summaryrefslogtreecommitdiff
path: root/lib/Crypto/SelfTest/Cipher/common.py
blob: a20a3aa3b86ab537a6c81e2d4717c288b43e8edf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# -*- coding: utf-8 -*-
#
#  SelfTest/Hash/common.py: Common code for Crypto.SelfTest.Hash
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""Self-testing for PyCrypto hash modules"""

from __future__ import nested_scopes

__revision__ = "$Id$"

import sys
import unittest
from binascii import a2b_hex, b2a_hex
from Crypto.Util.py3compat import *

# For compatibility with Python 2.1 and Python 2.2
if sys.hexversion < 0x02030000:
    # Python 2.1 doesn't have a dict() function
    # Python 2.2 dict() function raises TypeError if you do dict(MD5='blah')
    def dict(**kwargs):
        return kwargs.copy()
else:
    dict = dict

class _NoDefault: pass        # sentinel object
def _extract(d, k, default=_NoDefault):
    """Get an item from a dictionary, and remove it from the dictionary."""
    try:
        retval = d[k]
    except KeyError:
        if default is _NoDefault:
            raise
        return default
    del d[k]
    return retval

# Generic cipher test case
class CipherSelfTest(unittest.TestCase):

    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module

        # Extract the parameters
        params = params.copy()
        self.description = _extract(params, 'description')
        self.key = b(_extract(params, 'key'))
        self.plaintext = b(_extract(params, 'plaintext'))
        self.ciphertext = b(_extract(params, 'ciphertext'))
        self.module_name = _extract(params, 'module_name', None)

        mode = _extract(params, 'mode', None)
        self.mode_name = str(mode)
        if mode is not None:
            # Block cipher
            self.mode = getattr(self.module, "MODE_" + mode)
            self.iv = _extract(params, 'iv', None)
            if self.iv is not None: self.iv = b(self.iv)

            # Only relevant for OPENPGP mode
            self.encrypted_iv = _extract(params, 'encrypted_iv', None)
            if self.encrypted_iv is not None:
                self.encrypted_iv = b(self.encrypted_iv)
        else:
            # Stream cipher
            self.mode = None
            self.iv = None

        self.extra_params = params

    def shortDescription(self):
        return self.description

    def _new(self, do_decryption=0):
        params = self.extra_params.copy()

        # Handle CTR mode parameters.  By default, we use Counter.new(self.module.block_size)
        if hasattr(self.module, "MODE_CTR") and self.mode == self.module.MODE_CTR:
            from Crypto.Util import Counter
            ctr_class = _extract(params, 'ctr_class', Counter.new)
            ctr_params = _extract(params, 'ctr_params', {}).copy()
            if ctr_params.has_key('prefix'): ctr_params['prefix'] = a2b_hex(b(ctr_params['prefix']))
            if ctr_params.has_key('suffix'): ctr_params['suffix'] = a2b_hex(b(ctr_params['suffix']))
            if not ctr_params.has_key('nbits'):
                ctr_params['nbits'] = 8*(self.module.block_size - len(ctr_params.get('prefix', '')) - len(ctr_params.get('suffix', '')))
            params['counter'] = ctr_class(**ctr_params)

        if self.mode is None:
            # Stream cipher
            return self.module.new(a2b_hex(self.key), **params)
        elif self.iv is None:
            # Block cipher without iv
            return self.module.new(a2b_hex(self.key), self.mode, **params)
        else:
            # Block cipher with iv
            if do_decryption and self.mode == self.module.MODE_OPENPGP:
                # In PGP mode, the IV to feed for decryption is the *encrypted* one
                return self.module.new(a2b_hex(self.key), self.mode, a2b_hex(self.encrypted_iv), **params)
            else:
                return self.module.new(a2b_hex(self.key), self.mode, a2b_hex(self.iv), **params)

    def runTest(self):
        plaintext = a2b_hex(self.plaintext)
        ciphertext = a2b_hex(self.ciphertext)

        ct1 = b2a_hex(self._new().encrypt(plaintext))
        pt1 = b2a_hex(self._new(1).decrypt(ciphertext))
        ct2 = b2a_hex(self._new().encrypt(plaintext))
        pt2 = b2a_hex(self._new(1).decrypt(ciphertext))

        if hasattr(self.module, "MODE_OPENPGP") and self.mode == self.module.MODE_OPENPGP:
            # In PGP mode, data returned by the first encrypt()
            # is prefixed with the encrypted IV.
            # Here we check it and then remove it from the ciphertexts.
            eilen = len(self.encrypted_iv)
            self.assertEqual(self.encrypted_iv, ct1[:eilen])
            self.assertEqual(self.encrypted_iv, ct2[:eilen])
            ct1 = ct1[eilen:]
            ct2 = ct2[eilen:]

        self.assertEqual(self.ciphertext, ct1)  # encrypt
        self.assertEqual(self.ciphertext, ct2)  # encrypt (second time)
        self.assertEqual(self.plaintext, pt1)   # decrypt
        self.assertEqual(self.plaintext, pt2)   # decrypt (second time)

class CipherStreamingSelfTest(CipherSelfTest):

    def shortDescription(self):
        desc = self.module_name
        if self.mode is not None:
            desc += " in %s mode" % (self.mode_name,)
        return "%s should behave like a stream cipher" % (desc,)

    def runTest(self):
        plaintext = a2b_hex(self.plaintext)
        ciphertext = a2b_hex(self.ciphertext)

        # The cipher should work like a stream cipher

        # Test counter mode encryption, 3 bytes at a time
        ct3 = []
        cipher = self._new()
        for i in range(0, len(plaintext), 3):
            ct3.append(cipher.encrypt(plaintext[i:i+3]))
        ct3 = b2a_hex(b("").join(ct3))
        self.assertEqual(self.ciphertext, ct3)  # encryption (3 bytes at a time)

        # Test counter mode decryption, 3 bytes at a time
        pt3 = []
        cipher = self._new()
        for i in range(0, len(ciphertext), 3):
            pt3.append(cipher.encrypt(ciphertext[i:i+3]))
        # PY3K: This is meant to be text, do not change to bytes (data)
        pt3 = b2a_hex(b("").join(pt3))
        self.assertEqual(self.plaintext, pt3)  # decryption (3 bytes at a time)

class CTRSegfaultTest(unittest.TestCase):

    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module
        self.key = b(params['key'])
        self.module_name = params.get('module_name', None)

    def shortDescription(self):
        return """Regression test: %s.new(key, %s.MODE_CTR) should raise TypeError, not segfault""" % (self.module_name, self.module_name)

    def runTest(self):
        self.assertRaises(TypeError, self.module.new, a2b_hex(self.key), self.module.MODE_CTR)

class CTRWraparoundTest(unittest.TestCase):

    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module
        self.key = b(params['key'])
        self.module_name = params.get('module_name', None)

    def shortDescription(self):
        return """Regression test: %s with MODE_CTR raising OverflowError on wraparound""" % (self.module_name,)

    def runTest(self):
        from Crypto.Util import Counter

        def pythonCounter():
            state = [0]
            def ctr():
                # First block succeeds; Second and subsequent blocks raise OverflowError
                if state[0] == 0:
                    state[0] = 1
                    return b("\xff") * self.module.block_size
                else:
                    raise OverflowError
            return ctr

        for little_endian in (0, 1): # (False, True) Test both endiannesses
            block = b("\x00") * self.module.block_size

            # Test PyObject_CallObject code path: if the counter raises OverflowError
            cipher = self.module.new(a2b_hex(self.key), self.module.MODE_CTR, counter=pythonCounter())
            cipher.encrypt(block)
            self.assertRaises(OverflowError, cipher.encrypt, block)
            self.assertRaises(OverflowError, cipher.encrypt, block)

            # Test PyObject_CallObject code path: counter object should raise OverflowError
            ctr = Counter.new(8*self.module.block_size, initial_value=2L**(8*self.module.block_size)-1, little_endian=little_endian)
            ctr()
            self.assertRaises(OverflowError, ctr)
            self.assertRaises(OverflowError, ctr)

            # Test the CTR-mode shortcut
            ctr = Counter.new(8*self.module.block_size, initial_value=2L**(8*self.module.block_size)-1, little_endian=little_endian)
            cipher = self.module.new(a2b_hex(self.key), self.module.MODE_CTR, counter=ctr)
            cipher.encrypt(block)
            self.assertRaises(OverflowError, cipher.encrypt, block)
            self.assertRaises(OverflowError, cipher.encrypt, block)

class CFBSegmentSizeTest(unittest.TestCase):

    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module
        self.key = b(params['key'])
        self.description = params['description']

    def shortDescription(self):
        return self.description

    def runTest(self):
        """Regression test: m.new(key, m.MODE_CFB, segment_size=N) should require segment_size to be a multiple of 8 bits"""
        for i in range(1, 8):
            self.assertRaises(ValueError, self.module.new, a2b_hex(self.key), self.module.MODE_CFB, segment_size=i)
        self.module.new(a2b_hex(self.key), self.module.MODE_CFB, "\0"*self.module.block_size, segment_size=8) # should succeed

class RoundtripTest(unittest.TestCase):
    def __init__(self, module, params):
        from Crypto import Random
        unittest.TestCase.__init__(self)
        self.module = module
        self.iv = Random.get_random_bytes(module.block_size)
        self.key = b(params['key'])
        self.plaintext = 100 * b(params['plaintext'])
        self.module_name = params.get('module_name', None)

    def shortDescription(self):
        return """%s .decrypt() output of .encrypt() should not be garbled""" % (self.module_name,)

    def runTest(self):
        for mode in (self.module.MODE_ECB, self.module.MODE_CBC, self.module.MODE_CFB, self.module.MODE_OFB, self.module.MODE_OPENPGP):
            encryption_cipher = self.module.new(a2b_hex(self.key), mode, self.iv)
            ciphertext = encryption_cipher.encrypt(self.plaintext)
            
            if mode != self.module.MODE_OPENPGP:
                decryption_cipher = self.module.new(a2b_hex(self.key), mode, self.iv)
            else:
                eiv = ciphertext[:self.module.block_size+2]
                ciphertext = ciphertext[self.module.block_size+2:]
                decryption_cipher = self.module.new(a2b_hex(self.key), mode, eiv)
            decrypted_plaintext = decryption_cipher.decrypt(ciphertext)
            self.assertEqual(self.plaintext, decrypted_plaintext)

class PGPTest(unittest.TestCase):
    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module
        self.key = b(params['key'])

    def shortDescription(self):
        return "MODE_PGP was implemented incorrectly and insecurely. It's completely banished now."

    def runTest(self):
        self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
                self.module.MODE_PGP)

class IVLengthTest(unittest.TestCase):
    def __init__(self, module, params):
        unittest.TestCase.__init__(self)
        self.module = module
        self.key = b(params['key'])

    def shortDescription(self):
        return "Check that all modes except MODE_ECB and MODE_CTR require an IV of the proper length"

    def runTest(self):
        self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
                self.module.MODE_CBC, "")
        self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
                self.module.MODE_CFB, "")
        self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
                self.module.MODE_OFB, "")
        self.assertRaises(ValueError, self.module.new, a2b_hex(self.key),
                self.module.MODE_OPENPGP, "")
        self.module.new(a2b_hex(self.key), self.module.MODE_ECB, "")
        self.module.new(a2b_hex(self.key), self.module.MODE_CTR, "", counter=self._dummy_counter)

    def _dummy_counter(self):
        return "\0" * self.module.block_size

def make_block_tests(module, module_name, test_data, additional_params=dict()):
    tests = []
    extra_tests_added = 0
    for i in range(len(test_data)):
        row = test_data[i]

