summaryrefslogtreecommitdiff
path: root/numpy/linalg/tests/test_linalg.py
blob: f871a5f8e8590a313dc59b8889168a7524615d24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
""" Test functions for linalg module

"""
import os
import sys
import itertools
import traceback
import textwrap
import subprocess
import pytest

import numpy as np
from numpy import array, single, double, csingle, cdouble, dot, identity, matmul
from numpy.core import swapaxes
from numpy import multiply, atleast_2d, inf, asarray
from numpy import linalg
from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_array_equal,
    assert_almost_equal, assert_allclose, suppress_warnings,
    assert_raises_regex, HAS_LAPACK64,
    )


def consistent_subclass(out, in_):
    # For ndarray subclass input, our output should have the same subclass
    # (non-ndarray input gets converted to ndarray).
    return type(out) is (type(in_) if isinstance(in_, np.ndarray)
                         else np.ndarray)


old_assert_almost_equal = assert_almost_equal


def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
    if asarray(a).dtype.type in (single, csingle):
        decimal = single_decimal
    else:
        decimal = double_decimal
    old_assert_almost_equal(a, b, decimal=decimal, **kw)


def get_real_dtype(dtype):
    return {single: single, double: double,
            csingle: single, cdouble: double}[dtype]


def get_complex_dtype(dtype):
    return {single: csingle, double: cdouble,
            csingle: csingle, cdouble: cdouble}[dtype]


def get_rtol(dtype):
    # Choose a safe rtol
    if dtype in (single, csingle):
        return 1e-5
    else:
        return 1e-11


# used to categorize tests
all_tags = {
  'square', 'nonsquare', 'hermitian',  # mutually exclusive
  'generalized', 'size-0', 'strided' # optional additions
}


class LinalgCase:
    def __init__(self, name, a, b, tags=set()):
        """
        A bundle of arguments to be passed to a test case, with an identifying
        name, the operands a and b, and a set of tags to filter the tests
        """
        assert_(isinstance(name, str))
        self.name = name
        self.a = a
        self.b = b
        self.tags = frozenset(tags)  # prevent shared tags

    def check(self, do):
        """
        Run the function `do` on this test case, expanding arguments
        """
        do(self.a, self.b, tags=self.tags)

    def __repr__(self):
        return f'<LinalgCase: {self.name}>'


def apply_tag(tag, cases):
    """
    Add the given tag (a string) to each of the cases (a list of LinalgCase
    objects)
    """
    assert tag in all_tags, "Invalid tag"
    for case in cases:
        case.tags = case.tags | {tag}
    return cases


#
# Base test cases
#

np.random.seed(1234)

CASES = []

# square test cases
CASES += apply_tag('square', [
    LinalgCase("single",
               array([[1., 2.], [3., 4.]], dtype=single),
               array([2., 1.], dtype=single)),
    LinalgCase("double",
               array([[1., 2.], [3., 4.]], dtype=double),
               array([2., 1.], dtype=double)),
    LinalgCase("double_2",
               array([[1., 2.], [3., 4.]], dtype=double),
               array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
    LinalgCase("csingle",
               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
               array([2. + 1j, 1. + 2j], dtype=csingle)),
    LinalgCase("cdouble",
               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
               array([2. + 1j, 1. + 2j], dtype=cdouble)),
    LinalgCase("cdouble_2",
               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
               array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
    LinalgCase("0x0",
               np.empty((0, 0), dtype=double),
               np.empty((0,), dtype=double),
               tags={'size-0'}),
    LinalgCase("8x8",
               np.random.rand(8, 8),
               np.random.rand(8)),
    LinalgCase("1x1",
               np.random.rand(1, 1),
               np.random.rand(1)),
    LinalgCase("nonarray",
               [[1, 2], [3, 4]],
               [2, 1]),
])

# non-square test-cases
CASES += apply_tag('nonsquare', [
    LinalgCase("single_nsq_1",
               array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
               array([2., 1.], dtype=single)),
    LinalgCase("single_nsq_2",
               array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
               array([2., 1., 3.], dtype=single)),
    LinalgCase("double_nsq_1",
               array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
               array([2., 1.], dtype=double)),
    LinalgCase("double_nsq_2",
               array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
               array([2., 1., 3.], dtype=double)),
    LinalgCase("csingle_nsq_1",
               array(
                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
               array([2. + 1j, 1. + 2j], dtype=csingle)),
    LinalgCase("csingle_nsq_2",
               array(
                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
               array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
    LinalgCase("cdouble_nsq_1",
               array(
                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
               array([2. + 1j, 1. + 2j], dtype=cdouble)),
    LinalgCase("cdouble_nsq_2",
               array(
                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
               array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
    LinalgCase("cdouble_nsq_1_2",
               array(
                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
               array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
    LinalgCase("cdouble_nsq_2_2",
               array(
                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
               array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
    LinalgCase("8x11",
               np.random.rand(8, 11),
               np.random.rand(8)),
    LinalgCase("1x5",
               np.random.rand(1, 5),
               np.random.rand(1)),
    LinalgCase("5x1",
               np.random.rand(5, 1),
               np.random.rand(5)),
    LinalgCase("0x4",
               np.random.rand(0, 4),
               np.random.rand(0),
               tags={'size-0'}),
    LinalgCase("4x0",
               np.random.rand(4, 0),
               np.random.rand(4),
               tags={'size-0'}),
])

# hermitian test-cases
CASES += apply_tag('hermitian', [
    LinalgCase("hsingle",
               array([[1., 2.], [2., 1.]], dtype=single),
               None),
    LinalgCase("hdouble",
               array([[1., 2.], [2., 1.]], dtype=double),
               None),
    LinalgCase("hcsingle",
               array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
               None),
    LinalgCase("hcdouble",
               array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
               None),
    LinalgCase("hempty",
               np.empty((0, 0), dtype=double),
               None,
               tags={'size-0'}),
    LinalgCase("hnonarray",
               [[1, 2], [2, 1]],
               None),
    LinalgCase("matrix_b_only",
               array([[1., 2.], [2., 1.]]),
               None),
    LinalgCase("hmatrix_1x1",
               np.random.rand(1, 1),
               None),
])


#
# Gufunc test cases
#
def _make_generalized_cases():
    new_cases = []

    for case in CASES:
        if not isinstance(case.a, np.ndarray):
            continue

        a = np.array([case.a, 2 * case.a, 3 * case.a])
        if case.b is None:
            b = None
        else:
            b = np.array([case.b, 7 * case.b, 6 * case.b])
        new_case = LinalgCase(case.name + "_tile3", a, b,
                              tags=case.tags | {'generalized'})
        new_cases.append(new_case)

        a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
        if case.b is None:
            b = None
        else:
            b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
        new_case = LinalgCase(case.name + "_tile213", a, b,
                              tags=case.tags | {'generalized'})
        new_cases.append(new_case)

    return new_cases


CASES += _make_generalized_cases()


#
# Generate stride combination variations of the above
#
def _stride_comb_iter(x):
    """
    Generate cartesian product of strides for all axes
    """

    if not isinstance(x, np.ndarray):
        yield x, "nop"
        return

    stride_set = [(1,)] * x.ndim
    stride_set[-1] = (1, 3, -4)
    if x.ndim > 1:
        stride_set[-2] = (1, 3, -4)
    if x.ndim > 2:
        stride_set[-3] = (1, -4)

    for repeats in itertools.product(*tuple(stride_set)):
        new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
        slices = tuple([slice(None, None, repeat) for repeat in repeats])

        # new array with different strides, but same data
        xi = np.empty(new_shape, dtype=x.dtype)
        xi.view(np.uint32).fill(0xdeadbeef)
        xi = xi[slices]
        xi[...] = x
        xi = xi.view(x.__class__)
        assert_(np.all(xi == x))
        yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])

        # generate also zero strides if possible
        if x.ndim >= 1 and x.shape[-1] == 1:
            s = list(x.strides)
            s[-1] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0"
        if x.ndim >= 2 and x.shape[-2] == 1:
            s = list(x.strides)
            s[-2] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0_x"
        if x.ndim >= 2 and x.shape[:-2] == (1, 1):
            s = list(x.strides)
            s[-1] = 0
            s[-2] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0_0"


def _make_strided_cases():
    new_cases = []
    for case in CASES:
        for a, a_label in _stride_comb_iter(case.a):
            for b, b_label in _stride_comb_iter(case.b):
                new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
                                      tags=case.tags | {'strided'})
                new_cases.append(new_case)
    return new_cases


CASES += _make_strided_cases()


#
# Test different routines against the above cases
#
class LinalgTestCase:
    TEST_CASES = CASES

    def check_cases(self, require=set(), exclude=set()):
        """
        Run func on each of the cases with all of the tags in require, and none
        of the tags in exclude
        """
        for case in self.TEST_CASES:
            # filter by require and exclude
            if case.tags & require != require:
                continue
            if case.tags & exclude:
                continue

            try:
                case.check(self.do)
            except Exception as e:
                msg = f'In test case: {case!r}\n\n'
                msg += traceback.format_exc()
                raise AssertionError(msg) from e


class LinalgSquareTestCase(LinalgTestCase):

    def test_sq_cases(self):
        self.check_cases(require={'square'},
                         exclude={'generalized', 'size-0'})

    def test_empty_sq_cases(self):
        self.check_cases(require={'square', 'size-0'},
                         exclude={'generalized'})


class LinalgNonsquareTestCase(LinalgTestCase):

    def test_nonsq_cases(self):
        self.check_cases(require={'nonsquare'},
                         exclude={'generalized', 'size-0'})

    def test_empty_nonsq_cases(self):
        self.check_cases(require={'nonsquare', 'size-0'},
                         exclude={'generalized'})


class HermitianTestCase(LinalgTestCase):

    def test_herm_cases(self):
        self.check_cases(require={'hermitian'},
                         exclude={'generalized', 'size-0'})

    def test_empty_herm_cases(self):
        self.check_cases(require={'hermitian', 'size-0'},
                         exclude={'generalized'})


class LinalgGeneralizedSquareTestCase(LinalgTestCase):

    @pytest.mark.slow
    def test_generalized_sq_cases(self):
        self.check_cases(require={'generalized', 'square'},
                         exclude={'size-0'})

    @pytest.mark.slow
    def test_generalized_empty_sq_cases(self):
        self.check_cases(require={'generalized', 'square', 'size-0'})


class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):

    @pytest.mark.slow
    def test_generalized_nonsq_cases(self):
        self.check_cases(require={'generalized', 'nonsquare'},
                         exclude={'size-0'})

    @pytest.mark.slow
    def test_generalized_empty_nonsq_cases(self):
        self.check_cases(require={'generalized', 'nonsquare', 'size-0'})


class HermitianGeneralizedTestCase(LinalgTestCase):

    @pytest.mark.slow
    def test_generalized_herm_cases(self):
        self.check_cases(require={'generalized', 'hermitian'},
                         exclude={'size-0'})

    @pytest.mark.slow
    def test_generalized_empty_herm_cases(self):
        self.check_cases(require={'generalized', 'hermitian', 'size-0'},
                         exclude={'none'})


def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b)


def identity_like_generalized(a):
    a = asarray(a)
    if a.ndim >= 3:
        r = np.empty(a.shape, dtype=a.dtype)
        r[...] = identity(a.shape[-2])
        return r
    else:
        return identity(a.shape[0])


class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
    # kept apart from TestSolve for use for testing with matrices.
    def do(self, a, b, tags):
        x = linalg.solve(a, b)
        assert_almost_equal(b, dot_generalized(a, x))
        assert_(consistent_subclass(x, b))


class TestSolve(SolveCases):
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        assert_equal(linalg.solve(x, x).dtype, dtype)

    def test_0_size(self):
        class ArraySubclass(np.ndarray):
            pass
        # Test system of 0x0 matrices
        a = np.arange(8).reshape(2, 2, 2)
        b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)

        expected = linalg.solve(a, b)[:, 0:0, :]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # Test errors for non-square and only b's dimension being 0
        assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
        assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])

        # Test broadcasting error
        b = np.arange(6).reshape(1, 3, 2)  # broadcasting error
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])

        # Test zero "single equations" with 0x0 matrices.
        b = np.arange(2).reshape(1, 2).view(ArraySubclass)
        expected = linalg.solve(a, b)[:, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        b = np.arange(3).reshape(1, 3)
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
        assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)

    def test_0_size_k(self):
        # test zero multiple equation (K=0) case.
        class ArraySubclass(np.ndarray):
            pass
        a = np.arange(4).reshape(1, 2, 2)
        b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)

        expected = linalg.solve(a, b)[:, :, 0:0]
        result = linalg.solve(a, b[:, :, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # test both zero.
        expected = linalg.solve(a, b)[:, 0:0, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))


class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):

    def do(self, a, b, tags):
        a_inv = linalg.inv(a)
        assert_almost_equal(dot_generalized(a, a_inv),
                            identity_like_generalized(a))
        assert_(consistent_subclass(a_inv, a))


class TestInv(InvCases):
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        assert_equal(linalg.inv(x).dtype, dtype)

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.inv(a)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res.shape)
        assert_(isinstance(res, ArraySubclass))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.inv(a)
        assert_(res.dtype.type is np.complex64)
        assert_equal(a.shape, res.shape)
        assert_(isinstance(res, ArraySubclass))


class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):

    def do(self, a, b, tags):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)


class TestEigvals(EigvalsCases):
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        assert_equal(linalg.eigvals(x).dtype, dtype)
        x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
        assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.float64)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.eigvals(a)
        assert_(res.dtype.type is np.complex64)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))


class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):

    def do(self, a, b, tags):
        evalues, evectors = linalg.eig(a)
        assert_allclose(dot_generalized(a, evectors),
                        np.asarray(evectors) * np.asarray(evalues)[..., None, :],
                        rtol=get_rtol(evalues.dtype))
        assert_(consistent_subclass(evectors, a))


class TestEig(EigCases):
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        w, v = np.linalg.eig(x)
        assert_equal(w.dtype, dtype)
        assert_equal(v.dtype, dtype)

        x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
        w, v = np.linalg.eig(x)
        assert_equal(w.dtype, get_complex_dtype(dtype))
        assert_equal(v.dtype, get_complex_dtype(dtype))

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eig(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.complex64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))


class SVDBaseTests:
    hermitian = False

    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        u, s, vh = linalg.svd(x)
        assert_equal(u.dtype, dtype)
        assert_equal(s.dtype, get_real_dtype(dtype))
        assert_equal(vh.dtype, dtype)
        s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
        assert_equal(s.dtype, get_real_dtype(dtype))


class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):

    def do(self, a, b, tags):
        u, s, vt = linalg.svd(a, False)
        assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
                                           np.asarray(vt)),
                        rtol=get_rtol(u.dtype))
        assert_(consistent_subclass(u, a))
        assert_(consistent_subclass(vt, a))


class TestSVD(SVDCases, SVDBaseTests):
    def test_empty_identity(self):
        """ Empty input should put an identity matrix in u or vh """
        x = np.empty((4, 0))
        u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
        assert_equal(u.shape, (4, 4))
        assert_equal(vh.shape, (0, 0))
        assert_equal(u, np.eye(4))

        x = np.empty((0, 4))
        u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
        assert_equal(u.shape, (0, 0))
        assert_equal(vh.shape, (4, 4))
        assert_equal(vh, np.eye(4))


class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):

    def do(self, a, b, tags):
        u, s, vt = linalg.svd(a, False, hermitian=True)
        assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
                                           np.asarray(vt)),
                        rtol=get_rtol(u.dtype))
        def hermitian(mat):
            axes = list(range(mat.ndim))
            axes[-1], axes[-2] = axes[-2], axes[-1]
            return np.conj(np.transpose(mat, axes=axes))

        assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
        assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
        assert_equal(np.sort(s)[..., ::-1], s)
        assert_(consistent_subclass(u, a))
        assert_(consistent_subclass(vt, a))


class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
    hermitian = True


class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
    # cond(x, p) for p in (None, 2, -2)

    def do(self, a, b, tags):
        c = asarray(a)  # a might be a matrix
        if 'size-0' in tags:
            assert_raises(LinAlgError, linalg.cond, c)
            return

        # +-2 norms
        s = linalg.svd(c, compute_uv=False)
        assert_almost_equal(
            linalg.cond(a), s[..., 0] / s[..., -1],
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, 2), s[..., 0] / s[..., -1],
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -2), s[..., -1] / s[..., 0],
            single_decimal=5, double_decimal=11)

        # Other norms
        cinv = np.linalg.inv(c)
        assert_almost_equal(
            linalg.cond(a, 1),
            abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -1),
            abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, np.inf),
            abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -np.inf),
            abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, 'fro'),
            np.sqrt((abs(c)**2).sum(-1).sum(-1)
                    * (abs(cinv)**2).sum(-1).sum(-1)),
            single_decimal=5, double_decimal=11)


class TestCond(CondCases):
    def test_basic_nonsvd(self):
        # Smoketest the non-svd norms
        A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
        assert_almost_equal(linalg.cond(A, inf), 4)
        assert_almost_equal(linalg.cond(A, -inf), 2/3)
        assert_almost_equal(linalg.cond(A, 1), 4)
        assert_almost_equal(linalg.cond(A, -1), 0.5)
        assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))

    def test_singular(self):
        # Singular matrices have infinite condition number for
        # positive norms, and negative norms shouldn't raise
        # exceptions
        As = [np.zeros((2, 2)), np.ones((2, 2))]
        p_pos = [None, 1, 2, 'fro']
        p_neg = [-1, -2]
        for A, p in itertools.product(As, p_pos):
            # Inversion may not hit exact infinity, so just check the
            # number is large
            assert_(linalg.cond(A, p) > 1e15)
        for A, p in itertools.product(As, p_neg):
            linalg.cond(A, p)

    @pytest.mark.xfail(True, run=False,
                       reason="Platform/LAPACK-dependent failure, "
                              "see gh-18914")
    def test_nan(self):
        # nans should be passed through, not converted to infs
        ps = [None, 1, -1, 2, -2, 'fro']
        p_pos = [None, 1, 2, 'fro']

        A = np.ones((2, 2))
        A[0,1] = np.nan
        for p in ps:
            c = linalg.cond(A, p)
            assert_(isinstance(c, np.float_))
            assert_(np.isnan(c))

        A = np.ones((3, 2, 2))
        A[1,0,1] = np.nan
        for p in ps:
            c = linalg.cond(A, p)
            assert_(np.isnan(c[1]))
            if p in p_pos:
                assert_(c[0] > 1e15)
                assert_(c[2] > 1e15)
            else:
                assert_(not np.isnan(c[0]))
                assert_(not np.isnan(c[2]))

    def test_stacked_singular(self):
        # Check behavior when only some of the stacked matrices are
        # singular
        np.random.seed(1234)
        A = np.random.rand(2, 2, 2, 2)
        A[0,0] = 0
        A[1,1] = 0

        for p in (None, 1, 2, 'fro', -1, -2):
            c = linalg.cond(A, p)
            assert_equal(c[0,0], np.inf)
            assert_equal(c[1,1], np.inf)
            assert_(np.isfinite(c[0,1]))
            assert_(np.isfinite(c[1,0]))


class PinvCases(LinalgSquareTestCase,
                LinalgNonsquareTestCase,
                LinalgGeneralizedSquareTestCase,
                LinalgGeneralizedNonsquareTestCase):

    def do(self, a, b, tags):
        a_ginv = linalg.pinv(a)
        # `a @ a_ginv == I` does not hold if a is singular
        dot = dot_generalized
        assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
        assert_(consistent_subclass(a_ginv, a))


class TestPinv(PinvCases):
    pass


class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):

    def do(self, a, b, tags):
        a_ginv = linalg.pinv(a, hermitian=True)
        # `a @ a_ginv == I` does not hold if a is singular
        dot = dot_generalized
        assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
        assert_(consistent_subclass(a_ginv, a))


class TestPinvHermitian(PinvHermitianCases):
    pass


class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):

    def do(self, a, b, tags):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)


class TestDet(DetCases):
    def test_zero(self):
        assert_equal(linalg.det([[0.0]]), 0.0)
        assert_equal(type(linalg.det([[0.0]])), double)
        assert_equal(linalg.det([[0.0j]]), 0.0)
        assert_equal(type(linalg.det([[0.0j]])), cdouble)

        assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
        assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
        assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
        assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
        assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
        assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)

    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        assert_equal(np.linalg.det(x).dtype, dtype)
        ph, s = np.linalg.slogdet(x)
        assert_equal(s.dtype, get_real_dtype(dtype))
        assert_equal(ph.dtype, dtype)

    def test_0_size(self):
        a = np.zeros((0, 0), dtype=np.complex64)
        res = linalg.det(a)
        assert_equal(res, 1.)
        assert_(res.dtype.type is np.complex64)
        res = linalg.slogdet(a)
        assert_equal(res, (1, 0))
        assert_(res[0].dtype.type is np.complex64)
        assert_(res[1].dtype.type is np.float32)

        a = np.zeros((0, 0), dtype=np.float64)
        res = linalg.det(a)
        assert_equal(res, 1.)
        assert_(res.dtype.type is np.float64)
        res = linalg.slogdet(a)
        assert_equal(res, (1, 0))
        assert_(res[0].dtype.type is np.float64)
        assert_(res[1].dtype.type is np.float64)


class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):

    def do(self, a, b, tags):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, False)
        x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
        if m == 0:
            assert_((x == 0).all())
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if np.asarray(b).ndim == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(consistent_subclass(x, b))
        assert_(consistent_subclass(residuals, b))


class TestLstsq(LstsqCases):
    def test_future_rcond(self):
        a = np.array([[0., 1.,  0.,  1.,  2.,  0.],
                      [0., 2.,  0.,  0.,  1.,  0.],
                      [1., 0.,  1.,  0.,  0.,  4.],
                      [0., 0.,  0.,  2.,  3.,  0.]]).T

        b = np.array([1, 0, 0, 0, 0, 0])
        with suppress_warnings() as sup:
            w = sup.record(FutureWarning, "`rcond` parameter will change")
            x, residuals, rank, s = linalg.lstsq(a, b)
            assert_(rank == 4)
            x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
            assert_(rank == 4)
            x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
            assert_(rank == 3)
            # Warning should be raised exactly once (first command)
            assert_(len(w) == 1)

    @pytest.mark.parametrize(["m", "n", "n_rhs"], [
        (4, 2, 2),
        (0, 4, 1),
        (0, 4, 2),
        (4, 0, 1),
        (4, 0, 2),
        (4, 2, 0),
        (0, 0, 0)
    ])
    def test_empty_a_b(self, m, n, n_rhs):
        a = np.arange(m * n).reshape(m, n)
        b = np.ones((m, n_rhs))
        x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
        if m == 0:
            assert_((x == 0).all())
        assert_equal(x.shape, (n, n_rhs))
        assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
        if m > n and n_rhs > 0:
            # residuals are exactly the squared norms of b's columns
            r = b - np.dot(a, x)
            assert_almost_equal(residuals, (r * r).sum(axis=-2))
        assert_equal(rank, min(m, n))
        assert_equal(s.shape, (min(m, n),))

    def test_incompatible_dims(self):
        # use modified version of docstring example
        x = np.array([0, 1, 2, 3])
        y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
        A = np.vstack([x, np.ones(len(x))]).T
        with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
            linalg.lstsq(A, y, rcond=None)


@pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
class TestMatrixPower:

    rshft_0 = np.eye(4)
    rshft_1 = rshft_0[[3, 0, 1, 2]]
    rshft_2 = rshft_0[[2, 3, 0, 1]]
    rshft_3 = rshft_0[[1, 2, 3, 0]]
    rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
    noninv = array([[1, 0], [0, 0]])
    stacked = np.block([[[rshft_0]]]*2)
    #FIXME the 'e' dtype might work in future
    dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]

    def test_large_power(self, dt):
        rshft = self.rshft_1.astype(dt)
        assert_equal(
            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
        assert_equal(
            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
        assert_equal(
            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
        assert_equal(
            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)

    def test_power_is_zero(self, dt):
        def tz(M):
            mz = matrix_power(M, 0)
            assert_equal(mz, identity_like_generalized(M))
            assert_equal(mz.dtype, M.dtype)

        for mat in self.rshft_all:
            tz(mat.astype(dt))
            if dt != object:
                tz(self.stacked.astype(dt))

    def test_power_is_one(self, dt):
        def tz(mat):
            mz = matrix_power(mat, 1)
            assert_equal(mz, mat)
            assert_equal(mz.dtype, mat.dtype)

        for mat in self.rshft_all:
            tz(mat.astype(dt))
            if dt != object:
                tz(self.stacked.astype(dt))

    def test_power_is_two(self, dt):
        def tz(mat):
            mz = matrix_power(mat, 2)
            mmul = matmul if mat.dtype != object else dot
            assert_equal(mz, mmul(mat, mat))
            assert_equal(mz.dtype, mat.dtype)

        for mat in self.rshft_all:
            tz(mat.astype(dt))
            if dt != object:
                tz(self.stacked.astype(dt))

    def test_power_is_minus_one(self, dt):
        def tz(mat):
            invmat = matrix_power(mat, -1)
            mmul = matmul if mat.dtype != object else dot
            assert_almost_equal(
                mmul(invmat, mat), identity_like_generalized(mat))

        for mat in self.rshft_all:
            if dt not in self.dtnoinv:
                tz(mat.astype(dt))

    def test_exceptions_bad_power(self, dt):
        mat = self.rshft_0.astype(dt)
        assert_raises(TypeError, matrix_power, mat, 1.5)
        assert_raises(TypeError, matrix_power, mat, [1])

    def test_exceptions_non_square(self, dt):
        assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
        assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
        assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)

    def test_exceptions_not_invertible(self, dt):
        if dt in self.dtnoinv:
            return
        mat = self.noninv.astype(dt)
        assert_raises(LinAlgError, matrix_power, mat, -1)


class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):

    def do(self, a, b, tags):
        # note that eigenvalue arrays returned by eig must be sorted since
        # their order isn't guaranteed.
        ev = linalg.eigvalsh(a, 'L')
        evalues, evectors = linalg.eig(a)
        evalues.sort(axis=-1)
        assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))

        ev2 = linalg.eigvalsh(a, 'U')
        assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))


class TestEigvalsh:
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        w = np.linalg.eigvalsh(x)
        assert_equal(w.dtype, get_real_dtype(dtype))

    def test_invalid(self):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
        assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
        assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
        assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")

    def test_UPLO(self):
        Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
        Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
        tgt = np.array([-1, 1], dtype=np.double)
        rtol = get_rtol(np.double)

        # Check default is 'L'
        w = np.linalg.eigvalsh(Klo)
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'L'
        w = np.linalg.eigvalsh(Klo, UPLO='L')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'l'
        w = np.linalg.eigvalsh(Klo, UPLO='l')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'U'
        w = np.linalg.eigvalsh(Kup, UPLO='U')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'u'
        w = np.linalg.eigvalsh(Kup, UPLO='u')
        assert_allclose(w, tgt, rtol=rtol)

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.eigvalsh(a)
        assert_(res.dtype.type is np.float64)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.eigvalsh(a)
        assert_(res.dtype.type is np.float32)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(res, np.ndarray))


class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):

    def do(self, a, b, tags):
        # note that eigenvalue arrays returned by eig must be sorted since
        # their order isn't guaranteed.
        ev, evc = linalg.eigh(a)
        evalues, evectors = linalg.eig(a)
        evalues.sort(axis=-1)
        assert_almost_equal(ev, evalues)

        assert_allclose(dot_generalized(a, evc),
                        np.asarray(ev)[..., None, :] * np.asarray(evc),
                        rtol=get_rtol(ev.dtype))

        ev2, evc2 = linalg.eigh(a, 'U')
        assert_almost_equal(ev2, evalues)

        assert_allclose(dot_generalized(a, evc2),
                        np.asarray(ev2)[..., None, :] * np.asarray(evc2),
                        rtol=get_rtol(ev.dtype), err_msg=repr(a))


class TestEigh:
    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
    def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        w, v = np.linalg.eigh(x)
        assert_equal(w.dtype, get_real_dtype(dtype))
        assert_equal(v.dtype, dtype)

    def test_invalid(self):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
        assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
        assert_raises(ValueError, np.linalg.eigh, x, "lower")
        assert_raises(ValueError, np.linalg.eigh, x, "upper")

    def test_UPLO(self):
        Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
        Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
        tgt = np.array([-1, 1], dtype=np.double)
        rtol = get_rtol(np.double)

        # Check default is 'L'
        w, v = np.linalg.eigh(Klo)
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'L'
        w, v = np.linalg.eigh(Klo, UPLO='L')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'l'
        w, v = np.linalg.eigh(Klo, UPLO='l')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'U'
        w, v = np.linalg.eigh(Kup, UPLO='U')
        assert_allclose(w, tgt, rtol=rtol)
        # Check 'u'
        w, v = np.linalg.eigh(Kup, UPLO='u')
        assert_allclose(w, tgt, rtol=rtol)

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.float64)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0, 1), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res, res_v = linalg.eigh(a)
        assert_(res_v.dtype.type is np.complex64)
        assert_(res.dtype.type is np.float32)
        assert_equal(a.shape, res_v.shape)
        assert_equal((0,), res.shape)
        # This is just for documentation, it might make sense to change:
        assert_(isinstance(a, np.ndarray))


class _TestNormBase:
    dt = None
    dec = None

    @staticmethod
    def check_dtype(x, res):
        if issubclass(x.dtype.type, np.inexact):
            assert_equal(res.dtype, x.real.dtype)
        else:
            # For integer input, don't have to test float precision of output.
            assert_(issubclass(res.dtype.type, np.floating))


class _TestNormGeneral(_TestNormBase):

    def test_empty(self):
        assert_equal(norm([]), 0.0)
        assert_equal(norm(array([], dtype=self.dt)), 0.0)
        assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)

    def test_vector_return_type(self):
        a = np.array([1, 0, 1])

        exact_types = np.typecodes['AllInteger']
        inexact_types = np.typecodes['AllFloat']

        all_types = exact_types + inexact_types

        for each_type in all_types:
            at = a.astype(each_type)

            an = norm(at, -np.inf)
            self.check_dtype(at, an)
            assert_almost_equal(an, 0.0)

            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning, "divide by zero encountered")
                an = norm(at, -1)
                self.check_dtype(at, an)
                assert_almost_equal(an, 0.0)

            an = norm(at, 0)
            self.check_dtype(at, an)
            assert_almost_equal(an, 2)

            an = norm(at, 1)
            self.check_dtype(at, an)
            assert_almost_equal(an, 2.0)

            an = norm(at, 2)
            self.check_dtype(at, an)
            assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0))

            an = norm(at, 4)
            self.check_dtype(at, an)
            assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0))

            an = norm(at, np.inf)
            self.check_dtype(at, an)
            assert_almost_equal(an, 1.0)

    def test_vector(self):
        a = [1, 2, 3, 4]
        b = [-1, -2, -3, -4]
        c = [-1, 2, -3, 4]

        def _test(v):
            np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, inf), 4.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -inf), 1.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 1), 10.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 0), 4,
                                           decimal=self.dec)

        for v in (a, b, c,):
            _test(v)

        for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
                  array(c, dtype=self.dt)):
            _test(v)

    def test_axis(self):
        # Vector norms.
        # Compare the use of `axis` with computing the norm of each row
        # or column separately.
        A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
        for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
            expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
            assert_almost_equal(norm(A, ord=order, axis=0), expected0)
            expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
            assert_almost_equal(norm(A, ord=order, axis=1), expected1)

        # Matrix norms.
        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
        nd = B.ndim
        for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
            for axis in itertools.combinations(range(-nd, nd), 2):
                row_axis, col_axis = axis
                if row_axis < 0:
                    row_axis += nd
                if col_axis < 0:
                    col_axis += nd
                if row_axis == col_axis:
                    assert_raises(ValueError, norm, B, ord=order, axis=axis)
                else:
                    n = norm(B, ord=order, axis=axis)

                    # The logic using k_index only works for nd = 3.
                    # This has to be changed if nd is increased.
                    k_index = nd - (row_axis + col_axis)
                    if row_axis < col_axis:
                        expected = [norm(B[:].take(k, axis=k_index), ord=order)
                                    for k in range(B.shape[k_index])]
                    else:
                        expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
                                    for k in range(B.shape[k_index])]
                    assert_almost_equal(n, expected)

    def test_keepdims(self):
        A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)

        allclose_err = 'order {0}, axis = {1}'
        shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'

        # check the order=None, axis=None case
        expected = norm(A, ord=None, axis=None)
        found = norm(A, ord=None, axis=None, keepdims=True)
        assert_allclose(np.squeeze(found), expected,
                        err_msg=allclose_err.format(None, None))
        expected_shape = (1, 1, 1)
        assert_(found.shape == expected_shape,
                shape_err.format(found.shape, expected_shape, None, None))

        # Vector norms.
        for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
            for k in range(A.ndim):
                expected = norm(A, ord=order, axis=k)
                found = norm(A, ord=order, axis=k, keepdims=True)
                assert_allclose(np.squeeze(found), expected,
                                err_msg=allclose_err.format(order, k))
                expected_shape = list(A.shape)
                expected_shape[k] = 1
                expected_shape = tuple(expected_shape)
                assert_(found.shape == expected_shape,
                        shape_err.format(found.shape, expected_shape, order, k))

        # Matrix norms.
        for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
            for k in itertools.permutations(range(A.ndim), 2):
                expected = norm(A, ord=order, axis=k)
                found = norm(A, ord=order, axis=k, keepdims=True)
                assert_allclose(np.squeeze(found), expected,
                                err_msg=allclose_err.format(order, k))
                expected_shape = list(A.shape)
                expected_shape[k[0]] = 1
                expected_shape[k[1]] = 1
                expected_shape = tuple(expected_shape)
                assert_(found.shape == expected_shape,
                        shape_err.format(found.shape, expected_shape, order, k))


class _TestNorm2D(_TestNormBase):
    # Define the part for 2d arrays separately, so we can subclass this
    # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
    array = np.array

    def test_matrix_empty(self):
        assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)

    def test_matrix_return_type(self):
        a = self.array([[1, 0, 1], [0, 1, 1]])

        exact_types = np.typecodes['AllInteger']

        # float32, complex64, float64, complex128 types are the only types
        # allowed by `linalg`, which performs the matrix operations used
        # within `norm`.
        inexact_types = 'fdFD'

        all_types = exact_types + inexact_types

        for each_type in all_types:
            at = a.astype(each_type)

            an = norm(at, -np.inf)
            self.check_dtype(at, an)
            assert_almost_equal(an, 2.0)

            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning, "divide by zero encountered")
                an = norm(at, -1)
                self.check_dtype(at, an)
                assert_almost_equal(an, 1.0)

            an = norm(at, 1)
            self.check_dtype(at, an)
            assert_almost_equal(an, 2.0)

            an = norm(at, 2)
            self.check_dtype(at, an)
            assert_almost_equal(an, 3.0**(1.0/2.0))

            an = norm(at, -2)
            self.check_dtype(at, an)
            assert_almost_equal(an, 1.0)

            an = norm(at, np.inf)
            self.check_dtype(at, an)
            assert_almost_equal(an, 2.0)

            an = norm(at, 'fro')
            self.check_dtype(at, an)
            assert_almost_equal(an, 2.0)

            an = norm(at, 'nuc')
            self.check_dtype(at, an)
            # Lower bar needed to support low precision floats.
            # They end up being off by 1 in the 7th place.
            np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)

    def test_matrix_2x2(self):
        A = self.array([[1, 3], [5, 7]], dtype=self.dt)
        assert_almost_equal(norm(A), 84 ** 0.5)
        assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
        assert_almost_equal(norm(A, 'nuc'), 10.0)
        assert_almost_equal(norm(A, inf), 12.0)
        assert_almost_equal(norm(A, -inf), 4.0)
        assert_almost_equal(norm(A, 1), 10.0)
        assert_almost_equal(norm(A, -1), 6.0)
        assert_almost_equal(norm(A, 2), 9.1231056256176615)
        assert_almost_equal(norm(A, -2), 0.87689437438234041)

        assert_raises(ValueError, norm, A, 'nofro')
        assert_raises(ValueError, norm, A, -3)
        assert_raises(ValueError, norm, A, 0)

    def test_matrix_3x3(self):
        # This test has been added because the 2x2 example
        # happened to have equal nuclear norm and induced 1-norm.
        # The 1/10 scaling factor accommodates the absolute tolerance
        # used in assert_almost_equal.
        A = (1 / 10) * \
            self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
        assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
        assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
        assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
        assert_almost_equal(norm(A, inf), 1.1)
        assert_almost_equal(norm(A, -inf), 0.6)
        assert_almost_equal(norm(A, 1), 1.0)
        assert_almost_equal(norm(A, -1), 0.4)
        assert_almost_equal(norm(A, 2), 0.88722940323461277)
        assert_almost_equal(norm(A, -2), 0.19456584790481812)

    def test_bad_args(self):
        # Check that bad arguments raise the appropriate exceptions.

        A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)

        # Using `axis=<integer>` or passing in a 1-D array implies vector
        # norms are being computed, so also using `ord='fro'`
        # or `ord='nuc'` or any other string raises a ValueError.
        assert_raises(ValueError, norm, A, 'fro', 0)
        assert_raises(ValueError, norm, A, 'nuc', 0)
        assert_raises(ValueError, norm, [3, 4], 'fro', None)
        assert_raises(ValueError, norm, [3, 4], 'nuc', None)
        assert_raises(ValueError, norm, [3, 4], 'test', None)

        # Similarly, norm should raise an exception when ord is any finite
        # number other than 1, 2, -1 or -2 when computing matrix norms.
        for order in [0, 3]:
            assert_raises(ValueError, norm, A, order, None)
            assert_raises(ValueError, norm, A, order, (0, 1))
            assert_raises(ValueError, norm, B, order, (1, 2))

        # Invalid axis
        assert_raises(np.AxisError, norm, B, None, 3)
        assert_raises(np.AxisError, norm, B, None, (2, 3))
        assert_raises(ValueError, norm, B, None, (0, 1, 2))


class _TestNorm(_TestNorm2D, _TestNormGeneral):
    pass


class TestNorm_NonSystematic:

    def test_longdouble_norm(self):
        # Non-regression test: p-norm of longdouble would previously raise
        # UnboundLocalError.
        x = np.arange(10, dtype=np.longdouble)
        old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)

    def test_intmin(self):
        # Non-regression test: p-norm of signed integer would previously do
        # float cast and abs in the wrong order.
        x = np.array([-2 ** 31], dtype=np.int32)
        old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)

    def test_complex_high_ord(self):
        # gh-4156
        d = np.empty((2,), dtype=np.clongdouble)
        d[0] = 6 + 7j
        d[1] = -6 + 7j
        res = 11.615898132184
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
        d = d.astype(np.complex128)
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
        d = d.astype(np.complex64)
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)


# Separate definitions so we can use them for matrix tests.
class _TestNormDoubleBase(_TestNormBase):
    dt = np.double
    dec = 12


class _TestNormSingleBase(_TestNormBase):
    dt = np.float32
    dec = 6


class _TestNormInt64Base(_TestNormBase):
    dt = np.int64
    dec = 12


class TestNormDouble(_TestNorm, _TestNormDoubleBase):
    pass


class TestNormSingle(_TestNorm, _TestNormSingleBase):
    pass


class TestNormInt64(_TestNorm, _TestNormInt64Base):
    pass


class TestMatrixRank:

    def test_matrix_rank(self):
        # Full rank matrix
        assert_equal(4, matrix_rank(np.eye(4)))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        assert_equal(matrix_rank(I), 3)
        # All zeros - zero rank
        assert_equal(matrix_rank(np.zeros((4, 4))), 0)
        # 1 dimension - rank 1 unless all 0
        assert_equal(matrix_rank([1, 0, 0, 0]), 1)
        assert_equal(matrix_rank(np.zeros((4,))), 0)
        # accepts array-like
        assert_equal(matrix_rank([1]), 1)
        # greater than 2 dimensions treated as stacked matrices
        ms = np.array([I, np.eye(4), np.zeros((4,4))])
        assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
        # works on scalar
        assert_equal(matrix_rank(1), 1)

    def test_symmetric_rank(self):
        assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
        assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
        assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        assert_equal(3, matrix_rank(I, hermitian=True))
        # manually supplied tolerance
        I[-1, -1] = 1e-8
        assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
        assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))


def test_reduced_rank():
    # Test matrices with reduced rank
    rng = np.random.RandomState(20120714)
    for i in range(100):
        # Make a rank deficient matrix
        X = rng.normal(size=(40, 10))
        X[:, 0] = X[:, 1] + X[:, 2]
        # Assert that matrix_rank detected deficiency
        assert_equal(matrix_rank(X), 9)
        X[:, 3] = X[:, 4] + X[:, 5]
        assert_equal(matrix_rank(X), 8)


class TestQR:
    # Define the array class here, so run this on matrices elsewhere.
    array = np.array

    def check_qr(self, a):
        # This test expects the argument `a` to be an ndarray or
        # a subclass of an ndarray of inexact type.
        a_type = type(a)
        a_dtype = a.dtype
        m, n = a.shape
        k = min(m, n)

        # mode == 'complete'
        q, r = linalg.qr(a, mode='complete')
        assert_(q.dtype == a_dtype)
        assert_(r.dtype == a_dtype)
        assert_(isinstance(q, a_type))
        assert_(isinstance(r, a_type))
        assert_(q.shape == (m, m))
        assert_(r.shape == (m, n))
        assert_almost_equal(dot(q, r), a)
        assert_almost_equal(dot(q.T.conj(), q), np.eye(m))
        assert_almost_equal(np.triu(r), r)

        # mode == 'reduced'
        q1, r1 = linalg.qr(a, mode='reduced')
        assert_(q1.dtype == a_dtype)
        assert_(r1.dtype == a_dtype)
        assert_(isinstance(q1, a_type))
        assert_(isinstance(r1, a_type))
        assert_(q1.shape == (m, k))
        assert_(r1.shape == (k, n))
        assert_almost_equal(dot(q1, r1), a)
        assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
        assert_almost_equal(np.triu(r1), r1)

        # mode == 'r'
        r2 = linalg.qr(a, mode='r')
        assert_(r2.dtype == a_dtype)
        assert_(isinstance(r2, a_type))
        assert_almost_equal(r2, r1)


    @pytest.mark.parametrize(["m", "n"], [
        (3, 0),
        (0, 3),
        (0, 0)
    ])
    def test_qr_empty(self, m, n):
        k = min(m, n)
        a = np.empty((m, n))

        self.check_qr(a)

        h, tau = np.linalg.qr(a, mode='raw')
        assert_equal(h.dtype, np.double)
        assert_equal(tau.dtype, np.double)
        assert_equal(h.shape, (n, m))
        assert_equal(tau.shape, (k,))

    def test_mode_raw(self):
        # The factorization is not unique and varies between libraries,
        # so it is not possible to check against known values. Functional
        # testing is a possibility, but awaits the exposure of more
        # of the functions in lapack_lite. Consequently, this test is
        # very limited in scope. Note that the results are in FORTRAN
        # order, hence the h arrays are transposed.
        a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)

        # Test double
        h, tau = linalg.qr(a, mode='raw')
        assert_(h.dtype == np.double)
        assert_(tau.dtype == np.double)
        assert_(h.shape == (2, 3))
        assert_(tau.shape == (2,))

        h, tau = linalg.qr(a.T, mode='raw')
        assert_(h.dtype == np.double)
        assert_(tau.dtype == np.double)
        assert_(h.shape == (3, 2))
        assert_(tau.shape == (2,))

    def test_mode_all_but_economic(self):
        a = self.array([[1, 2], [3, 4]])
        b = self.array([[1, 2], [3, 4], [5, 6]])
        for dt in "fd":
            m1 = a.astype(dt)
            m2 = b.astype(dt)
            self.check_qr(m1)
            self.check_qr(m2)
            self.check_qr(m2.T)

        for dt in "fd":
            m1 = 1 + 1j * a.astype(dt)
            m2 = 1 + 1j * b.astype(dt)
            self.check_qr(m1)
            self.check_qr(m2)
            self.check_qr(m2.T)

    def check_qr_stacked(self, a):
        # This test expects the argument `a` to be an ndarray or
        # a subclass of an ndarray of inexact type.
        a_type = type(a)
        a_dtype = a.dtype
        m, n = a.shape[-2:]
        k = min(m, n)

        # mode == 'complete'
        q, r = linalg.qr(a, mode='complete')
        assert_(q.dtype == a_dtype)
        assert_(r.dtype == a_dtype)
        assert_(isinstance(q, a_type))
        assert_(isinstance(r, a_type))
        assert_(q.shape[-2:] == (m, m))
        assert_(r.shape[-2:] == (m, n))
        assert_almost_equal(matmul(q, r), a)
        I_mat = np.identity(q.shape[-1])
        stack_I_mat = np.broadcast_to(I_mat, 
                        q.shape[:-2] + (q.shape[-1],)*2)
        assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
        assert_almost_equal(np.triu(r[..., :, :]), r)

        # mode == 'reduced'
        q1, r1 = linalg.qr(a, mode='reduced')
        assert_(q1.dtype == a_dtype)
        assert_(r1.dtype == a_dtype)
        assert_(isinstance(q1, a_type))
        assert_(isinstance(r1, a_type))
        assert_(q1.shape[-2:] == (m, k))
        assert_(r1.shape[-2:] == (k, n))
        assert_almost_equal(matmul(q1, r1), a)
        I_mat = np.identity(q1.shape[-1])
        stack_I_mat = np.broadcast_to(I_mat, 
                        q1.shape[:-2] + (q1.shape[-1],)*2)
        assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1), 
                            stack_I_mat)
        assert_almost_equal(np.triu(r1[..., :, :]), r1)

        # mode == 'r'
        r2 = linalg.qr(a, mode='r')
        assert_(r2.dtype == a_dtype)
        assert_(isinstance(r2, a_type))
        assert_almost_equal(r2, r1)

    @pytest.mark.parametrize("size", [
        (3, 4), (4, 3), (4, 4), 
        (3, 0), (0, 3)])
    @pytest.mark.parametrize("outer_size", [
        (2, 2), (2,), (2, 3, 4)])
    @pytest.mark.parametrize("dt", [
        np.single, np.double, 
        np.csingle, np.cdouble])
    def test_stacked_inputs(self, outer_size, size, dt):

        A = np.random.normal(size=outer_size + size).astype(dt)
        B = np.random.normal(size=outer_size + size).astype(dt)
        self.check_qr_stacked(A)
        self.check_qr_stacked(A + 1.j*B)


class TestCholesky:
    # TODO: are there no other tests for cholesky?

    @pytest.mark.parametrize(
        'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
    )
    @pytest.mark.parametrize(
        'dtype', (np.float32, np.float64, np.complex64, np.complex128)
    )
    def test_basic_property(self, shape, dtype):
        # Check A = L L^H
        np.random.seed(1)
        a = np.random.randn(*shape)
        if np.issubdtype(dtype, np.complexfloating):
            a = a + 1j*np.random.randn(*shape)

        t = list(range(len(shape)))
        t[-2:] = -1, -2

        a = np.matmul(a.transpose(t).conj(), a)
        a = np.asarray(a, dtype=dtype)

        c = np.linalg.cholesky(a)

        b = np.matmul(c, c.transpose(t).conj())
        with np._no_nep50_warning():
            atol = 500 * a.shape[0] * np.finfo(dtype).eps
        assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')

    def test_0_size(self):
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.cholesky(a)
        assert_equal(a.shape, res.shape)
        assert_(res.dtype.type is np.float64)
        # for documentation purpose:
        assert_(isinstance(res, np.ndarray))

        a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.cholesky(a)
        assert_equal(a.shape, res.shape)
        assert_(res.dtype.type is np.complex64)
        assert_(isinstance(res, np.ndarray))


def test_byteorder_check():
    # Byte order check should pass for native order
    if sys.byteorder == 'little':
        native = '<'
    else:
        native = '>'

    for dtt in (np.float32, np.float64):
        arr = np.eye(4, dtype=dtt)
        n_arr = arr.newbyteorder(native)
        sw_arr = arr.newbyteorder('S').byteswap()
        assert_equal(arr.dtype.byteorder, '=')
        for routine in (linalg.inv, linalg.det, linalg.pinv):
            # Normal call
            res = routine(arr)
            # Native but not '='
            assert_array_equal(res, routine(n_arr))
            # Swapped
            assert_array_equal(res, routine(sw_arr))


def test_generalized_raise_multiloop():
    # It should raise an error even if the error doesn't occur in the
    # last iteration of the ufunc inner loop

    invertible = np.array([[1, 2], [3, 4]])
    non_invertible = np.array([[1, 1], [1, 1]])

    x = np.zeros([4, 4, 2, 2])[1::2]
    x[...] = invertible
    x[0, 0] = non_invertible

    assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)


def test_xerbla_override():
    # Check that our xerbla has been successfully linked in. If it is not,
    # the default xerbla routine is called, which prints a message to stdout
    # and may, or may not, abort the process depending on the LAPACK package.

    XERBLA_OK = 255

    try:
        pid = os.fork()
    except (OSError, AttributeError):
        # fork failed, or not running on POSIX
        pytest.skip("Not POSIX or fork failed.")

    if pid == 0:
        # child; close i/o file handles
        os.close(1)
        os.close(0)
        # Avoid producing core files.
        import resource
        resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
        # These calls may abort.
        try:
            np.linalg.lapack_lite.xerbla()
        except ValueError:
            pass
        except Exception:
            os._exit(os.EX_CONFIG)

        try:
            a = np.array([[1.]])
            np.linalg.lapack_lite.dorgqr(
                1, 1, 1, a,
                0,  # <- invalid value
                a, a, 0, 0)
        except ValueError as e:
            if "DORGQR parameter number 5" in str(e):
                # success, reuse error code to mark success as
                # FORTRAN STOP returns as success.
                os._exit(XERBLA_OK)

        # Did not abort, but our xerbla was not linked in.
        os._exit(os.EX_CONFIG)
    else:
        # parent
        pid, status = os.wait()
        if os.WEXITSTATUS(status) != XERBLA_OK:
            pytest.skip('Numpy xerbla not linked in.')


@pytest.mark.slow
def test_sdot_bug_8577():
    # Regression test that loading certain other libraries does not
    # result to wrong results in float32 linear algebra.
    #
    # There's a bug gh-8577 on OSX that can trigger this, and perhaps
    # there are also other situations in which it occurs.
    #
    # Do the check in a separate process.

    bad_libs = ['PyQt5.QtWidgets', 'IPython']

    template = textwrap.dedent("""
    import sys
    {before}
    try:
        import {bad_lib}
    except ImportError:
        sys.exit(0)
    {after}
    x = np.ones(2, dtype=np.float32)
    sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
    """)

    for bad_lib in bad_libs:
        code = template.format(before="import numpy as np", after="",
                               bad_lib=bad_lib)
        subprocess.check_call([sys.executable, "-c", code])

        # Swapped import order
        code = template.format(after="import numpy as np", before="",
                               bad_lib=bad_lib)
        subprocess.check_call([sys.executable, "-c", code])


class TestMultiDot:

    def test_basic_function_with_three_arguments(self):
        # multi_dot with three arguments uses a fast hand coded algorithm to
        # determine the optimal order. Therefore test it separately.
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))

        assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
        assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))

    def test_basic_function_with_two_arguments(self):
        # separate code path with two arguments
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))

        assert_almost_equal(multi_dot([A, B]), A.dot(B))
        assert_almost_equal(multi_dot([A, B]), np.dot(A, B))

    def test_basic_function_with_dynamic_programming_optimization(self):
        # multi_dot with four or more arguments uses the dynamic programming
        # optimization and therefore deserve a separate
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D = np.random.random((2, 1))
        assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))

    def test_vector_as_first_argument(self):
        # The first argument can be 1-D
        A1d = np.random.random(2)  # 1-D
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D = np.random.random((2, 2))

        # the result should be 1-D
        assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))

    def test_vector_as_last_argument(self):
        # The last argument can be 1-D
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D1d = np.random.random(2)  # 1-D

        # the result should be 1-D
        assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))

    def test_vector_as_first_and_last_argument(self):
        # The first and last arguments can be 1-D
        A1d = np.random.random(2)  # 1-D
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D1d = np.random.random(2)  # 1-D

        # the result should be a scalar
        assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())

    def test_three_arguments_and_out(self):
        # multi_dot with three arguments uses a fast hand coded algorithm to
        # determine the optimal order. Therefore test it separately.
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))

        out = np.zeros((6, 2))
        ret = multi_dot([A, B, C], out=out)
        assert out is ret
        assert_almost_equal(out, A.dot(B).dot(C))
        assert_almost_equal(out, np.dot(A, np.dot(B, C)))

    def test_two_arguments_and_out(self):
        # separate code path with two arguments
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        out = np.zeros((6, 6))
        ret = multi_dot([A, B], out=out)
        assert out is ret
        assert_almost_equal(out, A.dot(B))
        assert_almost_equal(out, np.dot(A, B))

    def test_dynamic_programming_optimization_and_out(self):
        # multi_dot with four or more arguments uses the dynamic programming
        # optimization and therefore deserve a separate test
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D = np.random.random((2, 1))
        out = np.zeros((6, 1))
        ret = multi_dot([A, B, C, D], out=out)
        assert out is ret
        assert_almost_equal(out, A.dot(B).dot(C).dot(D))

    def test_dynamic_programming_logic(self):
        # Test for the dynamic programming part
        # This test is directly taken from Cormen page 376.
        arrays = [np.random.random((30, 35)),
                  np.random.random((35, 15)),
                  np.random.random((15, 5)),
                  np.random.random((5, 10)),
                  np.random.random((10, 20)),
                  np.random.random((20, 25))]
        m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
                               [0.,     0., 2625., 4375.,  7125., 10500.],
                               [0.,     0.,    0.,  750.,  2500.,  5375.],
                               [0.,     0.,    0.,    0.,  1000.,  3500.],
                               [0.,     0.,    0.,    0.,     0.,  5000.],
                               [0.,     0.,    0.,    0.,     0.,     0.]])
        s_expected = np.array([[0,  1,  1,  3,  3,  3],
                               [0,  0,  2,  3,  3,  3],
                               [0,  0,  0,  3,  3,  3],
                               [0,  0,  0,  0,  4,  5],
                               [0,  0,  0,  0,  0,  5],
                               [0,  0,  0,  0,  0,  0]], dtype=int)
        s_expected -= 1  # Cormen uses 1-based index, python does not.

        s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)

        # Only the upper triangular part (without the diagonal) is interesting.
        assert_almost_equal(np.triu(s[:-1, 1:]),
                            np.triu(s_expected[:-1, 1:]))
        assert_almost_equal(np.triu(m), np.triu(m_expected))

    def test_too_few_input_arrays(self):
        assert_raises(ValueError, multi_dot, [])
        assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])


class TestTensorinv:

    @pytest.mark.parametrize("arr, ind", [
        (np.ones((4, 6, 8, 2)), 2),
        (np.ones((3, 3, 2)), 1),
        ])
    def test_non_square_handling(self, arr, ind):
        with assert_raises(LinAlgError):
            linalg.tensorinv(arr, ind=ind)

    @pytest.mark.parametrize("shape, ind", [
        # examples from docstring
        ((4, 6, 8, 3), 2),
        ((24, 8, 3), 1),
        ])
    def test_tensorinv_shape(self, shape, ind):
        a = np.eye(24)
        a.shape = shape
        ainv = linalg.tensorinv(a=a, ind=ind)
        expected = a.shape[ind:] + a.shape[:ind]
        actual = ainv.shape
        assert_equal(actual, expected)

    @pytest.mark.parametrize("ind", [
        0, -2,
        ])
    def test_tensorinv_ind_limit(self, ind):
        a = np.eye(24)
        a.shape = (4, 6, 8, 3)
        with assert_raises(ValueError):
            linalg.tensorinv(a=a, ind=ind)

    def test_tensorinv_result(self):
        # mimic a docstring example
        a = np.eye(24)
        a.shape = (24, 8, 3)
        ainv = linalg.tensorinv(a, ind=1)
        b = np.ones(24)
        assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))


class TestTensorsolve:

    @pytest.mark.parametrize("a, axes", [
        (np.ones((4, 6, 8, 2)), None),
        (np.ones((3, 3, 2)), (0, 2)),
        ])
    def test_non_square_handling(self, a, axes):
        with assert_raises(LinAlgError):
            b = np.ones(a.shape[:2])
            linalg.tensorsolve(a, b, axes=axes)

    @pytest.mark.parametrize("shape",
        [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
    )
    def test_tensorsolve_result(self, shape):
        a = np.random.randn(*shape)
        b = np.ones(a.shape[:2])
        x = np.linalg.tensorsolve(a, b)
        assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)


def test_unsupported_commontype():
    # linalg gracefully handles unsupported type
    arr = np.array([[1, -2], [2, 5]], dtype='float16')
    with assert_raises_regex(TypeError, "unsupported in linalg"):
        linalg.cholesky(arr)


#@pytest.mark.slow
#@pytest.mark.xfail(not HAS_LAPACK64, run=False,
#                   reason="Numpy not compiled with 64-bit BLAS/LAPACK")
#@requires_memory(free_bytes=16e9)
@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
def test_blas64_dot():
    n = 2**32
    a = np.zeros([1, n], dtype=np.float32)
    b = np.ones([1, 1], dtype=np.float32)
    a[0,-1] = 1
    c = np.dot(b, a)
    assert_equal(c[0,-1], 1)


@pytest.mark.xfail(not HAS_LAPACK64,
                   reason="Numpy not compiled with 64-bit BLAS/LAPACK")
def test_blas64_geqrf_lwork_smoketest():
    # Smoke test LAPACK geqrf lwork call with 64-bit integers
    dtype = np.float64
    lapack_routine = np.linalg.lapack_lite.dgeqrf

    m = 2**32 + 1
    n = 2**32 + 1
    lda = m

    # Dummy arrays, not referenced by the lapack routine, so don't
    # need to be of the right size
    a = np.zeros([1, 1], dtype=dtype)
    work = np.zeros([1], dtype=dtype)
    tau = np.zeros([1], dtype=dtype)

    # Size query
    results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
    assert_equal(results['info'], 0)
    assert_equal(results['m'], m)
    assert_equal(results['n'], m)

    # Should result to an integer of a reasonable size
    lwork = int(work.item())
    assert_(2**32 < lwork < 2**42)