeu_si512(mem, x);
    }

    static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_epi32(x, y); }
    static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_epi32(x, y); }
};
template <>
struct vector<npy_uint> {
    using tag = npy::uint_tag;
    using type_t = npy_uint;
    using zmm_t = __m512i;
    using ymm_t = __m256i;

    static type_t type_max() { return NPY_MAX_UINT32; }
    static type_t type_min() { return 0; }
    static zmm_t zmm_max() { return _mm512_set1_epi32(type_max()); }

    template<int scale>
    static ymm_t i64gather(__m512i index, void const *base)
    {
        return _mm512_i64gather_epi32(index, base, scale);
    }
    static __mmask16 ge(zmm_t x, zmm_t y)
    {
        return _mm512_cmp_epu32_mask(x, y, _MM_CMPINT_NLT);
    }
    static zmm_t loadu(void const *mem) { return _mm512_loadu_si512(mem); }
    static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_epu32(x, y); }
    static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_compressstoreu_epi32(mem, mask, x);
    }
    static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem)
    {
        return _mm512_mask_loadu_epi32(x, mask, mem);
    }
    static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y)
    {
        return _mm512_mask_mov_epi32(x, mask, y);
    }
    static void mask_storeu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_storeu_epi32(mem, mask, x);
    }
    static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_epu32(x, y); }
    static zmm_t permutexvar(__m512i idx, zmm_t zmm)
    {
        return _mm512_permutexvar_epi32(idx, zmm);
    }
    static type_t reducemax(zmm_t v) { return npyv_reduce_max_u32(v); }
    static type_t reducemin(zmm_t v) { return npyv_reduce_min_u32(v); }
    static zmm_t set1(type_t v) { return _mm512_set1_epi32(v); }
    template<__mmask16 mask>
    static zmm_t shuffle(zmm_t zmm)
    {
        return _mm512_shuffle_epi32(zmm, (_MM_PERM_ENUM)mask);
    }
    static void storeu(void *mem, zmm_t x)
    {
        return _mm512_storeu_si512(mem, x);
    }

    static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_epu32(x, y); }
    static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_epu32(x, y); }
};
template <>
struct vector<npy_float> {
    using tag = npy::float_tag;
    using type_t = npy_float;
    using zmm_t = __m512;
    using ymm_t = __m256;

    static type_t type_max() { return NPY_INFINITYF; }
    static type_t type_min() { return -NPY_INFINITYF; }
    static zmm_t zmm_max() { return _mm512_set1_ps(type_max()); }

    static __mmask16 ge(zmm_t x, zmm_t y)
    {
        return _mm512_cmp_ps_mask(x, y, _CMP_GE_OQ);
    }
    template<int scale>
    static ymm_t i64gather(__m512i index, void const *base)
    {
        return _mm512_i64gather_ps(index, base, scale);
    }
    static zmm_t loadu(void const *mem) { return _mm512_loadu_ps(mem); }
    static zmm_t max(zmm_t x, zmm_t y) { return _mm512_max_ps(x, y); }
    static void mask_compressstoreu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_compressstoreu_ps(mem, mask, x);
    }
    static zmm_t mask_loadu(zmm_t x, __mmask16 mask, void const *mem)
    {
        return _mm512_mask_loadu_ps(x, mask, mem);
    }
    static zmm_t mask_mov(zmm_t x, __mmask16 mask, zmm_t y)
    {
        return _mm512_mask_mov_ps(x, mask, y);
    }
    static void mask_storeu(void *mem, __mmask16 mask, zmm_t x)
    {
        return _mm512_mask_storeu_ps(mem, mask, x);
    }
    static zmm_t min(zmm_t x, zmm_t y) { return _mm512_min_ps(x, y); }
    static zmm_t permutexvar(__m512i idx, zmm_t zmm)
    {
        return _mm512_permutexvar_ps(idx, zmm);
    }
    static type_t reducemax(zmm_t v) { return npyv_reduce_max_f32(v); }
    static type_t reducemin(zmm_t v) { return npyv_reduce_min_f32(v); }
    static zmm_t set1(type_t v) { return _mm512_set1_ps(v); }
    template<__mmask16 mask>
    static zmm_t shuffle(zmm_t zmm)
    {
        return _mm512_shuffle_ps(zmm, zmm, (_MM_PERM_ENUM)mask);
    }
    static void storeu(void *mem, zmm_t x) { return _mm512_storeu_ps(mem, x); }

    static ymm_t max(ymm_t x, ymm_t y) { return _mm256_max_ps(x, y); }
    static ymm_t min(ymm_t x, ymm_t y) { return _mm256_min_ps(x, y); }
};

