summaryrefslogtreecommitdiff
path: root/lib/Crypto/PublicKey/RSA.py
blob: a5afeb96abc15abc76caa42cf891453fcb2e19e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
# -*- coding: utf-8 -*-
#
#  PublicKey/RSA.py : RSA public key primitive
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""RSA public-key cryptography algorithm (signature and encryption).

RSA_ is the most widespread and used public key algorithm. Its security is
based on the difficulty of factoring large integers. The algorithm has
withstood attacks for 30 years, and it is therefore considered reasonably
secure for new designs.

The algorithm can be used for both confidentiality (encryption) and
authentication (digital signature). It is worth noting that signing and
decryption are significantly slower than verification and encryption.
The cryptograhic strength is primarily linked to the length of the modulus *n*.
In 2012, a sufficient length is deemed to be 2048 bits. For more information,
see the most recent ECRYPT_ report.

Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
bytes if *n* is 2048 bit long).

This module provides facilities for generating fresh, new RSA keys, constructing
them from known components, exporting them, and importing them.

    >>> from Crypto.PublicKey import RSA
    >>>
    >>> key = RSA.generate(2048)
    >>> f = open('mykey.pem','w')
    >>> f.write(key.exportKey('PEM'))
    >>> f.close()
    ...
    >>> f = open('mykey.pem','r')
    >>> key = RSA.importKey(f.read())

Even though you may choose to  directly use the methods of an RSA key object
to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
it is recommended to use one of the standardized schemes instead (like
`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).

.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf

:sort: generate,construct,importKey,error
"""

__revision__ = "$Id$"

__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation',
    '_RSAobj', 'oid' , 'algorithmIdentifier' ]

import sys
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
    from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *

from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes

from Crypto.PublicKey import _RSA, _slowmath, pubkey
from Crypto.IO import PKCS8, PEM
from Crypto import Random

from Crypto.Util.asn1 import *

import binascii
import struct

from Crypto.Util.number import inverse

try:
    from Crypto.PublicKey import _fastmath
except ImportError:
    _fastmath = None

def decode_der(obj_class, binstr):
    """Instantiate a DER object class, decode a DER binary string in it, and
    return the object."""
    der = obj_class()
    der.decode(binstr)
    return der

class _RSAobj(pubkey.pubkey):
    """Class defining an actual RSA key.

    :undocumented: __getstate__, __setstate__, __repr__, __getattr__
    """
    #: Dictionary of RSA parameters.
    #:
    #: A public key will only have the following entries:
    #:
    #:  - **n**, the modulus.
    #:  - **e**, the public exponent.
    #:
    #: A private key will also have:
    #:
    #:  - **d**, the private exponent.
    #:  - **p**, the first factor of n.
    #:  - **q**, the second factor of n.
    #:  - **u**, the CRT coefficient (1/p) mod q.
    keydata = ['n', 'e', 'd', 'p', 'q', 'u']

    def __init__(self, implementation, key, randfunc=None):
        self.implementation = implementation
        self.key = key
        if randfunc is None:
            randfunc = Random.new().read
        self._randfunc = randfunc

    def __getattr__(self, attrname):
        if attrname in self.keydata:
            # For backward compatibility, allow the user to get (not set) the
            # RSA key parameters directly from this object.
            return getattr(self.key, attrname)
        else:
            raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))

    def encrypt(self, plaintext, K):
        """Encrypt a piece of data with RSA.

        :Parameter plaintext: The piece of data to encrypt with RSA. It may not
         be numerically larger than the RSA module (**n**).
        :Type plaintext: byte string or long

        :Parameter K: A random parameter (*for compatibility only. This
         value will be ignored*)
        :Type K: byte string or long

        :attention: this function performs the plain, primitive RSA encryption
         (*textbook*). In real applications, you always need to use proper
         cryptographic padding, and you should not directly encrypt data with
         this method. Failure to do so may lead to security vulnerabilities.
         It is recommended to use modules
         `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.

        :Return: A tuple with two items. The first item is the ciphertext
         of the same type as the plaintext (string or long). The second item
         is always None.
        """
        return pubkey.pubkey.encrypt(self, plaintext, K)
 
    def decrypt(self, ciphertext):
        """Decrypt a piece of data with RSA.

        Decryption always takes place with blinding.

        :attention: this function performs the plain, primitive RSA decryption
         (*textbook*). In real applications, you always need to use proper
         cryptographic padding, and you should not directly decrypt data with
         this method. Failure to do so may lead to security vulnerabilities.
         It is recommended to use modules
         `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.

        :Parameter ciphertext: The piece of data to decrypt with RSA. It may
         not be numerically larger than the RSA module (**n**). If a tuple,
         the first item is the actual ciphertext; the second item is ignored.

        :Type ciphertext: byte string, long or a 2-item tuple as returned by
         `encrypt`

        :Return: A byte string if ciphertext was a byte string or a tuple
         of byte strings. A long otherwise.
        """
        return pubkey.pubkey.decrypt(self, ciphertext)

    def sign(self, M, K):
        """Sign a piece of data with RSA.

        Signing always takes place with blinding.

        :attention: this function performs the plain, primitive RSA decryption
         (*textbook*). In real applications, you always need to use proper
         cryptographic padding, and you should not directly sign data with
         this method. Failure to do so may lead to security vulnerabilities.
         It is recommended to use modules
         `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.

        :Parameter M: The piece of data to sign with RSA. It may
         not be numerically larger than the RSA module (**n**).
        :Type M: byte string or long

        :Parameter K: A random parameter (*for compatibility only. This
         value will be ignored*)
        :Type K: byte string or long

        :Return: A 2-item tuple. The first item is the actual signature (a
         long). The second item is always None.
        """
        return pubkey.pubkey.sign(self, M, K)

    def verify(self, M, signature):
        """Verify the validity of an RSA signature.

        :attention: this function performs the plain, primitive RSA encryption
         (*textbook*). In real applications, you always need to use proper
         cryptographic padding, and you should not directly verify data with
         this method. Failure to do so may lead to security vulnerabilities.
         It is recommended to use modules
         `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
 
        :Parameter M: The expected message.
        :Type M: byte string or long

        :Parameter signature: The RSA signature to verify. The first item of
         the tuple is the actual signature (a long not larger than the modulus
         **n**), whereas the second item is always ignored.
        :Type signature: A 2-item tuple as return by `sign`

        :Return: True if the signature is correct, False otherwise.
        """
        return pubkey.pubkey.verify(self, M, signature)

    def _encrypt(self, c, K):
        return (self.key._encrypt(c),)

    def _decrypt(self, c):
        #(ciphertext,) = c
        (ciphertext,) = c[:1]  # HACK - We should use the previous line
                               # instead, but this is more compatible and we're
                               # going to replace the Crypto.PublicKey API soon
                               # anyway.

        # Blinded RSA decryption (to prevent timing attacks):
        # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
        r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
        # Step 2: Compute c' = c * r**e mod n
        cp = self.key._blind(ciphertext, r)
        # Step 3: Compute m' = c'**d mod n       (ordinary RSA decryption)
        mp = self.key._decrypt(cp)
        # Step 4: Compute m = m**(r-1) mod n
        return self.key._unblind(mp, r)

    def _blind(self, m, r):
        return self.key._blind(m, r)

    def _unblind(self, m, r):
        return self.key._unblind(m, r)

    def _sign(self, m, K=None):
        return (self.key._sign(m),)

    def _verify(self, m, sig):
        #(s,) = sig
        (s,) = sig[:1]  # HACK - We should use the previous line instead, but
                        # this is more compatible and we're going to replace
                        # the Crypto.PublicKey API soon anyway.
        return self.key._verify(m, s)

    def has_private(self):
        return self.key.has_private()

    def size(self):
        return self.key.size()

    def can_blind(self):
        return True

    def can_encrypt(self):
        return True

    def can_sign(self):
        return True

    def publickey(self):
        return self.implementation.construct((self.key.n, self.key.e))

    def __getstate__(self):
        d = {}
        for k in self.keydata:
            try:
                d[k] = getattr(self.key, k)
            except AttributeError:
                pass
        return d

    def __setstate__(self, d):
        if not hasattr(self, 'implementation'):
            self.implementation = RSAImplementation()
        if not hasattr(self, '_randfunc'):
            self._randfunc = Random.new().read
        t = []
        for k in self.keydata:
            if not d.has_key(k):
                break
            t.append(d[k])
        self.key = self.implementation._math.rsa_construct(*tuple(t))

    def __repr__(self):
        attrs = []
        for k in self.keydata:
            if k == 'n':
                attrs.append("n(%d)" % (self.size()+1,))
            elif hasattr(self.key, k):
                attrs.append(k)
        if self.has_private():
            attrs.append("private")
        # PY3K: This is meant to be text, do not change to bytes (data)
        return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))

    def exportKey(self, format='PEM', passphrase=None, pkcs=1, protection=None):
        """Export this RSA key.

        :Parameters:
          format : string
            The format to use for wrapping the key:

            - *'DER'*. Binary encoding.
            - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
            - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
              Only suitable for public keys (not private keys).

          passphrase : string
            For private keys only. The pass phrase used for deriving the encryption
            key.

          pkcs : integer
            For *DER* and *PEM* format only.
            The PKCS standard to follow for assembling the components of the key.
            You have two choices:

            - **1** (default): the public key is embedded into
              an X.509 ``SubjectPublicKeyInfo`` DER SEQUENCE.
              The private key is embedded into a `PKCS#1`_
              ``RSAPrivateKey`` DER SEQUENCE.
            - **8**: the private key is embedded into a `PKCS#8`_
              ``PrivateKeyInfo`` DER SEQUENCE. This value cannot be used
              for public keys.

          protection : string
            The encryption scheme to use for protecting the private key.

            If ``None`` (default), the behavior depends on ``format``:

            - For *DER*, the *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC*
              scheme is used. The following operations are performed:

                1. A 16 byte Triple DES key is derived from the passphrase
                   using `Crypto.Protocol.KDF.PBKDF2` with 8 bytes salt,
                   and 1 000 iterations of `Crypto.Hash.HMAC`.
                2. The private key is encrypted using CBC.
                3. The encrypted key is encoded according to PKCS#8.

            - For *PEM*, the obsolete PEM encryption scheme is used.
              It is based on MD5 for key derivation, and Triple DES for encryption.

            Specifying a value for ``protection`` is only meaningful for PKCS#8
            (that is, ``pkcs=8``) and only if a pass phrase is present too.

            The supported schemes for PKCS#8 are listed in the
            `Crypto.IO.PKCS8` module (see ``wrap_algo`` parameter).

        :Return: A byte string with the encoded public or private half
          of the key.
        :Raise ValueError:
            When the format is unknown or when you try to encrypt a private
            key with *DER* format and PKCS#1.
        :attention:
            If you don't provide a pass phrase, the private key will be
            exported in the clear!

        .. _RFC1421:    http://www.ietf.org/rfc/rfc1421.txt
        .. _RFC1423:    http://www.ietf.org/rfc/rfc1423.txt
        .. _`PKCS#1`:   http://www.ietf.org/rfc/rfc3447.txt
        .. _`PKCS#8`:   http://www.ietf.org/rfc/rfc5208.txt
        """
        if passphrase is not None:
            passphrase = tobytes(passphrase)
        if format=='OpenSSH':
               eb = long_to_bytes(self.e)
               nb = long_to_bytes(self.n)
               if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
               if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
               keyparts = [ b('ssh-rsa'), eb, nb ]
               keystring = b('').join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
               return b('ssh-rsa ')+binascii.b2a_base64(keystring)[:-1]

        # DER format is always used, even in case of PEM, which simply
        # encodes it into BASE64.
        if self.has_private():
                binary_key = newDerSequence(
                        0,
                        self.n,
                        self.e,
                        self.d,
                        self.p,
                        self.q,
                        self.d % (self.p-1),
                        self.d % (self.q-1),
                        inverse(self.q, self.p)
                    ).encode()
                if pkcs==1:
                    keyType = 'RSA PRIVATE'
                    if format=='DER' and passphrase:
                        raise ValueError("PKCS#1 private key cannot be encrypted")
                else: # PKCS#8
                    if format=='PEM' and protection is None:
                        keyType = 'PRIVATE'
                        binary_key = PKCS8.wrap(binary_key, oid, None)
                    else:
                        keyType = 'ENCRYPTED PRIVATE'
                        if not protection:
                            protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
                        binary_key = PKCS8.wrap(binary_key, oid, passphrase, protection)
                        passphrase = None
        else:
                keyType = "RSA PUBLIC"
                binary_key = newDerSequence(
                    algorithmIdentifier,
                    newDerBitString(
                        newDerSequence( self.n, self.e )
                        )
                    ).encode()
        if format=='DER':
            return binary_key
        if format=='PEM':
            pem_str = PEM.encode(binary_key, keyType+" KEY", passphrase, self._randfunc)
            return tobytes(pem_str)
        raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)

class RSAImplementation(object):
    """
    An RSA key factory.

    This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.

    :sort: __init__,generate,construct,importKey
    :undocumented: _g*, _i*
    """

    def __init__(self, **kwargs):
        """Create a new RSA key factory.

        :Keywords:
         use_fast_math : bool
                                Specify which mathematic library to use:

                                - *None* (default). Use fastest math available.
                                - *True* . Use fast math.
                                - *False* . Use slow math.
         default_randfunc : callable
                                Specify how to collect random data:

                                - *None* (default). Use Random.new().read().
                                - not *None* . Use the specified function directly.
        :Raise RuntimeError:
            When **use_fast_math** =True but fast math is not available.
        """
        use_fast_math = kwargs.get('use_fast_math', None)
        if use_fast_math is None:   # Automatic
            if _fastmath is not None:
                self._math = _fastmath
            else:
                self._math = _slowmath

        elif use_fast_math:     # Explicitly select fast math
            if _fastmath is not None:
                self._math = _fastmath
            else:
                raise RuntimeError("fast math module not available")

        else:   # Explicitly select slow math
            self._math = _slowmath

        self.error = self._math.error

        self._default_randfunc = kwargs.get('default_randfunc', None)
        self._current_randfunc = None

    def _get_randfunc(self, randfunc):
        if randfunc is not None:
            return randfunc
        elif self._current_randfunc is None:
            self._current_randfunc = Random.new().read
        return self._current_randfunc

    def generate(self, bits, randfunc=None, progress_func=None, e=65537):
        """Randomly generate a fresh, new RSA key.

        :Parameters:
         bits : int
                            Key length, or size (in bits) of the RSA modulus.
                            It must be a multiple of 256, and no smaller than 1024.

         randfunc : callable
                            Random number generation function; it should accept
                            a single integer N and return a string of random data
                            N bytes long.
                            If not specified, a new one will be instantiated
                            from ``Crypto.Random``.

         progress_func : callable
                            Optional function that will be called with a short string
                            containing the key parameter currently being generated;
                            it's useful for interactive applications where a user is
                            waiting for a key to be generated.

         e : int
                            Public RSA exponent. It must be an odd positive integer.
                            It is typically a small number with very few ones in its
                            binary representation.
                            The default value 65537 (= ``0b10000000000000001`` ) is a safe
                            choice: other common values are 5, 7, 17, and 257.

        :attention: You should always use a cryptographically secure random number generator,
            such as the one defined in the ``Crypto.Random`` module; **don't** just use the
            current time and the ``random`` module.

        :attention: Exponent 3 is also widely used, but it requires very special care when padding
            the message.

        :Return: An RSA key object (`_RSAobj`).

        :Raise ValueError:
            When **bits** is too little or not a multiple of 256, or when
            **e** is not odd or smaller than 2.
        """
        if bits < 1024 or (bits & 0xff) != 0:
            # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
            raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
        if e%2==0 or e<3:
            raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
        rf = self._get_randfunc(randfunc)
        obj = _RSA.generate_py(bits, rf, progress_func, e)    # TODO: Don't use legacy _RSA module
        key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
        return _RSAobj(self, key)

    def construct(self, tup):
        """Construct an RSA key from a tuple of valid RSA components.

        The modulus **n** must be the product of two primes.
        The public exponent **e** must be odd and larger than 1.

        In case of a private key, the following equations must apply:

        - e != 1
        - p*q = n
        - e*d = 1 mod (p-1)(q-1)
        - p*u = 1 mod q

        :Parameters:
         tup : tuple
                    A tuple of long integers, with at least 2 and no
                    more than 6 items. The items come in the following order:

                    1. RSA modulus (n).
                    2. Public exponent (e).
                    3. Private exponent (d). Only required if the key is private.
                    4. First factor of n (p). Optional.
                    5. Second factor of n (q). Optional.
                    6. CRT coefficient, (1/p) mod q (u). Optional.
        
        :Return: An RSA key object (`_RSAobj`).
        """
        key = self._math.rsa_construct(*tup)
        return _RSAobj(self, key)

    def _importKeyDER(self, extern_key, passphrase=None):
        """Import an RSA key (public or private half), encoded in DER form."""

        try:

            der = decode_der(DerSequence, extern_key)

            # Try PKCS#1 first, for a private key
            if len(der) == 9 and der.hasOnlyInts() and der[0] == 0:
                # ASN.1 RSAPrivateKey element
                del der[6:]     # Remove d mod (p-1),
                                # d mod (q-1), and
                                # q^{-1} mod p
                der.append(inverse(der[4], der[5]))  # Add p^{-1} mod q
                del der[0]      # Remove version
                return self.construct(der[:])

            # Keep on trying PKCS#1, but now for a public key
            if len(der) == 2:
                try:
                    # The DER object is an RSAPublicKey SEQUENCE with
                    # two elements
                    if der.hasOnlyInts():
                        return self.construct(der[:])
                    # The DER object is a SubjectPublicKeyInfo SEQUENCE
                    # with two elements: an 'algorithmIdentifier' and a
                    # 'subjectPublicKey'BIT STRING.
                    # 'algorithmIdentifier' takes the value given at the
                    # module level.
                    # 'subjectPublicKey' encapsulates the actual ASN.1
                    # RSAPublicKey element.
                    if der[0] == algorithmIdentifier:
                        bitmap = decode_der(DerBitString, der[1])
                        rsaPub = decode_der(DerSequence, bitmap.value)
                        if len(rsaPub) == 2 and rsaPub.hasOnlyInts():
                            return self.construct(rsaPub[:])
                except (ValueError, EOFError):
                    pass

            # Try PKCS#8 (possibly encrypted)
            k = PKCS8.unwrap(extern_key, passphrase)
            if k[0] == oid:
                return self._importKeyDER(k[1], passphrase)

        except (ValueError, EOFError):
            pass

        raise ValueError("RSA key format is not supported")

    def importKey(self, extern_key, passphrase=None):
        """Import an RSA key (public or private half), encoded in standard
        form.

        :Parameter extern_key:
            The RSA key to import, encoded as a string.

            An RSA public key can be in any of the following formats:

            - X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM
              encoding)
            - `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding)
            - OpenSSH (textual public key only)

            An RSA private key can be in any of the following formats:

            - PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding)
            - `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
              DER SEQUENCE (binary or PEM encoding)
            - OpenSSH (textual public key only)

            For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.

            The private key may be encrypted by means of a certain pass phrase
            either at the PEM level or at the PKCS#8 level.
        :Type extern_key: string

        :Parameter passphrase:
            In case of an encrypted private key, this is the pass phrase from
            which the decryption key is derived.
        :Type passphrase: string

        :Return: An RSA key object (`_RSAobj`).

        :Raise ValueError/IndexError/TypeError:
            When the given key cannot be parsed (possibly because the pass
            phrase is wrong).

        .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
        .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
        .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
        .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
        """
        extern_key = tobytes(extern_key)
        if passphrase is not None:
            passphrase = tobytes(passphrase)

        if extern_key.startswith(b('-----')):
            # This is probably a PEM encoded key.
            (der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
            if enc_flag:
                passphrase = None
            return self._importKeyDER(der, passphrase)

        if extern_key.startswith(b('ssh-rsa ')):
                # This is probably an OpenSSH key
                keystring = binascii.a2b_base64(extern_key.split(b(' '))[1])
                keyparts = []
                while len(keystring) > 4:
                    l = struct.unpack(">I", keystring[:4])[0]
                    keyparts.append(keystring[4:4 + l])
                    keystring = keystring[4 + l:]
                e = bytes_to_long(keyparts[1])
                n = bytes_to_long(keyparts[2])
                return self.construct([n, e])

        if bord(extern_key[0]) == 0x30:
                # This is probably a DER encoded key
                return self._importKeyDER(extern_key, passphrase)

        raise ValueError("RSA key format is not supported")

#: `Object ID`_ for the RSA encryption algorithm. This OID often indicates
#: a generic RSA key, even when such key will be actually used for digital
#: signatures.
#:
#: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
oid = "1.2.840.113549.1.1.1"

#: This is the standard DER object that qualifies a cryptographic algorithm
#: in ASN.1-based data structures (e.g. X.509 certificates).
algorithmIdentifier = DerSequence(
  [DerObjectId(oid).encode(),      # algorithm field
  DerNull().encode()]              # parameters field
  ).encode()
 
_impl = RSAImplementation()
#:
#: Randomly generate a fresh, new RSA key object.
#:
#: See `RSAImplementation.generate`.
#:
generate = _impl.generate
#:
#: Construct an RSA key object from a tuple of valid RSA components.
#:
#: See `RSAImplementation.construct`.
#:
construct = _impl.construct
#:
#: Import an RSA key (public or private half), encoded in standard form.
#:
#: See `RSAImplementation.importKey`.
#:
importKey = _impl.importKey
error = _impl.error

# vim:set ts=4 sw=4 sts=4 expandtab: