summaryrefslogtreecommitdiff
path: root/pyasn1/codec/ber/encoder.py
blob: c46d254ecacc4029569f9d3b1fe8f443cea56323 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#
# This file is part of pyasn1 software.
#
# Copyright (c) 2005-2015, Ilya Etingof <ilya@glas.net>
# License: http://pyasn1.sf.net/license.html
#
# BER encoder
from pyasn1.type import base, tag, univ, char, useful
from pyasn1.codec.ber import eoo
from pyasn1.compat.octets import int2oct, oct2int, ints2octs, null, str2octs
from pyasn1 import debug, error

class Error(Exception): pass

class AbstractItemEncoder:
    supportIndefLenMode = 1
    def encodeTag(self, t, isConstructed):
        tagClass, tagFormat, tagId = t.asTuple()  # this is a hotspot
        v = tagClass | tagFormat
        if isConstructed:
            v = v|tag.tagFormatConstructed
        if tagId < 31:
            return int2oct(v|tagId)
        else:
            s = int2oct(tagId&0x7f)
            tagId = tagId >> 7
            while tagId:
                s = int2oct(0x80|(tagId&0x7f)) + s
                tagId = tagId >> 7
            return int2oct(v|0x1F) + s

    def encodeLength(self, length, defMode):
        if not defMode and self.supportIndefLenMode:
            return int2oct(0x80)
        if length < 0x80:
            return int2oct(length)
        else:
            substrate = null
            while length:
                substrate = int2oct(length&0xff) + substrate
                length = length >> 8
            substrateLen = len(substrate)
            if substrateLen > 126:
                raise Error('Length octets overflow (%d)' % substrateLen)
            return int2oct(0x80 | substrateLen) + substrate

    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        raise Error('Not implemented')

    def _encodeEndOfOctets(self, encodeFun, defMode):
        if defMode or not self.supportIndefLenMode:
            return null
        else:
            return encodeFun(eoo.endOfOctets, defMode)
        
    def encode(self, encodeFun, value, defMode, maxChunkSize):
        substrate, isConstructed = self.encodeValue(
            encodeFun, value, defMode, maxChunkSize
            )
        tagSet = value.getTagSet()
        if tagSet:
            if not isConstructed:  # primitive form implies definite mode
                defMode = 1
            return self.encodeTag(
                tagSet[-1], isConstructed
                ) + self.encodeLength(
                len(substrate), defMode
                ) + substrate + self._encodeEndOfOctets(encodeFun, defMode)
        else:
            return substrate  # untagged value

class EndOfOctetsEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        return null, 0

class ExplicitlyTaggedItemEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        if isinstance(value, base.AbstractConstructedAsn1Item):
            value = value.clone(tagSet=value.getTagSet()[:-1],
                                cloneValueFlag=1)
        else:
            value = value.clone(tagSet=value.getTagSet()[:-1])
        return encodeFun(value, defMode, maxChunkSize), 1

explicitlyTaggedItemEncoder = ExplicitlyTaggedItemEncoder()

class BooleanEncoder(AbstractItemEncoder):
    supportIndefLenMode = 0
    _true = ints2octs((1,))
    _false = ints2octs((0,))
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        return value and self._true or self._false, 0

class IntegerEncoder(AbstractItemEncoder):
    supportIndefLenMode = 0
    supportCompactZero = False
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        if value == 0:  # shortcut for zero value
            if self.supportCompactZero:
                # this seems to be a correct way for encoding zeros
                return null, 0
            else:
                # this seems to be a widespread way for encoding zeros
                return ints2octs((0,)), 0
        octets = []
        value = int(value) # to save on ops on asn1 type
        while 1:
            octets.insert(0, value & 0xff)
            if value == 0 or value == -1:
                break
            value = value >> 8
        if value == 0 and octets[0] & 0x80:
            octets.insert(0, 0)
        while len(octets) > 1 and \
                  (octets[0] == 0 and octets[1] & 0x80 == 0 or \
                   octets[0] == 0xff and octets[1] & 0x80 != 0):
            del octets[0]
        return ints2octs(octets), 0

class BitStringEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        if not maxChunkSize or len(value) <= maxChunkSize*8:
            out_len = (len(value) + 7) // 8
            out_list = out_len * [0]
            j = 7
            i = -1
            for val in value:
                j += 1
                if j == 8:
                    i += 1
                    j = 0
                out_list[i] = out_list[i] | val << (7-j)
            return int2oct(7-j) + ints2octs(out_list), 0
        else:
            pos = 0; substrate = null
            while 1:
                # count in octets
                v = value.clone(value[pos*8:pos*8+maxChunkSize*8])
                if not v:
                    break
                substrate = substrate + encodeFun(v, defMode, maxChunkSize)
                pos = pos + maxChunkSize
            return substrate, 1

class OctetStringEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        if not maxChunkSize or len(value) <= maxChunkSize:
            return value.asOctets(), 0
        else:
            pos = 0; substrate = null
            while 1:
                v = value.clone(value[pos:pos+maxChunkSize])
                if not v:
                    break
                substrate = substrate + encodeFun(v, defMode, maxChunkSize)
                pos = pos + maxChunkSize
            return substrate, 1

class NullEncoder(AbstractItemEncoder):
    supportIndefLenMode = 0
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        return null, 0

class ObjectIdentifierEncoder(AbstractItemEncoder):
    supportIndefLenMode = 0
    precomputedValues = {
        (1, 3, 6, 1, 2): (43, 6, 1, 2),        
        (1, 3, 6, 1, 4): (43, 6, 1, 4)
    }
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):    
        oid = value.asTuple()
        if oid[:5] in self.precomputedValues:
            octets = self.precomputedValues[oid[:5]]
            oid = oid[5:]
        else:
            if len(oid) < 2:
                raise error.PyAsn1Error('Short OID %s' % (value,))

            octets = ()

            # Build the first twos
            if oid[0] == 0 and 0 <= oid[1] <= 39:
                oid = (oid[1],) + oid[2:]
            elif oid[0] == 1 and 0 <= oid[1] <= 39:
                oid = (oid[1] + 40,) + oid[2:]
            elif oid[0] == 2:
                oid = (oid[1] + 80,) + oid[2:]
            else:
                raise error.PyAsn1Error(
                    'Impossible initial arcs %s at %s' % (oid[:2], value)
                    )

        # Cycle through subIds
        for subId in oid:
            if subId > -1 and subId < 128:
                # Optimize for the common case
                octets = octets + (subId & 0x7f,)
            elif subId < 0:
                raise error.PyAsn1Error(
                    'Negative OID arc %s at %s' % (subId, value)
                )
            else:
                # Pack large Sub-Object IDs
                res = (subId & 0x7f,)
                subId = subId >> 7
                while subId > 0:
                    res = (0x80 | (subId & 0x7f),) + res
                    subId = subId >> 7 
                # Add packed Sub-Object ID to resulted Object ID
                octets += res

        return ints2octs(octets), 0

class RealEncoder(AbstractItemEncoder):
    supportIndefLenMode = 0
    binEncBase = 2 # set to None to choose encoding base automatically 
    def _dropFloatingPoint(self, m, encbase, e):
        ms, es = 1, 1
        if m < 0:
            ms = -1  # mantissa sign
        if e < 0:
            es = -1  # exponenta sign 
        m *= ms 
        if encbase == 8:
            m = m*2**(abs(e) % 3 * es)
            e = abs(e) // 3 * es
        elif encbase == 16:
            m = m*2**(abs(e) % 4 * es)
            e = abs(e) // 4 * es

        while 1:
            if int(m) != m:
                m *= encbase
                e -= 1
                continue
            break
        return ms, int(m), encbase, e

    def _chooseEncBase(self, value):
        m, b, e = value
        base = [2, 8, 16]
        if value.binEncBase in base:
            return self._dropFloatingPoint(m, value.binEncBase, e)
        elif self.binEncBase in base:
            return self._dropFloatingPoint(m, self.binEncBase, e)
        # auto choosing base 2/8/16 
        mantissa = [m, m, m]
        exponenta = [e, e, e]
        encbase = 2 
        e = float('inf')
        for i in range(3):
            sign, mantissa[i], base[i], exponenta[i] = \
                self._dropFloatingPoint(mantissa[i], base[i], exponenta[i])
            if abs(exponenta[i]) < abs(e) or \
               (abs(exponenta[i]) == abs(e) and mantissa[i] < m):
                e = exponenta[i]
                m = int(mantissa[i])
                encbase = base[i]
        return sign, m, encbase, e

    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        if value.isPlusInfinity():
            return int2oct(0x40), 0
        if value.isMinusInfinity():
            return int2oct(0x41), 0
        m, b, e = value
        if not m:
            return null, 0
        if b == 10:
            return str2octs('\x03%dE%s%d' % (m, e == 0 and '+' or '', e)), 0
        elif b == 2:
            fo = 0x80 # binary encoding
            ms, m, encbase, e = self._chooseEncBase(value)
            if ms < 0: # mantissa sign
                fo = fo | 0x40 # sign bit
            # exponenta & mantissa normalization
            if encbase == 2:
                while m & 0x1 == 0:
                    m >>= 1
                    e += 1
            elif encbase == 8:
                while m & 0x7 == 0:
                    m >>= 3
                    e += 1
                fo |= 0x10
            else: # encbase = 16
                while m & 0xf == 0:
                    m >>= 4
                    e += 1
                fo |= 0x20
            sf = 0 # scale factor
            while m & 0x1 == 0:
                m >>= 1
                sf += 1
            if sf > 3:
                raise error.PyAsn1Error('Scale factor overflow') # bug if raised
            fo |= sf << 2
            eo = null
            if e == 0 or e == -1:
                eo = int2oct(e&0xff)
            else: 
                while e not in (0, -1):
                    eo = int2oct(e&0xff) + eo
                    e >>= 8
                if e == 0 and eo and oct2int(eo[0]) & 0x80:
                    eo = int2oct(0) + eo
                if e == -1 and eo and not (oct2int(eo[0]) & 0x80):
                    eo = int2oct(0xff) + eo
            n = len(eo)
            if n > 0xff:
                raise error.PyAsn1Error('Real exponent overflow')
            if n == 1:
                pass
            elif n == 2:
                fo |= 1
            elif n == 3:
                fo |= 2
            else:
                fo |= 3
                eo = int2oct(n&0xff) + eo
            po = null
            while m:
                po = int2oct(m&0xff) + po
                m >>= 8
            substrate = int2oct(fo) + eo + po
            return substrate, 0
        else:
            raise error.PyAsn1Error('Prohibited Real base %s' % b)

class SequenceEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        value.setDefaultComponents()
        value.verifySizeSpec()
        substrate = null; idx = len(value)
        while idx > 0:
            idx = idx - 1
            if value[idx] is None:  # Optional component
                continue
            component = value.getDefaultComponentByPosition(idx)
            if component is not None and component == value[idx]:
                continue
            substrate = encodeFun(
                value[idx], defMode, maxChunkSize
                ) + substrate
        return substrate, 1

class SequenceOfEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        value.verifySizeSpec()
        substrate = null; idx = len(value)
        while idx > 0:
            idx = idx - 1
            substrate = encodeFun(
                value[idx], defMode, maxChunkSize
                ) + substrate
        return substrate, 1

class ChoiceEncoder(AbstractItemEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        return encodeFun(value.getComponent(), defMode, maxChunkSize), 1

class AnyEncoder(OctetStringEncoder):
    def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
        return value.asOctets(), defMode == 0

tagMap = {
    eoo.endOfOctets.tagSet: EndOfOctetsEncoder(),
    univ.Boolean.tagSet: BooleanEncoder(),
    univ.Integer.tagSet: IntegerEncoder(),
    univ.BitString.tagSet: BitStringEncoder(),
    univ.OctetString.tagSet: OctetStringEncoder(),
    univ.Null.tagSet: NullEncoder(),
    univ.ObjectIdentifier.tagSet: ObjectIdentifierEncoder(),
    univ.Enumerated.tagSet: IntegerEncoder(),
    univ.Real.tagSet: RealEncoder(),
    # Sequence & Set have same tags as SequenceOf & SetOf
    univ.SequenceOf.tagSet: SequenceOfEncoder(),
    univ.SetOf.tagSet: SequenceOfEncoder(),
    univ.Choice.tagSet: ChoiceEncoder(),
    # character string types
    char.UTF8String.tagSet: OctetStringEncoder(),
    char.NumericString.tagSet: OctetStringEncoder(),
    char.PrintableString.tagSet: OctetStringEncoder(),
    char.TeletexString.tagSet: OctetStringEncoder(),
    char.VideotexString.tagSet: OctetStringEncoder(),
    char.IA5String.tagSet: OctetStringEncoder(),
    char.GraphicString.tagSet: OctetStringEncoder(),
    char.VisibleString.tagSet: OctetStringEncoder(),
    char.GeneralString.tagSet: OctetStringEncoder(),
    char.UniversalString.tagSet: OctetStringEncoder(),
    char.BMPString.tagSet: OctetStringEncoder(),
    # useful types
    useful.ObjectDescriptor.tagSet: OctetStringEncoder(),
    useful.GeneralizedTime.tagSet: OctetStringEncoder(),
    useful.UTCTime.tagSet: OctetStringEncoder()        
    }

# Type-to-codec map for ambiguous ASN.1 types
typeMap = {
    univ.Set.typeId: SequenceEncoder(),
    univ.SetOf.typeId: SequenceOfEncoder(),
    univ.Sequence.typeId: SequenceEncoder(),
    univ.SequenceOf.typeId: SequenceOfEncoder(),
    univ.Choice.typeId: ChoiceEncoder(),
    univ.Any.typeId: AnyEncoder()
    }

class Encoder:
    supportIndefLength = True
    def __init__(self, tagMap, typeMap={}):
        self.__tagMap = tagMap
        self.__typeMap = typeMap

    def __call__(self, value, defMode=True, maxChunkSize=0):
        if not defMode and not self.supportIndefLength:
            raise error.PyAsn1Error('Indefinite length encoding not supported by this codec')
        debug.logger & debug.flagEncoder and debug.logger('encoder called in %sdef mode, chunk size %s for type %s, value:\n%s' % (not defMode and 'in' or '', maxChunkSize, value.prettyPrintType(), value.prettyPrint()))
        tagSet = value.getTagSet()
        if len(tagSet) > 1:
            concreteEncoder = explicitlyTaggedItemEncoder
        else:
            if value.typeId is not None and value.typeId in self.__typeMap:
                concreteEncoder = self.__typeMap[value.typeId]
            elif tagSet in self.__tagMap:
                concreteEncoder = self.__tagMap[tagSet]
            else:
                tagSet = value.baseTagSet
                if tagSet in self.__tagMap:
                    concreteEncoder = self.__tagMap[tagSet]
                else:
                    raise Error('No encoder for %s' % (value,))
        debug.logger & debug.flagEncoder and debug.logger('using value codec %s chosen by %s' % (concreteEncoder.__class__.__name__, tagSet))
        substrate = concreteEncoder.encode(
            self, value, defMode, maxChunkSize
            )
        debug.logger & debug.flagEncoder and debug.logger('built %s octets of substrate: %s\nencoder completed' % (len(substrate), debug.hexdump(substrate)))
        return substrate

encode = Encoder(tagMap, typeMap)