/*
 * COEX == Compare and Exchange two registers by swapping min and max values
 */
template <typename vtype, typename mm_t>
void
COEX(mm_t &a, mm_t &b)
{
    mm_t temp = a;
    a = vtype::min(a, b);
    b = vtype::max(temp, b);
}

template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline zmm_t
cmp_merge(zmm_t in1, zmm_t in2, __mmask16 mask)
{
    zmm_t min = vtype::min(in2, in1);
    zmm_t max = vtype::max(in2, in1);
    return vtype::mask_mov(min, mask, max);  // 0 -> min, 1 -> max
}

/*
 * Assumes zmm is random and performs a full sorting network defined in
 * https://en.wikipedia.org/wiki/Bitonic_sorter#/media/File:BitonicSort.svg
 */
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline zmm_t
sort_zmm(zmm_t zmm)
{
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm),
                           0xAAAA);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(0, 1, 2, 3)>(zmm),
                           0xCCCC);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm),
                           0xAAAA);
    zmm = cmp_merge<vtype>(
            zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK3), zmm), 0xF0F0);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm),
                           0xCCCC);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm),
                           0xAAAA);
    zmm = cmp_merge<vtype>(
            zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm), 0xFF00);
    zmm = cmp_merge<vtype>(
            zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK6), zmm), 0xF0F0);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm),
                           0xCCCC);
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm),
                           0xAAAA);
    return zmm;
}

// Assumes zmm is bitonic and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline zmm_t
bitonic_merge_zmm(zmm_t zmm)
{
    // 1) half_cleaner[16]: compare 1-9, 2-10, 3-11 etc ..
    zmm = cmp_merge<vtype>(
            zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK7), zmm), 0xFF00);
    // 2) half_cleaner[8]: compare 1-5, 2-6, 3-7 etc ..
    zmm = cmp_merge<vtype>(
            zmm, vtype::permutexvar(_mm512_set_epi32(NETWORK6), zmm), 0xF0F0);
    // 3) half_cleaner[4]
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(1, 0, 3, 2)>(zmm),
                           0xCCCC);
    // 3) half_cleaner[1]
    zmm = cmp_merge<vtype>(zmm, vtype::template shuffle<SHUFFLE_MASK(2, 3, 0, 1)>(zmm),
                           0xAAAA);
    return zmm;
}

// Assumes zmm1 and zmm2 are sorted and performs a recursive half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline void
bitonic_merge_two_zmm(zmm_t *zmm1, zmm_t *zmm2)
{
    // 1) First step of a merging network: coex of zmm1 and zmm2 reversed
    *zmm2 = vtype::permutexvar(_mm512_set_epi32(NETWORK5), *zmm2);
    zmm_t zmm3 = vtype::min(*zmm1, *zmm2);
    zmm_t zmm4 = vtype::max(*zmm1, *zmm2);
    // 2) Recursive half cleaner for each
    *zmm1 = bitonic_merge_zmm<vtype>(zmm3);
    *zmm2 = bitonic_merge_zmm<vtype>(zmm4);
}

