summaryrefslogtreecommitdiff
path: root/numpy/random/_philox.pyx
blob: d9a366e86554ff41816344e4873b174874afac9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from cpython.pycapsule cimport PyCapsule_New

import numpy as np
cimport numpy as np

from libc.stdint cimport uint32_t, uint64_t
from ._common cimport uint64_to_double, int_to_array, wrap_int
from numpy.random cimport BitGenerator

__all__ = ['Philox']

np.import_array()

DEF PHILOX_BUFFER_SIZE=4

cdef extern from 'src/philox/philox.h':
    struct s_r123array2x64:
        uint64_t v[2]

    struct s_r123array4x64:
        uint64_t v[4]

    ctypedef s_r123array4x64 r123array4x64
    ctypedef s_r123array2x64 r123array2x64

    ctypedef r123array4x64 philox4x64_ctr_t
    ctypedef r123array2x64 philox4x64_key_t

    struct s_philox_state:
        philox4x64_ctr_t *ctr
        philox4x64_key_t *key
        int buffer_pos
        uint64_t buffer[PHILOX_BUFFER_SIZE]
        int has_uint32
        uint32_t uinteger

    ctypedef s_philox_state philox_state

    uint64_t philox_next64(philox_state *state)  nogil
    uint32_t philox_next32(philox_state *state)  nogil
    void philox_jump(philox_state *state)
    void philox_advance(uint64_t *step, philox_state *state)


cdef uint64_t philox_uint64(void*st) nogil:
    return philox_next64(<philox_state *> st)

cdef uint32_t philox_uint32(void *st) nogil:
    return philox_next32(<philox_state *> st)

cdef double philox_double(void*st) nogil:
    return uint64_to_double(philox_next64(<philox_state *> st))

cdef class Philox(BitGenerator):
    """
    Philox(seed=None, counter=None, key=None)

    Container for the Philox (4x64) pseudo-random number generator.

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
    counter : {None, int, array_like}, optional
        Counter to use in the Philox state. Can be either
        a Python int (long in 2.x) in [0, 2**256) or a 4-element uint64 array.
        If not provided, the RNG is initialized at 0.
    key : {None, int, array_like}, optional
        Key to use in the Philox state.  Unlike ``seed``, the value in key is
        directly set. Can be either a Python int in [0, 2**128) or a 2-element
        uint64 array. `key` and ``seed`` cannot both be used.

    Attributes
    ----------
    lock: threading.Lock
        Lock instance that is shared so that the same bit git generator can
        be used in multiple Generators without corrupting the state. Code that
        generates values from a bit generator should hold the bit generator's
        lock.

    Notes
    -----
    Philox is a 64-bit PRNG that uses a counter-based design based on weaker
    (and faster) versions of cryptographic functions [1]_. Instances using
    different values of the key produce independent sequences.  Philox has a
    period of :math:`2^{256} - 1` and supports arbitrary advancing and jumping
    the sequence in increments of :math:`2^{128}`. These features allow
    multiple non-overlapping sequences to be generated.

    ``Philox`` provides a capsule containing function pointers that produce
    doubles, and unsigned 32 and 64- bit integers. These are not
    directly consumable in Python and must be consumed by a ``Generator``
    or similar object that supports low-level access.

    **State and Seeding**

    The ``Philox`` state vector consists of a 256-bit value encoded as
    a 4-element uint64 array and a 128-bit value encoded as a 2-element uint64
    array. The former is a counter which is incremented by 1 for every 4 64-bit
    randoms produced. The second is a key which determined the sequence
    produced. Using different keys produces independent sequences.

    The input ``seed`` is processed by `SeedSequence` to generate the key. The
    counter is set to 0.

    Alternately, one can omit the ``seed`` parameter and set the ``key`` and
    ``counter`` directly.

    **Parallel Features**

    The preferred way to use a BitGenerator in parallel applications is to use
    the `SeedSequence.spawn` method to obtain entropy values, and to use these
    to generate new BitGenerators:

    >>> from numpy.random import Generator, Philox, SeedSequence
    >>> sg = SeedSequence(1234)
    >>> rg = [Generator(Philox(s)) for s in sg.spawn(10)]

    ``Philox`` can be used in parallel applications by calling the ``jumped``
    method  to advances the state as-if :math:`2^{128}` random numbers have
    been generated. Alternatively, ``advance`` can be used to advance the
    counter for any positive step in [0, 2**256). When using ``jumped``, all
    generators should be chained to ensure that the segments come from the same
    sequence.

    >>> from numpy.random import Generator, Philox
    >>> bit_generator = Philox(1234)
    >>> rg = []
    >>> for _ in range(10):
    ...    rg.append(Generator(bit_generator))
    ...    bit_generator = bit_generator.jumped()

    Alternatively, ``Philox`` can be used in parallel applications by using
    a sequence of distinct keys where each instance uses different key.

    >>> key = 2**96 + 2**33 + 2**17 + 2**9
    >>> rg = [Generator(Philox(key=key+i)) for i in range(10)]

    **Compatibility Guarantee**

    ``Philox`` makes a guarantee that a fixed ``seed`` will always produce
    the same random integer stream.

    Examples
    --------
    >>> from numpy.random import Generator, Philox
    >>> rg = Generator(Philox(1234))
    >>> rg.standard_normal()
    0.123  # random

    References
    ----------
    .. [1] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw,
           "Parallel Random Numbers: As Easy as 1, 2, 3," Proceedings of
           the International Conference for High Performance Computing,
           Networking, Storage and Analysis (SC11), New York, NY: ACM, 2011.
    """
    cdef philox_state rng_state
    cdef philox4x64_key_t philox_key
    cdef philox4x64_ctr_t philox_ctr

    def __init__(self, seed=None, counter=None, key=None):
        if seed is not None and key is not None:
            raise ValueError('seed and key cannot be both used')
        BitGenerator.__init__(self, seed)
        self.rng_state.ctr = &self.philox_ctr
        self.rng_state.key = &self.philox_key
        if key is not None:
            key = int_to_array(key, 'key', 128, 64)
            for i in range(2):
                self.rng_state.key.v[i] = key[i]
            # The seed sequence is invalid.
            self._seed_seq = None
        else:
            key = self._seed_seq.generate_state(2, np.uint64)
            for i in range(2):
                self.rng_state.key.v[i] = key[i]
        counter = 0 if counter is None else counter
        counter = int_to_array(counter, 'counter', 256, 64)
        for i in range(4):
            self.rng_state.ctr.v[i] = counter[i]

        self._reset_state_variables()

        self._bitgen.state = <void *>&self.rng_state
        self._bitgen.next_uint64 = &philox_uint64
        self._bitgen.next_uint32 = &philox_uint32
        self._bitgen.next_double = &philox_double
        self._bitgen.next_raw = &philox_uint64

    cdef _reset_state_variables(self):
        self.rng_state.has_uint32 = 0
        self.rng_state.uinteger = 0
        self.rng_state.buffer_pos = PHILOX_BUFFER_SIZE
        for i in range(PHILOX_BUFFER_SIZE):
            self.rng_state.buffer[i] = 0

    @property
    def state(self):
        """
        Get or set the PRNG state

        Returns
        -------
        state : dict
            Dictionary containing the information required to describe the
            state of the PRNG
        """
        ctr = np.empty(4, dtype=np.uint64)
        key = np.empty(2, dtype=np.uint64)
        buffer = np.empty(PHILOX_BUFFER_SIZE, dtype=np.uint64)
        for i in range(4):
            ctr[i] = self.rng_state.ctr.v[i]
            if i < 2:
                key[i] = self.rng_state.key.v[i]
        for i in range(PHILOX_BUFFER_SIZE):
            buffer[i] = self.rng_state.buffer[i]

        state = {'counter': ctr, 'key': key}
        return {'bit_generator': self.__class__.__name__,
                'state': state,
                'buffer': buffer,
                'buffer_pos': self.rng_state.buffer_pos,
                'has_uint32': self.rng_state.has_uint32,
                'uinteger': self.rng_state.uinteger}

    @state.setter
    def state(self, value):
        if not isinstance(value, dict):
            raise TypeError('state must be a dict')
        bitgen = value.get('bit_generator', '')
        if bitgen != self.__class__.__name__:
            raise ValueError('state must be for a {0} '
                             'PRNG'.format(self.__class__.__name__))
        for i in range(4):
            self.rng_state.ctr.v[i] = <uint64_t> value['state']['counter'][i]
            if i < 2:
                self.rng_state.key.v[i] = <uint64_t> value['state']['key'][i]
        for i in range(PHILOX_BUFFER_SIZE):
            self.rng_state.buffer[i] = <uint64_t> value['buffer'][i]

        self.rng_state.has_uint32 = value['has_uint32']
        self.rng_state.uinteger = value['uinteger']
        self.rng_state.buffer_pos = value['buffer_pos']

    cdef jump_inplace(self, iter):
        """
        Jump state in-place

        Not part of public API

        Parameters
        ----------
        iter : integer, positive
            Number of times to jump the state of the rng.
        """
        self.advance(iter * int(2 ** 128))

    def jumped(self, jumps=1):
        """
        jumped(jumps=1)

        Returns a new bit generator with the state jumped

        The state of the returned bit generator is jumped as-if
        (2**128) * jumps random numbers have been generated.

        Parameters
        ----------
        jumps : integer, positive
            Number of times to jump the state of the bit generator returned

        Returns
        -------
        bit_generator : Philox
            New instance of generator jumped iter times
        """
        cdef Philox bit_generator

        bit_generator = self.__class__()
        bit_generator.state = self.state
        bit_generator.jump_inplace(jumps)

        return bit_generator

    def advance(self, delta):
        """
        advance(delta)

        Advance the underlying RNG as-if delta draws have occurred.

        Parameters
        ----------
        delta : integer, positive
            Number of draws to advance the RNG. Must be less than the
            size state variable in the underlying RNG.

        Returns
        -------
        self : Philox
            RNG advanced delta steps

        Notes
        -----
        Advancing a RNG updates the underlying RNG state as-if a given
        number of calls to the underlying RNG have been made. In general
        there is not a one-to-one relationship between the number output
        random values from a particular distribution and the number of
        draws from the core RNG.  This occurs for two reasons:

        * The random values are simulated using a rejection-based method
          and so, on average, more than one value from the underlying
          RNG is required to generate an single draw.
        * The number of bits required to generate a simulated value
          differs from the number of bits generated by the underlying
          RNG.  For example, two 16-bit integer values can be simulated
          from a single draw of a 32-bit RNG.

        Advancing the RNG state resets any pre-computed random numbers.
        This is required to ensure exact reproducibility.
        """
        delta = wrap_int(delta, 256)

        cdef np.ndarray delta_a
        delta_a = int_to_array(delta, 'step', 256, 64)
        philox_advance(<uint64_t *> delta_a.data, &self.rng_state)
        self._reset_state_variables()
        return self