summaryrefslogtreecommitdiff
path: root/numpy/lib/twodim_base.py
blob: 512b6bf53080ba126ff6630dc69d33fcf744b99a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
""" Basic functions for manipulating 2d arrays

"""

__all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu',
           'tril','vander','histogram2d']

from numpy.core.numeric import asanyarray, int_, equal, subtract, arange, \
     zeros, arange, greater_equal, multiply, ones, asarray

def fliplr(m):
    """ returns an array m with the rows preserved and columns flipped
        in the left/right direction.  Works on the first two dimensions of m.
    """
    m = asanyarray(m)
    if m.ndim < 2:
        raise ValueError, "Input must be >= 2-d."
    return m[:, ::-1]

def flipud(m):
    """ returns an array with the columns preserved and rows flipped in
        the up/down direction.  Works on the first dimension of m.
    """
    m = asanyarray(m)
    if m.ndim < 1:
        raise ValueError, "Input must be >= 1-d."
    return m[::-1,...]

def rot90(m, k=1):
    """ returns the array found by rotating m by k*90
    degrees in the counterclockwise direction.  Works on the first two
    dimensions of m.
    """
    m = asanyarray(m)
    if m.ndim < 2:
        raise ValueError, "Input must >= 2-d."
    k = k % 4
    if k == 0: return m
    elif k == 1: return fliplr(m).transpose()
    elif k == 2: return fliplr(flipud(m))
    else: return fliplr(m.transpose())  # k==3

def eye(N, M=None, k=0, dtype=float):
    """ eye returns a N-by-M 2-d array where the  k-th diagonal is all ones,
        and everything else is zeros.
    """
    if M is None: M = N
    m = equal(subtract.outer(arange(N), arange(M)),-k)
    if m.dtype != dtype:
        return m.astype(dtype)

def diag(v, k=0):
    """ returns a copy of the the k-th diagonal if v is a 2-d array 
        or returns a 2-d array with v as the k-th diagonal if v is a
        1-d array.
    """
    v = asarray(v)
    s = v.shape
    if len(s)==1:
        n = s[0]+abs(k)
        res = zeros((n,n), v.dtype)
        if (k>=0):
            i = arange(0,n-k)
            fi = i+k+i*n
        else:
            i = arange(0,n+k)
            fi = i+(i-k)*n
        res.flat[fi] = v
        return res
    elif len(s)==2:
        N1,N2 = s
        if k >= 0:
            M = min(N1,N2-k)
            i = arange(0,M)
            fi = i+k+i*N2
        else:
            M = min(N1+k,N2)
            i = arange(0,M)
            fi = i + (i-k)*N2
        return v.flat[fi]
    else:
        raise ValueError, "Input must be 1- or 2-d."

def diagflat(v,k=0):
    try:
        wrap = v.__array_wrap__
    except AttributeError:
        wrap = None
    v = asarray(v).ravel()
    s = len(v)
    n = s + abs(k)
    res = zeros((n,n), v.dtype)
    if (k>=0):
        i = arange(0,n-k)
        fi = i+k+i*n
    else:
        i = arange(0,n+k)
        fi = i+(i-k)*n
    res.flat[fi] = v
    if not wrap:
        return res
    return wrap(res)
    
def tri(N, M=None, k=0, dtype=float):
    """ returns a N-by-M array where all the diagonals starting from
        lower left corner up to the k-th are all ones.
    """
    if M is None: M = N
    m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
    if m.dtype != dtype:
        return m.astype(dtype)    

def tril(m, k=0):
    """ returns the elements on and below the k-th diagonal of m.  k=0 is the
        main diagonal, k > 0 is above and k < 0 is below the main diagonal.
    """
    m = asanyarray(m)
    out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
    return out

def triu(m, k=0):
    """ returns the elements on and above the k-th diagonal of m.  k=0 is the
        main diagonal, k > 0 is above and k < 0 is below the main diagonal.
    """
    m = asanyarray(m)
    out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
    return out

# borrowed from John Hunter and matplotlib
def vander(x, N=None):
    """
    X = vander(x,N=None)

    The Vandermonde matrix of vector x.  The i-th column of X is the
    the i-th power of x.  N is the maximum power to compute; if N is
    None it defaults to len(x).