// Assumes [zmm0, zmm1] and [zmm2, zmm3] are sorted and performs a recursive
// half cleaner
template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline void
bitonic_merge_four_zmm(zmm_t *zmm)
{
    zmm_t zmm2r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[2]);
    zmm_t zmm3r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[3]);
    zmm_t zmm_t1 = vtype::min(zmm[0], zmm3r);
    zmm_t zmm_t2 = vtype::min(zmm[1], zmm2r);
    zmm_t zmm_t3 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[1], zmm2r));
    zmm_t zmm_t4 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[0], zmm3r));
    zmm_t zmm0 = vtype::min(zmm_t1, zmm_t2);
    zmm_t zmm1 = vtype::max(zmm_t1, zmm_t2);
    zmm_t zmm2 = vtype::min(zmm_t3, zmm_t4);
    zmm_t zmm3 = vtype::max(zmm_t3, zmm_t4);
    zmm[0] = bitonic_merge_zmm<vtype>(zmm0);
    zmm[1] = bitonic_merge_zmm<vtype>(zmm1);
    zmm[2] = bitonic_merge_zmm<vtype>(zmm2);
    zmm[3] = bitonic_merge_zmm<vtype>(zmm3);
}

template <typename vtype, typename zmm_t = typename vtype::zmm_t>
static inline void
bitonic_merge_eight_zmm(zmm_t *zmm)
{
    zmm_t zmm4r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[4]);
    zmm_t zmm5r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[5]);
    zmm_t zmm6r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[6]);
    zmm_t zmm7r = vtype::permutexvar(_mm512_set_epi32(NETWORK5), zmm[7]);
    zmm_t zmm_t1 = vtype::min(zmm[0], zmm7r);
    zmm_t zmm_t2 = vtype::min(zmm[1], zmm6r);
    zmm_t zmm_t3 = vtype::min(zmm[2], zmm5r);
    zmm_t zmm_t4 = vtype::min(zmm[3], zmm4r);
    zmm_t zmm_t5 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[3], zmm4r));
    zmm_t zmm_t6 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[2], zmm5r));
    zmm_t zmm_t7 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[1], zmm6r));
    zmm_t zmm_t8 = vtype::permutexvar(_mm512_set_epi32(NETWORK5),
                                      vtype::max(zmm[0], zmm7r));
    COEX<vtype>(zmm_t1, zmm_t3);
    COEX<vtype>(zmm_t2, zmm_t4);
    COEX<vtype>(zmm_t5, zmm_t7);
    COEX<vtype>(zmm_t6, zmm_t8);
    COEX<vtype>(zmm_t1, zmm_t2);
    COEX<vtype>(zmm_t3, zmm_t4);
    COEX<vtype>(zmm_t5, zmm_t6);
    COEX<vtype>(zmm_t7, zmm_t8);
    zmm[0] = bitonic_merge_zmm<vtype>(zmm_t1);
    zmm[1] = bitonic_merge_zmm<vtype>(zmm_t2);
    zmm[2] = bitonic_merge_zmm<vtype>(zmm_t3);
    zmm[3] = bitonic_merge_zmm<vtype>(zmm_t4);
    zmm[4] = bitonic_merge_zmm<vtype>(zmm_t5);
    zmm[5] = bitonic_merge_zmm<vtype>(zmm_t6);
    zmm[6] = bitonic_merge_zmm<vtype>(zmm_t7);
    zmm[7] = bitonic_merge_zmm<vtype>(zmm_t8);
}

template <typename vtype, typename type_t>
static inline void
sort_16(type_t *arr, npy_int N)
{
    __mmask16 load_mask = (0x0001 << N) - 0x0001;
    typename vtype::zmm_t zmm =
            vtype::mask_loadu(vtype::zmm_max(), load_mask, arr);
    vtype::mask_storeu(arr, load_mask, sort_zmm<vtype>(zmm));
}

template <typename vtype, typename type_t>
static inline void
sort_32(type_t *arr, npy_int N)
{
    if (N <= 16) {
        sort_16<vtype>(arr, N);
        return;
    }
    using zmm_t = typename vtype::zmm_t;
    zmm_t zmm1 = vtype::loadu(arr);
    __mmask16 load_mask = (0x0001 << (N - 16)) - 0x0001;
    zmm_t zmm2 = vtype::mask_loadu(vtype::zmm_max(), load_mask, arr + 16);
    zmm1 = sort_zmm<vtype>(zmm1);
    zmm2 = sort_zmm<vtype>(zmm2);
    bitonic_merge_two_zmm<vtype>(&zmm1, &zmm2);
    vtype::storeu(arr, zmm1);
    vtype::mask_storeu(arr + 16, load_mask, zmm2);
}

template <typename vtype, typename type_t>
static inline void
sort_64(type_t *arr, npy_int N)
{
    if (N <= 32) {
        sort_32<vtype>(arr, N);
        return;
    }
    using zmm_t = typename vtype::zmm_t;
    zmm_t zmm[4];
    zmm[0] = vtype::loadu(arr);
    zmm[1] = vtype::loadu(arr + 16);
    __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF;
    if (N < 48) {
        load_mask1 = (0x0001 << (N - 32)) - 0x0001;
        load_mask2 = 0x0000;
    }
    else if (N < 64) {
        load_mask2 = (0x0001 << (N - 48)) - 0x0001;
    }
    zmm[2] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 32);
    zmm[3] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 48);
    zmm[0] = sort_zmm<vtype>(zmm[0]);
    zmm[1] = sort_zmm<vtype>(zmm[1]);
    zmm[2] = sort_zmm<vtype>(zmm[2]);
    zmm[3] = sort_zmm<vtype>(zmm[3]);
    bitonic_merge_two_zmm<vtype>(&zmm[0], &zmm[1]);
    bitonic_merge_two_zmm<vtype>(&zmm[2], &zmm[3]);
    bitonic_merge_four_zmm<vtype>(zmm);
    vtype::storeu(arr, zmm[0]);
    vtype::storeu(arr + 16, zmm[1]);
    vtype::mask_storeu(arr + 32, load_mask1, zmm[2]);
    vtype::mask_storeu(arr + 48, load_mask2, zmm[3]);
}

template <typename vtype, typename type_t>
static inline void
sort_128(type_t *arr, npy_int N)
{
    if (N <= 64) {
        sort_64<vtype>(arr, N);
        return;
    }
    using zmm_t = typename vtype::zmm_t;
    zmm_t zmm[8];
    zmm[0] = vtype::loadu(arr);
    zmm[1] = vtype::loadu(arr + 16);
    zmm[2] = vtype::loadu(arr + 32);
    zmm[3] = vtype::loadu(arr + 48);
    zmm[0] = sort_zmm<vtype>(zmm[0]);
    zmm[1] = sort_zmm<vtype>(zmm[1]);
    zmm[2] = sort_zmm<vtype>(zmm[2]);
    zmm[3] = sort_zmm<vtype>(zmm[3]);
    __mmask16 load_mask1 = 0xFFFF, load_mask2 = 0xFFFF;
    __mmask16 load_mask3 = 0xFFFF, load_mask4 = 0xFFFF;
    if (N < 80) {
        load_mask1 = (0x0001 << (N - 64)) - 0x0001;
        load_mask2 = 0x0000;
        load_mask3 = 0x0000;
        load_mask4 = 0x0000;
    }
    else if (N < 96) {
        load_mask2 = (0x0001 << (N - 80)) - 0x0001;
        load_mask3 = 0x0000;
        load_mask4 = 0x0000;
    }
    else if (N < 112) {
        load_mask3 = (0x0001 << (N - 96)) - 0x0001;
        load_mask4 = 0x0000;
    }
    else {
        load_mask4 = (0x0001 << (N - 112)) - 0x0001;
    }
    zmm[4] = vtype::mask_loadu(vtype::zmm_max(), load_mask1, arr + 64);
    zmm[5] = vtype::mask_loadu(vtype::zmm_max(), load_mask2, arr + 80);
    zmm[6] = vtype::mask_loadu(vtype::zmm_max(), load_mask3, arr + 96);
    zmm[7] = vtype::mask_loadu(vtype::zmm_max(), load_mask4, arr + 112);
    zmm[4] = sort_zmm<vtype>(zmm[4]);
    zmm[5] = sort_zmm<vtype>(zmm[5]);
    zmm[6] = sort_zmm<vtype>(zmm[6]);
    zmm[7] = sort_zmm<vtype>(zmm[7]);
    bitonic_merge_two_zmm<vtype>(&zmm[0], &zmm[1]);
    bitonic_merge_two_zmm<vtype>(&zmm[2], &zmm[3]);
    bitonic_merge_two_zmm<vtype>(&zmm[4], &zmm[5]);
    bitonic_merge_two_zmm<vtype>(&zmm[6], &zmm[7]);
    bitonic_merge_four_zmm<vtype>(zmm);
    bitonic_merge_four_zmm<vtype>(zmm + 4);
    bitonic_merge_eight_zmm<vtype>(zmm);
    vtype::storeu(arr, zmm[0]);
    vtype::storeu(arr + 16, zmm[1]);
    vtype::storeu(arr + 32, zmm[2]);
    vtype::storeu(arr + 48, zmm[3]);
    vtype::mask_storeu(arr + 64, load_mask1, zmm[4]);
    vtype::mask_storeu(arr + 80, load_mask2, zmm[5]);
    vtype::mask_storeu(arr + 96, load_mask3, zmm[6]);
    vtype::mask_storeu(arr + 112, load_mask4, zmm[7]);
}

template <typename type_t>
static inline void
swap(type_t *arr, npy_intp ii, npy_intp jj)
{
    type_t temp = arr[ii];
    arr[ii] = arr[jj];
    arr[jj] = temp;
}

// Median of 3 strategy
// template<typename type_t>
// static inline
// npy_intp get_pivot_index(type_t *arr, const npy_intp left, const npy_intp
// right) {
//    return (rand() % (right + 1 - left)) + left;
//    //npy_intp middle = ((right-left)/2) + left;
//    //type_t a = arr[left], b = arr[middle], c = arr[right];
//    //if ((b >= a && b <= c) || (b <= a && b >= c))
//    //    return middle;
//    //if ((a >= b && a <= c) || (a <= b && a >= c))
//    //    return left;
//    //else
//    //    return right;
//}

/*
 * Picking the pivot: Median of 72 array elements chosen at random.
 */

template <typename vtype, typename type_t>
static inline type_t
get_pivot(type_t *arr, const npy_intp left, const npy_intp right)
{
    /* seeds for vectorized random number generator */
    __m256i s0 = _mm256_setr_epi64x(8265987198341093849, 3762817312854612374,
                                    1324281658759788278, 6214952190349879213);
    __m256i s1 = _mm256_setr_epi64x(2874178529384792648, 1257248936691237653,
                                    7874578921548791257, 1998265912745817298);
    s0 = _mm256_add_epi64(s0, _mm256_set1_epi64x(left));
    s1 = _mm256_sub_epi64(s1, _mm256_set1_epi64x(right));

    npy_intp arrsize = right - left + 1;
    __m256i bound =
            _mm256_set1_epi32(arrsize > INT32_MAX ? INT32_MAX : arrsize);
    __m512i left_vec = _mm512_set1_epi64(left);
    __m512i right_vec = _mm512_set1_epi64(right);
    using ymm_t = typename vtype::ymm_t;
    ymm_t v[9];
    /* fill 9 vectors with random numbers */
    for (npy_int i = 0; i < 9; ++i) {
        __m256i rand_64 = vnext(&s0, &s1); /* vector with 4 random uint64_t */
        __m512i rand_32 = _mm512_cvtepi32_epi64(rnd_epu32(
                rand_64, bound)); /* random numbers between 0 and bound - 1 */
        __m512i indices;
        if (i < 5)
            indices =
                    _mm512_add_epi64(left_vec, rand_32); /* indices for arr */
        else
            indices =
                    _mm512_sub_epi64(right_vec, rand_32); /* indices for arr */

        v[i] = vtype::template i64gather<sizeof(type_t)>(indices, arr);
    }

    /* median network for 9 elements */
    COEX<vtype>(v[0], v[1]);
    COEX<vtype>(v[2], v[3]);
    COEX<vtype>(v[4], v[5]);
    COEX<vtype>(v[6], v[7]);
    COEX<vtype>(v[0], v[2]);
    COEX<vtype>(v[1], v[3]);
    COEX<vtype>(v[4], v[6]);
    COEX<vtype>(v[5], v[7]);
    COEX<vtype>(v[0], v[4]);
    COEX<vtype>(v[1], v[2]);
    COEX<vtype>(v[5], v[6]);
    COEX<vtype>(v[3], v[7]);
    COEX<vtype>(v[1], v[5]);
    COEX<vtype>(v[2], v[6]);
    COEX<vtype>(v[3], v[5]);
    COEX<vtype>(v[2], v[4]);
    COEX<vtype>(v[3], v[4]);
    COEX<vtype>(v[3], v[8]);
    COEX<vtype>(v[4], v[8]);

    // technically v[4] needs to be sorted before we pick the correct median,
    // picking the 4th element works just as well for performance
    type_t *temp = (type_t *)&v[4];

    return temp[4];
}

/*
 * Partition one ZMM register based on the pivot and returns the index of the
 * last element that is less than equal to the pivot.
 */
template <typename vtype, typename type_t, typename zmm_t>
static inline npy_int
partition_vec(type_t *arr, npy_intp left, npy_intp right, const zmm_t curr_vec,
              const zmm_t pivot_vec, zmm_t *smallest_vec, zmm_t *biggest_vec)
{
    /* which elements are larger than the pivot */
    __mmask16 gt_mask = vtype::ge(curr_vec, pivot_vec);
    npy_int amount_gt_pivot = _mm_popcnt_u32((npy_int)gt_mask);
    vtype::mask_compressstoreu(arr + left, _mm512_knot(gt_mask), curr_vec);
    vtype::mask_compressstoreu(arr + right - amount_gt_pivot, gt_mask,
                               curr_vec);
    *smallest_vec = vtype::min(curr_vec, *smallest_vec);
    *biggest_vec = vtype::max(curr_vec, *biggest_vec);
    return amount_gt_pivot;
}

/*
 * Partition an array based on the pivot and returns the index of the
 * last element that is less than equal to the pivot.
 */
template <typename vtype, typename type_t>
static inline npy_intp
partition_avx512(type_t *arr, npy_intp left, npy_intp right, type_t pivot,
                 type_t *smallest, type_t *biggest)
{
    /* make array length divisible by 16 , shortening the array */
    for (npy_int i = (right - left) % 16; i > 0; --i) {
        *smallest = MIN(*smallest, arr[left]);
        *biggest = MAX(*biggest, arr[left]);
        if (arr[left] > pivot) {
            swap(arr, left, --right);
        }
        else {
            ++left;
        }
    }

    if (left == right)
        return left; /* less than 16 elements in the array */

    using zmm_t = typename vtype::zmm_t;
    zmm_t pivot_vec = vtype::set1(pivot);
    zmm_t min_vec = vtype::set1(*smallest);
    zmm_t max_vec = vtype::set1(*biggest);

    if (right - left == 16) {
        zmm_t vec = vtype::loadu(arr + left);
        npy_int amount_gt_pivot = partition_vec<vtype>(
                arr, left, left + 16, vec, pivot_vec, &min_vec, &max_vec);
        *smallest = vtype::reducemin(min_vec);
        *biggest = vtype::reducemax(max_vec);
        return left + (16 - amount_gt_pivot);
    }

    // first and last 16 values are partitioned at the end
    zmm_t vec_left = vtype::loadu(arr + left);
    zmm_t vec_right = vtype::loadu(arr + (right - 16));
    // store points of the vectors
    npy_intp r_store = right - 16;
    npy_intp l_store = left;
    // indices for loading the elements
    left += 16;
    right -= 16;
    while (right - left != 0) {
        zmm_t curr_vec;
        /*
         * if fewer elements are stored on the right side of the array,
         * then next elements are loaded from the right side,
         * otherwise from the left side
         */
        if ((r_store + 16) - right < left - l_store) {
            right -= 16;
            curr_vec = vtype::loadu(arr + right);
        }
        else {
            curr_vec = vtype::loadu(arr + left);
            left += 16;
        }
        // partition the current vector and save it on both sides of the array
        npy_int amount_gt_pivot =
                partition_vec<vtype>(arr, l_store, r_store + 16, curr_vec,
                                     pivot_vec, &min_vec, &max_vec);
        ;
        r_store -= amount_gt_pivot;
        l_store += (16 - amount_gt_pivot);
    }

    /* partition and save vec_left and vec_right */
    npy_int amount_gt_pivot =
            partition_vec<vtype>(arr, l_store, r_store + 16, vec_left,
                                 pivot_vec, &min_vec, &max_vec);
    l_store += (16 - amount_gt_pivot);
    amount_gt_pivot =
            partition_vec<vtype>(arr, l_store, l_store + 16, vec_right,
                                 pivot_vec, &min_vec, &max_vec);
    l_store += (16 - amount_gt_pivot);
    *smallest = vtype::reducemin(min_vec);
    *biggest = vtype::reducemax(max_vec);
    return l_store;
}

template <typename vtype, typename type_t>
static inline void
qsort_(type_t *arr, npy_intp left, npy_intp right, npy_int max_iters)
{
    /*
     * Resort to heapsort if quicksort isn't making any progress
     */
    if (max_iters <= 0) {
        heapsort_<typename vtype::tag>(arr + left, right + 1 - left);
        return;
    }
    /*
     * Base case: use bitonic networks to sort arrays <= 128
     */
    if (right + 1 - left <= 128) {
        sort_128<vtype>(arr + left, (npy_int)(right + 1 - left));
        return;
    }

    type_t pivot = get_pivot<vtype>(arr, left, right);
    type_t smallest = vtype::type_max();
    type_t biggest = vtype::type_min();
    npy_intp pivot_index = partition_avx512<vtype>(arr, left, right + 1, pivot,
                                                   &smallest, &biggest);
    if (pivot != smallest)
        qsort_<vtype>(arr, left, pivot_index - 1, max_iters - 1);
    if (pivot != biggest)
        qsort_<vtype>(arr, pivot_index, right, max_iters - 1);
}

static inline npy_intp
replace_nan_with_inf(npy_float *arr, npy_intp arrsize)
{
    npy_intp nan_count = 0;
    __mmask16 loadmask = 0xFFFF;
    while (arrsize > 0) {
        if (arrsize < 16) {
            loadmask = (0x0001 << arrsize) - 0x0001;
        }
        __m512 in_zmm = _mm512_maskz_loadu_ps(loadmask, arr);
        __mmask16 nanmask = _mm512_cmp_ps_mask(in_zmm, in_zmm, _CMP_NEQ_UQ);
        nan_count += _mm_popcnt_u32((npy_int)nanmask);
        _mm512_mask_storeu_ps(arr, nanmask, ZMM_MAX_FLOAT);
        arr += 16;
        arrsize -= 16;
    }
    return nan_count;
}

static inline void
replace_inf_with_nan(npy_float *arr, npy_intp arrsize, npy_intp nan_count)
{
    for (npy_intp ii = arrsize - 1; nan_count > 0; --ii) {
        arr[ii] = NPY_NANF;
        nan_count -= 1;
    }
}

/***************************************
 * C > C++ dispatch
 ***************************************/

NPY_NO_EXPORT void
NPY_CPU_DISPATCH_CURFX(x86_quicksort_int)(void *arr, npy_intp arrsize)
{
    if (arrsize > 1) {
        qsort_<vector<npy_int>, npy_int>((npy_int *)arr, 0, arrsize - 1,
                                         2 * (npy_int)log2(arrsize));
    }
}

NPY_NO_EXPORT void
NPY_CPU_DISPATCH_CURFX(x86_quicksort_uint)(void *arr, npy_intp arrsize)
{
    if (arrsize > 1) {
        qsort_<vector<npy_uint>, npy_uint>((npy_uint *)arr, 0, arrsize - 1,
                                           2 * (npy_int)log2(arrsize));
    }
}

NPY_NO_EXPORT void
NPY_CPU_DISPATCH_CURFX(x86_quicksort_float)(void *arr, npy_intp arrsize)
{
    if (arrsize > 1) {
        npy_intp nan_count = replace_nan_with_inf((npy_float *)arr, arrsize);
        qsort_<vector<npy_float>, npy_float>((npy_float *)arr, 0, arrsize - 1,
                                             2 * (npy_int)log2(arrsize));
        replace_inf_with_nan((npy_float *)arr, arrsize, nan_count);
    }
}

#endif  // NPY_HAVE_AVX512_SKX