1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
""" Basic functions for manipulating 2d arrays
"""
__all__ = ['diag','eye','fliplr','flipud','rot90','tri','triu','tril',
'vander','histogram2d']
from numpy.core.numeric import asanyarray, int_, equal, subtract, arange, \
zeros, arange, greater_equal, multiply, ones, asarray
def fliplr(m):
""" returns an array m with the rows preserved and columns flipped
in the left/right direction. Works on the first two dimensions of m.
"""
m = asanyarray(m)
if m.ndim < 2:
raise ValueError, "Input must be >= 2-d."
return m[:, ::-1]
def flipud(m):
""" returns an array with the columns preserved and rows flipped in
the up/down direction. Works on the first dimension of m.
"""
m = asanyarray(m)
if m.ndim < 1:
raise ValueError, "Input must be >= 1-d."
return m[::-1,...]
def rot90(m, k=1):
""" returns the array found by rotating m by k*90
degrees in the counterclockwise direction. Works on the first two
dimensions of m.
"""
m = asanyarray(m)
if m.ndim < 2:
raise ValueError, "Input must >= 2-d."
k = k % 4
if k == 0: return m
elif k == 1: return fliplr(m).transpose()
elif k == 2: return fliplr(flipud(m))
else: return fliplr(m.transpose()) # k==3
def eye(N, M=None, k=0, dtype=float):
""" eye returns a N-by-M 2-d array where the k-th diagonal is all ones,
and everything else is zeros.
"""
if M is None: M = N
m = equal(subtract.outer(arange(N), arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
def diag(v, k=0):
""" returns a copy of the the k-th diagonal if v is a 2-d array
or returns a 2-d array with v as the k-th diagonal if v is a
1-d array.
"""
v = asarray(v)
s = v.shape
if len(s)==1:
n = s[0]+abs(k)
res = zeros((n,n), v.dtype)
if (k>=0):
i = arange(0,n-k)
fi = i+k+i*n
else:
i = arange(0,n+k)
fi = i+(i-k)*n
res.flat[fi] = v
return res
elif len(s)==2:
N1,N2 = s
if k >= 0:
M = min(N1,N2-k)
i = arange(0,M)
fi = i+k+i*N2
else:
M = min(N1+k,N2)
i = arange(0,M)
fi = i + (i-k)*N2
return v.flat[fi]
else:
raise ValueError, "Input must be 1- or 2-d."
def tri(N, M=None, k=0, dtype=float):
""" returns a N-by-M array where all the diagonals starting from
lower left corner up to the k-th are all ones.
"""
if M is None: M = N
m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
def tril(m, k=0):
""" returns the elements on and below the k-th diagonal of m. k=0 is the
main diagonal, k > 0 is above and k < 0 is below the main diagonal.
"""
m = asanyarray(m)
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
return out
def triu(m, k=0):
""" returns the elements on and above the k-th diagonal of m. k=0 is the
main diagonal, k > 0 is above and k < 0 is below the main diagonal.
"""
m = asanyarray(m)
out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
return out
# borrowed from John Hunter and matplotlib
def vander(x, N=None):
"""
X = vander(x,N=None)
The Vandermonde matrix of vector x. The i-th column of X is the
the i-th power of x. N is the maximum power to compute; if N is
None it defaults to len(x).
"""
x = asarray(x)
if N is None: N=len(x)
X = ones( (len(x),N), x.dtype)
for i in range(N-1):
X[:,i] = x**(N-i-1)
return X
def histogram2d(x,y, bins, normed = False):
"""Compute the 2D histogram for a dataset (x,y) given the edges or
the number of bins.
Returns histogram, xedges, yedges.
The histogram array is a count of the number of samples in each bin.
The array is oriented such that H[i,j] is the number of samples falling
into binx[j] and biny[i].
Setting normed to True returns a density rather than a bin count.
Data falling outside of the edges are not counted.
"""
import numpy as np
try:
N = len(bins)
except TypeError:
N = 1
bins = [bins]
if N == 2:
if np.isscalar(bins[0]):
xnbin = bins[0]
xedges = np.linspace(x.min(), x.max(), xnbin+1)
else:
xedges = asarray(bins[0], float)
xnbin = len(xedges)-1
if np.isscalar(bins[1]):
ynbin = bins[1]
yedges = np.linspace(y.min(), y.max(), ynbin+1)
else:
yedges = asarray(bins[1], float)
ynbin = len(yedges)-1
elif N == 1:
ynbin = xnbin = bins[0]
xedges = np.linspace(x.min(), x.max(), xnbin+1)
yedges = np.linspace(y.max(), y.min(), ynbin+1)
xedges[-1] *= 1.0001
yedges[-1] *= 1.0001
else:
yedges = asarray(bins, float)
xedges = yedges.copy()
ynbin = len(yedges)-1
xnbin = len(xedges)-1
# Flattened histogram matrix (1D)
hist = np.zeros((xnbin)*(ynbin), int)
# Count the number of sample in each bin (1D)
xbin = np.digitize(x,xedges)
ybin = np.digitize(y,yedges)
# Remove the outliers
outliers = (xbin==0) | (xbin==xnbin+1) | (ybin==0) | (ybin == ynbin+1)
xbin = xbin[outliers==False]
ybin = ybin[outliers==False]
# Compute the sample indices in the flattened histogram matrix.
if xnbin >= ynbin:
xy = ybin*(xnbin) + xbin
shift = xnbin + 1
else:
xy = xbin*(ynbin) + ybin
shift = ynbin + 1
# Compute the number of repetitions in xy and assign it to the flattened
# histogram matrix.
flatcount = np.bincount(xy)
indices = np.arange(len(flatcount)-shift)
hist[indices] = flatcount[shift:]
# Shape into a proper matrix
histmat = hist.reshape(xnbin, ynbin)
if normed:
diff2 = np.outer(np.diff(yedges), np.diff(xedges))
histmat = histmat / diff2 / histmat.sum()
return histmat, xedges, yedges
|