        # Build the "params" dictionary
        params = {'mode': 'ECB'}
        if len(row) == 3:
            (params['plaintext'], params['ciphertext'], params['key']) = row
        elif len(row) == 4:
            (params['plaintext'], params['ciphertext'], params['key'], params['description']) = row
        elif len(row) == 5:
            (params['plaintext'], params['ciphertext'], params['key'], params['description'], extra_params) = row
            params.update(extra_params)
        else:
            raise AssertionError("Unsupported tuple size %d" % (len(row),))

        # Build the display-name for the test
        p2 = params.copy()
        p_key = _extract(p2, 'key')
        p_plaintext = _extract(p2, 'plaintext')
        p_ciphertext = _extract(p2, 'ciphertext')
        p_description = _extract(p2, 'description', None)
        p_mode = p2.get('mode', 'ECB')
        if p_mode == 'ECB':
            _extract(p2, 'mode', 'ECB')

        if p_description is not None:
            description = p_description
        elif p_mode == 'ECB' and not p2:
            description = "p=%s, k=%s" % (p_plaintext, p_key)
        else:
            description = "p=%s, k=%s, %r" % (p_plaintext, p_key, p2)
        name = "%s #%d: %s" % (module_name, i+1, description)
        params['description'] = name
        params['module_name'] = module_name
        params.update(additional_params)

        # Add extra test(s) to the test suite before the current test
        if not extra_tests_added:
            tests += [
                CTRSegfaultTest(module, params),
                CTRWraparoundTest(module, params),
                CFBSegmentSizeTest(module, params),
                RoundtripTest(module, params),
                PGPTest(module, params),
                IVLengthTest(module, params),
            ]
            extra_tests_added = 1

        # Add the current test to the test suite
        tests.append(CipherSelfTest(module, params))

        # When using CTR mode, test that the interface behaves like a stream cipher
        if p_mode in ('OFB', 'CTR'):
            tests.append(CipherStreamingSelfTest(module, params))

        # When using CTR mode, test the non-shortcut code path.
        if p_mode == 'CTR' and not params.has_key('ctr_class'):
            params2 = params.copy()
            params2['description'] += " (shortcut disabled)"
            ctr_params2 = params.get('ctr_params', {}).copy()
            params2['ctr_params'] = ctr_params2
            if not params2['ctr_params'].has_key('disable_shortcut'):
                params2['ctr_params']['disable_shortcut'] = 1
            tests.append(CipherSelfTest(module, params2))
    return tests

def make_stream_tests(module, module_name, test_data):
    tests = []
    for i in range(len(test_data)):
        row = test_data[i]

        # Build the "params" dictionary
        params = {}
        if len(row) == 3:
            (params['plaintext'], params['ciphertext'], params['key']) = row
        elif len(row) == 4:
            (params['plaintext'], params['ciphertext'], params['key'], params['description']) = row
        elif len(row) == 5:
            (params['plaintext'], params['ciphertext'], params['key'], params['description'], extra_params) = row
            params.update(extra_params)
        else:
            raise AssertionError("Unsupported tuple size %d" % (len(row),))

        # Build the display-name for the test
        p2 = params.copy()
        p_key = _extract(p2, 'key')
        p_plaintext = _extract(p2, 'plaintext')
        p_ciphertext = _extract(p2, 'ciphertext')
        p_description = _extract(p2, 'description', None)

        if p_description is not None:
            description = p_description
        elif not p2:
            description = "p=%s, k=%s" % (p_plaintext, p_key)
        else:
            description = "p=%s, k=%s, %r" % (p_plaintext, p_key, p2)
        name = "%s #%d: %s" % (module_name, i+1, description)
        params['description'] = name
        params['module_name'] = module_name

        # Add the test to the test suite
        tests.append(CipherSelfTest(module, params))
        tests.append(CipherStreamingSelfTest(module, params))
    return tests

# vim:set ts=4 sw=4 sts=4 expandtab: