summaryrefslogtreecommitdiff
path: root/numpy/typing/tests/data/pass/simple.py
blob: 80116870287e4faa58f1640974536ae0ee6250d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""Simple expression that should pass with mypy."""
import operator

import numpy as np
from collections.abc import Iterable

# Basic checks
array = np.array([1, 2])


def ndarray_func(x):
    # type: (np.ndarray) -> np.ndarray
    return x


ndarray_func(np.array([1, 2]))
array == 1
array.dtype == float

# Dtype construction
np.dtype(float)
np.dtype(np.float64)
np.dtype(None)
np.dtype("float64")
np.dtype(np.dtype(float))
np.dtype(("U", 10))
np.dtype((np.int32, (2, 2)))
# Define the arguments on the previous line to prevent bidirectional
# type inference in mypy from broadening the types.
two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")]
np.dtype(two_tuples_dtype)

three_tuples_dtype = [("R", "u1", 2)]
np.dtype(three_tuples_dtype)

mixed_tuples_dtype = [("R", "u1"), ("G", np.str_, 1)]
np.dtype(mixed_tuples_dtype)

shape_tuple_dtype = [("R", "u1", (2, 2))]
np.dtype(shape_tuple_dtype)

shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.str_, 1)]
np.dtype(shape_like_dtype)

object_dtype = [("field1", object)]
np.dtype(object_dtype)

np.dtype((np.int32, (np.int8, 4)))

# Dtype comparison
np.dtype(float) == float
np.dtype(float) != np.float64
np.dtype(float) < None
np.dtype(float) <= "float64"
np.dtype(float) > np.dtype(float)
np.dtype(float) >= np.dtype(("U", 10))

# Iteration and indexing
def iterable_func(x):
    # type: (Iterable) -> Iterable
    return x


iterable_func(array)
[element for element in array]
iter(array)
zip(array, array)
array[1]
array[:]
array[...]
array[:] = 0

array_2d = np.ones((3, 3))
array_2d[:2, :2]
array_2d[..., 0]
array_2d[:2, :2] = 0

# Other special methods
len(array)
str(array)
array_scalar = np.array(1)
int(array_scalar)
float(array_scalar)
# currently does not work due to https://github.com/python/typeshed/issues/1904
# complex(array_scalar)
bytes(array_scalar)
operator.index(array_scalar)
bool(array_scalar)

# comparisons
array < 1
array <= 1
array == 1
array != 1
array > 1
array >= 1
1 < array
1 <= array
1 == array
1 != array
1 > array
1 >= array

# binary arithmetic
array + 1
1 + array
array += 1

array - 1
1 - array
array -= 1

array * 1
1 * array
array *= 1

nonzero_array = np.array([1, 2])
array / 1
1 / nonzero_array
float_array = np.array([1.0, 2.0])
float_array /= 1

array // 1
1 // nonzero_array
array //= 1

array % 1
1 % nonzero_array
array %= 1

divmod(array, 1)
divmod(1, nonzero_array)

array ** 1
1 ** array
array **= 1

array << 1
1 << array
array <<= 1

array >> 1
1 >> array
array >>= 1

array & 1
1 & array
array &= 1

array ^ 1
1 ^ array
array ^= 1

array | 1
1 | array
array |= 1

# unary arithmetic
-array
+array
abs(array)
~array

# Other methods
np.array([1, 2]).transpose()