    """
    x = asarray(x)
    if N is None: N=len(x)
    X = ones( (len(x),N), x.dtype)
    for i in range(N-1):
        X[:,i] = x**(N-i-1)
    return X

def  histogram2d(x,y, bins=10, range=None, normed=False):
    """histogram2d(x,y, bins=10, range=None, normed=False) -> H, xedges, yedges
    
    Compute the 2D histogram from samples x,y. 

    Parameters
    ----------
    x,y: 1D data series. Both arrays must have the same length.
    bins: Number of bins -or- [nbin x, nbin y] -or- 
         [bin edges] -or- [x bin edges, y bin edges].
    range:  A sequence of lower and upper bin edges (default: [min, max]).
    normed: True or False. 
    
    The histogram array is a count of the number of samples in each 
    two dimensional bin. 
    Setting normed to True returns a density rather than a bin count. 
    Data falling outside of the edges are not counted.
    """
    import numpy as np
    try:
        N = len(bins)
    except TypeError:
        N = 1
        bins = [bins]
    x = asarray(x)
    y = asarray(y)
    if range is None:
        xmin, xmax = x.min(), x.max()
        ymin, ymax = y.min(), y.max()
    else:
        xmin, xmax = range[0]
        ymin, ymax = range[1]
    if N == 2:
        if np.isscalar(bins[0]):
            xnbin = bins[0]
            xedges = np.linspace(xmin, xmax, xnbin+1)
        else:
            xedges = asarray(bins[0], float)
            xnbin = len(xedges)-1
        if np.isscalar(bins[1]):
            ynbin = bins[1]
            yedges = np.linspace(ymin, ymax, ynbin+1)
        else:
            yedges = asarray(bins[1], float)
            ynbin = len(yedges)-1
    elif N == 1:
        ynbin = xnbin = bins[0]
        xedges = np.linspace(xmin, xmax, xnbin+1)
        yedges = np.linspace(ymin, ymax, ynbin+1)
    else:
        yedges = asarray(bins, float)
        xedges = yedges.copy()
        ynbin = len(yedges)-1
        xnbin = len(xedges)-1
    
    dxedges = np.diff(xedges)
    dyedges = np.diff(yedges)
    
    # Flattened histogram matrix (1D)
    hist = np.zeros((xnbin)*(ynbin), int)

    # Count the number of sample in each bin (1D)
    xbin = np.digitize(x,xedges) 
    ybin = np.digitize(y,yedges) 
 
    # Values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right 
    # edge to be counted in the last bin, and not as an outlier.
    xdecimal = int(-np.log10(dxedges.min()))+6
    ydecimal = int(-np.log10(dyedges.min()))+6
    on_edge_x = np.where(np.around(x,xdecimal) == np.around(xedges[-1], xdecimal))[0]
    on_edge_y = np.where(np.around(y,ydecimal) == np.around(yedges[-1], ydecimal))[0]
    xbin[on_edge_x] -= 1
    ybin[on_edge_y] -= 1
    # Remove the true outliers
    outliers = (xbin==0) | (xbin==xnbin+1) | (ybin==0) | (ybin == ynbin+1)
    xbin = xbin[outliers==False] - 1
    ybin = ybin[outliers==False] - 1
    
    # Compute the sample indices in the flattened histogram matrix.
    if xnbin >= ynbin:
        xy = ybin*(xnbin) + xbin
        
    else:
        xy = xbin*(ynbin) + ybin
        
       
    # Compute the number of repetitions in xy and assign it to the flattened
    #  histogram matrix.

    flatcount = np.bincount(xy)
    indices = np.arange(len(flatcount))
    hist[indices] = flatcount

    shape = np.sort([xnbin, ynbin])
    # Shape into a proper matrix
    histmat = hist.reshape(shape)
    if (shape == (ynbin, xnbin)).all():
        histmat = histmat.T
    if normed:
        diff2 = np.outer(dxedges, dyedges)
        histmat = histmat / diff2 / histmat.sum()
    return histmat, xedges, yedges