summaryrefslogtreecommitdiff
path: root/lib/Crypto/SelfTest/Random/Fortuna/test_FortunaAccumulator.py
blob: c4e6ccf2b52fde6aea128ffa840b83942e49d790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# -*- coding: utf-8 -*-
#
#  SelfTest/Random/Fortuna/test_FortunaAccumulator.py: Self-test for the FortunaAccumulator module
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

"""Self-tests for Crypto.Random.Fortuna.FortunaAccumulator"""

__revision__ = "$Id$"

import sys
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
    from Crypto.Util.py21compat import *
from Crypto.Util.py3compat import *

import unittest
from binascii import b2a_hex

class FortunaAccumulatorTests(unittest.TestCase):
    def setUp(self):
        global FortunaAccumulator
        from Crypto.Random.Fortuna import FortunaAccumulator

    def test_FortunaPool(self):
        """FortunaAccumulator.FortunaPool"""
        pool = FortunaAccumulator.FortunaPool()
        self.assertEqual(0, pool.length)
        self.assertEqual("5df6e0e2761359d30a8275058e299fcc0381534545f55cf43e41983f5d4c9456", pool.hexdigest())

        pool.append(b('abc'))

        self.assertEqual(3, pool.length)
        self.assertEqual("4f8b42c22dd3729b519ba6f68d2da7cc5b2d606d05daed5ad5128cc03e6c6358", pool.hexdigest())

        pool.append(b("dbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"))

        self.assertEqual(56, pool.length)
        self.assertEqual(b('0cffe17f68954dac3a84fb1458bd5ec99209449749b2b308b7cb55812f9563af'), b2a_hex(pool.digest()))

        pool.reset()

        self.assertEqual(0, pool.length)

        pool.append(b('a') * 10**6)

        self.assertEqual(10**6, pool.length)
        self.assertEqual(b('80d1189477563e1b5206b2749f1afe4807e5705e8bd77887a60187a712156688'), b2a_hex(pool.digest()))

    def test_which_pools(self):
        """FortunaAccumulator.which_pools"""

        # which_pools(0) should fail
        self.assertRaises(AssertionError, FortunaAccumulator.which_pools, 0)

        self.assertEqual(FortunaAccumulator.which_pools(1), [0])
        self.assertEqual(FortunaAccumulator.which_pools(2), [0, 1])
        self.assertEqual(FortunaAccumulator.which_pools(3), [0])
        self.assertEqual(FortunaAccumulator.which_pools(4), [0, 1, 2])
        self.assertEqual(FortunaAccumulator.which_pools(5), [0])
        self.assertEqual(FortunaAccumulator.which_pools(6), [0, 1])
        self.assertEqual(FortunaAccumulator.which_pools(7), [0])
        self.assertEqual(FortunaAccumulator.which_pools(8), [0, 1, 2, 3])
        for i in range(1, 32):
            self.assertEqual(FortunaAccumulator.which_pools(2L**i-1), [0])
            self.assertEqual(FortunaAccumulator.which_pools(2L**i), range(i+1))
            self.assertEqual(FortunaAccumulator.which_pools(2L**i+1), [0])
        self.assertEqual(FortunaAccumulator.which_pools(2L**31), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**32), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**33), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**34), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**35), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**36), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**64), range(32))
        self.assertEqual(FortunaAccumulator.which_pools(2L**128), range(32))

    def test_accumulator(self):
        """FortunaAccumulator.FortunaAccumulator"""
        fa = FortunaAccumulator.FortunaAccumulator()

        # This should fail, because we haven't seeded the PRNG yet
        self.assertRaises(AssertionError, fa.random_data, 1)

        # Spread some test data across the pools (source number 42)
        # This would be horribly insecure in a real system.
        for p in range(32):
            fa.add_random_event(42, p, b("X") * 32)
            self.assertEqual(32+2, fa.pools[p].length)

        # This should still fail, because we haven't seeded the PRNG with 64 bytes yet
        self.assertRaises(AssertionError, fa.random_data, 1)

        # Add more data
        for p in range(32):
            fa.add_random_event(42, p, b("X") * 32)
            self.assertEqual((32+2)*2, fa.pools[p].length)

        # The underlying RandomGenerator should get seeded with Pool 0
        #   s = SHAd256(chr(42) + chr(32) + "X"*32 + chr(42) + chr(32) + "X"*32)
        #     = SHA256(h'edd546f057b389155a31c32e3975e736c1dec030ddebb137014ecbfb32ed8c6f')
        #     = h'aef42a5dcbddab67e8efa118e1b47fde5d697f89beb971b99e6e8e5e89fbf064'
        # The counter and the key before reseeding is:
        #   C_0 = 0
        #   K_0 = "\x00" * 32
        # The counter after reseeding is 1, and the new key after reseeding is
        #   C_1 = 1
        #   K_1 = SHAd256(K_0 || s)
        #       = SHA256(h'0eae3e401389fab86640327ac919ecfcb067359d95469e18995ca889abc119a6')
        #       = h'aafe9d0409fbaaafeb0a1f2ef2014a20953349d3c1c6e6e3b962953bea6184dd'
        # The first block of random data, therefore, is
        #   r_1 = AES-256(K_1, 1)
        #       = AES-256(K_1, h'01000000000000000000000000000000')
        #       = h'b7b86bd9a27d96d7bb4add1b6b10d157'
        # The second block of random data is
        #   r_2 = AES-256(K_1, 2)
        #       = AES-256(K_1, h'02000000000000000000000000000000')
        #       = h'2350b1c61253db2f8da233be726dc15f'
        # The third and fourth blocks of random data (which become the new key) are
        #   r_3 = AES-256(K_1, 3)
        #       = AES-256(K_1, h'03000000000000000000000000000000')
        #       = h'f23ad749f33066ff53d307914fbf5b21'
        #   r_4 = AES-256(K_1, 4)
        #       = AES-256(K_1, h'04000000000000000000000000000000')
        #       = h'da9667c7e86ba247655c9490e9d94a7c'
        #   K_2 = r_3 || r_4
        #       = h'f23ad749f33066ff53d307914fbf5b21da9667c7e86ba247655c9490e9d94a7c'
        # The final counter value is 5.
        self.assertEqual("aef42a5dcbddab67e8efa118e1b47fde5d697f89beb971b99e6e8e5e89fbf064",
            fa.pools[0].hexdigest())
        self.assertEqual(None, fa.generator.key)
        self.assertEqual(0, fa.generator.counter.next_value())

        result = fa.random_data(32)

        self.assertEqual(b("b7b86bd9a27d96d7bb4add1b6b10d157" "2350b1c61253db2f8da233be726dc15f"), b2a_hex(result))
        self.assertEqual(b("f23ad749f33066ff53d307914fbf5b21da9667c7e86ba247655c9490e9d94a7c"), b2a_hex(fa.generator.key))
        self.assertEqual(5, fa.generator.counter.next_value())

    def test_accumulator_pool_length(self):
        """FortunaAccumulator.FortunaAccumulator minimum pool length"""
        fa = FortunaAccumulator.FortunaAccumulator()

        # This test case is hard-coded to assume that FortunaAccumulator.min_pool_size is 64.
        self.assertEqual(fa.min_pool_size, 64)

        # The PRNG should not allow us to get random data from it yet
        self.assertRaises(AssertionError, fa.random_data, 1)

        # Add 60 bytes, 4 at a time (2 header + 2 payload) to each of the 32 pools
        for i in range(15):
            for p in range(32):
                # Add the bytes to the pool
                fa.add_random_event(2, p, b("XX"))

                # The PRNG should not allow us to get random data from it yet
                self.assertRaises(AssertionError, fa.random_data, 1)

        # Add 4 more bytes to pool 0
        fa.add_random_event(2, 0, b("XX"))

        # We should now be able to get data from the accumulator
        fa.random_data(1)

def get_tests(config={}):
    from Crypto.SelfTest.st_common import list_test_cases
    return list_test_cases(FortunaAccumulatorTests)

if __name__ == '__main__':
    suite = lambda: unittest.TestSuite(get_tests())
    unittest.main(defaultTest='suite')

# vim:set ts=4 sw=4 sts=4 expandtab: