summaryrefslogtreecommitdiff
path: root/src/_csrc/bcrypt.c
blob: a773602a4fbbcec21060ff16fdcc49a3b89c2117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*	$OpenBSD: bcrypt.c,v 1.55 2015/09/13 15:33:48 guenther Exp $	*/

/*
 * Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
 * Copyright (c) 1997 Niels Provos <provos@umich.edu>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
/* This password hashing algorithm was designed by David Mazieres
 * <dm@lcs.mit.edu> and works as follows:
 *
 * 1. state := InitState ()
 * 2. state := ExpandKey (state, salt, password)
 * 3. REPEAT rounds:
 *      state := ExpandKey (state, 0, password)
 *	state := ExpandKey (state, 0, salt)
 * 4. ctext := "OrpheanBeholderScryDoubt"
 * 5. REPEAT 64:
 * 	ctext := Encrypt_ECB (state, ctext);
 * 6. RETURN Concatenate (salt, ctext);
 *
 */

#include <sys/types.h>
#include <blf.h>
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pycabcrypt.h"

/* This implementation is adaptable to current computing power.
 * You can have up to 2^31 rounds which should be enough for some
 * time to come.
 */

#define BCRYPT_VERSION '2'
#define BCRYPT_MAXSALT 16	/* Precomputation is just so nice */
#define BCRYPT_WORDS 6		/* Ciphertext words */
#define BCRYPT_MINLOGROUNDS 4	/* we have log2(rounds) in salt */

#define	BCRYPT_SALTSPACE	(7 + (BCRYPT_MAXSALT * 4 + 2) / 3 + 1)
#define	BCRYPT_HASHSPACE	61

char   *bcrypt_gensalt(u_int8_t);

int encode_base64(char *, const u_int8_t *, size_t);
static int decode_base64(u_int8_t *, size_t, const char *);

/*
 * the core bcrypt function
 */
int
bcrypt_hashpass(const char *key, const char *salt, char *encrypted,
    size_t encryptedlen)
{
	blf_ctx state;
	u_int32_t rounds, i, k;
	u_int16_t j;
	size_t key_len;
	u_int8_t salt_len, logr, minor;
	u_int8_t ciphertext[4 * BCRYPT_WORDS] = "OrpheanBeholderScryDoubt";
	u_int8_t csalt[BCRYPT_MAXSALT];
	u_int32_t cdata[BCRYPT_WORDS];

	if (encryptedlen < BCRYPT_HASHSPACE)
		goto inval;

	/* Check and discard "$" identifier */
	if (salt[0] != '$')
		goto inval;
	salt += 1;

	if (salt[0] != BCRYPT_VERSION)
		goto inval;

	/* Check for minor versions */
	switch ((minor = salt[1])) {
	case 'a':
		key_len = (u_int8_t)(strlen(key) + 1);
		break;
	case 'b':
		/* strlen() returns a size_t, but the function calls
		 * below result in implicit casts to a narrower integer
		 * type, so cap key_len at the actual maximum supported
		 * length here to avoid integer wraparound */
		key_len = strlen(key);
		if (key_len > 72)
			key_len = 72;
		key_len++; /* include the NUL */
		break;
	default:
		 goto inval;
	}
	if (salt[2] != '$')
		goto inval;
	/* Discard version + "$" identifier */
	salt += 3;

	/* Check and parse num rounds */
	if (!isdigit((unsigned char)salt[0]) ||
	    !isdigit((unsigned char)salt[1]) || salt[2] != '$')
		goto inval;
	logr = (salt[1] - '0') + ((salt[0] - '0') * 10);
	if (logr < BCRYPT_MINLOGROUNDS || logr > 31)
		goto inval;
	/* Computer power doesn't increase linearly, 2^x should be fine */
	rounds = 1U << logr;

	/* Discard num rounds + "$" identifier */
	salt += 3;

	if (strlen(salt) * 3 / 4 < BCRYPT_MAXSALT)
		goto inval;

	/* We dont want the base64 salt but the raw data */
	if (decode_base64(csalt, BCRYPT_MAXSALT, salt))
		goto inval;
	salt_len = BCRYPT_MAXSALT;

	/* Setting up S-Boxes and Subkeys */
	Blowfish_initstate(&state);
	Blowfish_expandstate(&state, csalt, salt_len,
	    (u_int8_t *) key, key_len);
	for (k = 0; k < rounds; k++) {
		Blowfish_expand0state(&state, (u_int8_t *) key, key_len);
		Blowfish_expand0state(&state, csalt, salt_len);
	}

	/* This can be precomputed later */
	j = 0;
	for (i = 0; i < BCRYPT_WORDS; i++)
		cdata[i] = Blowfish_stream2word(ciphertext, 4 * BCRYPT_WORDS, &j);

	/* Now do the encryption */
	for (k = 0; k < 64; k++)
		blf_enc(&state, cdata, BCRYPT_WORDS / 2);

	for (i = 0; i < BCRYPT_WORDS; i++) {
		ciphertext[4 * i + 3] = cdata[i] & 0xff;
		cdata[i] = cdata[i] >> 8;
		ciphertext[4 * i + 2] = cdata[i] & 0xff;
		cdata[i] = cdata[i] >> 8;
		ciphertext[4 * i + 1] = cdata[i] & 0xff;
		cdata[i] = cdata[i] >> 8;
		ciphertext[4 * i + 0] = cdata[i] & 0xff;
	}


	snprintf(encrypted, 8, "$2%c$%2.2u$", minor, logr);
	encode_base64(encrypted + 7, csalt, BCRYPT_MAXSALT);
	encode_base64(encrypted + 7 + 22, ciphertext, 4 * BCRYPT_WORDS - 1);
	explicit_bzero(&state, sizeof(state));
	explicit_bzero(ciphertext, sizeof(ciphertext));
	explicit_bzero(csalt, sizeof(csalt));
	explicit_bzero(cdata, sizeof(cdata));
	return 0;

inval:
	errno = EINVAL;
	return -1;
}

/*
 * internal utilities
 */
static const u_int8_t Base64Code[] =
"./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

static const u_int8_t index_64[128] = {
	255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 255, 255, 255, 0, 1, 54, 55,
	56, 57, 58, 59, 60, 61, 62, 63, 255, 255,
	255, 255, 255, 255, 255, 2, 3, 4, 5, 6,
	7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
	255, 255, 255, 255, 255, 255, 28, 29, 30,
	31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
	41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
	51, 52, 53, 255, 255, 255, 255, 255
};
#define CHAR64(c)  ( (c) > 127 ? 255 : index_64[(c)])

/*
 * read buflen (after decoding) bytes of data from b64data
 */
static int
decode_base64(u_int8_t *buffer, size_t len, const char *b64data)
{
	u_int8_t *bp = buffer;
	const u_int8_t *p = b64data;
	u_int8_t c1, c2, c3, c4;

	while (bp < buffer + len) {
		c1 = CHAR64(*p);
		/* Invalid data */
		if (c1 == 255)
			return -1;

		c2 = CHAR64(*(p + 1));
		if (c2 == 255)
			return -1;

		*bp++ = (c1 << 2) | ((c2 & 0x30) >> 4);
		if (bp >= buffer + len)
			break;

		c3 = CHAR64(*(p + 2));
		if (c3 == 255)
			return -1;

		*bp++ = ((c2 & 0x0f) << 4) | ((c3 & 0x3c) >> 2);
		if (bp >= buffer + len)
			break;

		c4 = CHAR64(*(p + 3));
		if (c4 == 255)
			return -1;
		*bp++ = ((c3 & 0x03) << 6) | c4;

		p += 4;
	}
	return 0;
}

/*
 * Turn len bytes of data into base64 encoded data.
 * This works without = padding.
 */
int
encode_base64(char *b64buffer, const u_int8_t *data, size_t len)
{
	u_int8_t *bp = b64buffer;
	const u_int8_t *p = data;
	u_int8_t c1, c2;

	while (p < data + len) {
		c1 = *p++;
		*bp++ = Base64Code[(c1 >> 2)];
		c1 = (c1 & 0x03) << 4;
		if (p >= data + len) {
			*bp++ = Base64Code[c1];
			break;
		}
		c2 = *p++;
		c1 |= (c2 >> 4) & 0x0f;
		*bp++ = Base64Code[c1];
		c1 = (c2 & 0x0f) << 2;
		if (p >= data + len) {
			*bp++ = Base64Code[c1];
			break;
		}
		c2 = *p++;
		c1 |= (c2 >> 6) & 0x03;
		*bp++ = Base64Code[c1];
		*bp++ = Base64Code[c2 & 0x3f];
	}
	*bp = '\0';
	return 0;
}