summaryrefslogtreecommitdiff
path: root/src/AESNI.c
blob: 50f0cd676d2c27d6a0223613508a5b02bdc419b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*
 *  AESNI.c: AES using AES-NI instructions
 *
 * Written in 2013 by Sebastian Ramacher <sebastian@ramacher.at>
 *
 * ===================================================================
 * The contents of this file are dedicated to the public domain.  To
 * the extent that dedication to the public domain is not available,
 * everyone is granted a worldwide, perpetual, royalty-free,
 * non-exclusive license to exercise all rights associated with the
 * contents of this file for any purpose whatsoever.
 * No rights are reserved.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 * ===================================================================
 */

#include "pycrypto_common.h"
#include <wmmintrin.h>
#include <stdlib.h>
#if defined(HAVE__ALIGNED_MALLOC)
#include <malloc.h>
#endif

#define MODULE_NAME _AESNI
#define BLOCK_SIZE 16
#define KEY_SIZE 0

#define MAXKC (256/32)
#define MAXKB (256/8)
#define MAXNR 14

typedef unsigned char u8;

typedef struct {
    __m128i* ek;
    __m128i* dk;
    int rounds;
} block_state;

/* Wrapper functions for malloc and free with memory alignment */
#if defined(HAVE_ALIGNED_ALLOC) /* aligned_alloc is defined by C11 */
# define aligned_malloc_wrapper aligned_alloc
# define aligned_free_wrapper free
#elif defined(HAVE_POSIX_MEMALIGN) /* posix_memalign is defined by POSIX */
static void* aligned_malloc_wrapper(size_t alignment, size_t size)
{
    void* tmp = NULL;
    int err = posix_memalign(&tmp, alignment, size);
    if (err != 0) {
        /* posix_memalign does NOT set errno on failure; the error is returned */
        errno = err;
        return NULL;
    }
    return tmp;
}
# define aligned_free_wrapper free
#elif defined(HAVE__ALIGNED_MALLOC) /* _aligned_malloc is available on Windows */
static void* aligned_malloc_wrapper(size_t alignment, size_t size)
{
    /* NB: _aligned_malloc takes its args in the opposite order from aligned_alloc */
    return _aligned_malloc(size, alignment);
}
# define aligned_free_wrapper _aligned_free
#else
# error "No function to allocate/free aligned memory is available."
#endif

/* Helper functions to expand keys */

static __m128i aes128_keyexpand(__m128i key, __m128i keygened, int shuf)
{
    key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
    key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
    key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
    keygened = _mm_shuffle_epi32(keygened, shuf);
    return _mm_xor_si128(key, keygened);
}

static __m128i aes192_keyexpand_2(__m128i key, __m128i key2)
{
    key = _mm_shuffle_epi32(key, 0xff);
    key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
    return _mm_xor_si128(key, key2);
}

#define KEYEXP128(K, I) aes128_keyexpand(K, _mm_aeskeygenassist_si128(K, I), 0xff)
#define KEYEXP192(K1, K2, I) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, I), 0x55)
#define KEYEXP192_2(K1, K2) aes192_keyexpand_2(K1, K2)
#define KEYEXP256(K1, K2, I) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, I), 0xff)
#define KEYEXP256_2(K1, K2) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, 0x00), 0xaa)

/* Encryption key setup */
static void aes_key_setup_enc(__m128i rk[], const u8* cipherKey, int keylen)
{
    switch (keylen) {
        case 16:
        {
            /* 128 bit key setup */
            rk[0] = _mm_loadu_si128((const __m128i*) cipherKey);
            rk[1] = KEYEXP128(rk[0], 0x01);
            rk[2] = KEYEXP128(rk[1], 0x02);
            rk[3] = KEYEXP128(rk[2], 0x04);
            rk[4] = KEYEXP128(rk[3], 0x08);
            rk[5] = KEYEXP128(rk[4], 0x10);
            rk[6] = KEYEXP128(rk[5], 0x20);
            rk[7] = KEYEXP128(rk[6], 0x40);
            rk[8] = KEYEXP128(rk[7], 0x80);
            rk[9] = KEYEXP128(rk[8], 0x1B);
            rk[10] = KEYEXP128(rk[9], 0x36);
            break;
        }
        case 24:
        {
            /* 192 bit key setup */
            __m128i temp[2];
            rk[0] = _mm_loadu_si128((const __m128i*) cipherKey);
            rk[1] = _mm_loadu_si128((const __m128i*) (cipherKey+16));
            temp[0] = KEYEXP192(rk[0], rk[1], 0x01);
            temp[1] = KEYEXP192_2(temp[0], rk[1]);
            rk[1] = (__m128i)_mm_shuffle_pd((__m128d)rk[1], (__m128d)temp[0], 0);
            rk[2] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1);
            rk[3] = KEYEXP192(temp[0], temp[1], 0x02);
            rk[4] = KEYEXP192_2(rk[3], temp[1]);
            temp[0] = KEYEXP192(rk[3], rk[4], 0x04);
            temp[1] = KEYEXP192_2(temp[0], rk[4]);
            rk[4] = (__m128i)_mm_shuffle_pd((__m128d)rk[4], (__m128d)temp[0], 0);
            rk[5] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1);
            rk[6] = KEYEXP192(temp[0], temp[1], 0x08);
            rk[7] = KEYEXP192_2(rk[6], temp[1]);
            temp[0] = KEYEXP192(rk[6], rk[7], 0x10);
            temp[1] = KEYEXP192_2(temp[0], rk[7]);
            rk[7] = (__m128i)_mm_shuffle_pd((__m128d)rk[7], (__m128d)temp[0], 0);
            rk[8] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1);
            rk[9] = KEYEXP192(temp[0], temp[1], 0x20);
            rk[10] = KEYEXP192_2(rk[9], temp[1]);
            temp[0] = KEYEXP192(rk[9], rk[10], 0x40);
            temp[1] = KEYEXP192_2(temp[0], rk[10]);
            rk[10] = (__m128i)_mm_shuffle_pd((__m128d)rk[10], (__m128d) temp[0], 0);
            rk[11] = (__m128i)_mm_shuffle_pd((__m128d)temp[0],(__m128d) temp[1], 1);
            rk[12] = KEYEXP192(temp[0], temp[1], 0x80);
            break;
        }
        case 32:
        {
            /* 256 bit key setup */
            rk[0] = _mm_loadu_si128((const __m128i*) cipherKey);
            rk[1] = _mm_loadu_si128((const __m128i*) (cipherKey+16));
            rk[2] = KEYEXP256(rk[0], rk[1], 0x01);
            rk[3] = KEYEXP256_2(rk[1], rk[2]);
            rk[4] = KEYEXP256(rk[2], rk[3], 0x02);
            rk[5] = KEYEXP256_2(rk[3], rk[4]);
            rk[6] = KEYEXP256(rk[4], rk[5], 0x04);
            rk[7] = KEYEXP256_2(rk[5], rk[6]);
            rk[8] = KEYEXP256(rk[6], rk[7], 0x08);
            rk[9] = KEYEXP256_2(rk[7], rk[8]);
            rk[10] = KEYEXP256(rk[8], rk[9], 0x10);
            rk[11] = KEYEXP256_2(rk[9], rk[10]);
            rk[12] = KEYEXP256(rk[10], rk[11], 0x20);
            rk[13] = KEYEXP256_2(rk[11], rk[12]);
            rk[14] = KEYEXP256(rk[12], rk[13], 0x40);
            break;
        }
    }
}

/* Decryption key setup */
static void aes_key_setup_dec(__m128i dk[], const __m128i ek[], int rounds)
{
    dk[rounds] = ek[0];
    for (int i = 1; i < rounds; ++i) {
        dk[rounds - i] = _mm_aesimc_si128(ek[i]);
    }
    dk[0] = ek[rounds];
}

static void block_init(block_state* self, unsigned char* key, int keylen)
{
    int nr = 0;
    switch (keylen) {
        case 16: nr = 10; break;
        case 24: nr = 12; break;
        case 32: nr = 14; break;
        default:
            PyErr_SetString(PyExc_ValueError,
                "AES key must be either 16, 24, or 32 bytes long");
            return;
    }

    /* ensure that self->ek and self->dk are aligned to 16 byte boundaries */
    void* tek = aligned_malloc_wrapper(16, (nr + 1) * sizeof(__m128i));
    void* tdk = aligned_malloc_wrapper(16, (nr + 1) * sizeof(__m128i));
    if (!tek || !tdk) {
        aligned_free_wrapper(tek);
        aligned_free_wrapper(tdk);
        PyErr_SetString(PyExc_MemoryError,
                "failed to allocate memory for keys");
        return;
    }

    self->ek = tek;
    self->dk = tdk;

    self->rounds = nr;
    aes_key_setup_enc(self->ek, key, keylen);
    aes_key_setup_dec(self->dk, self->ek, nr);
}

static void block_finalize(block_state* self)
{
    /* overwrite contents of ek and dk */
    memset(self->ek, 0, (self->rounds + 1) * sizeof(__m128i));
    memset(self->dk, 0, (self->rounds + 1) * sizeof(__m128i));

    aligned_free_wrapper(self->ek);
    aligned_free_wrapper(self->dk);
}

static void block_encrypt(block_state* self, const u8* in, u8* out)
{
    __m128i m = _mm_loadu_si128((const __m128i*) in);
    /* first 9 rounds */
    m = _mm_xor_si128(m, self->ek[0]);
    m = _mm_aesenc_si128(m, self->ek[1]);
    m = _mm_aesenc_si128(m, self->ek[2]);
    m = _mm_aesenc_si128(m, self->ek[3]);
    m = _mm_aesenc_si128(m, self->ek[4]);
    m = _mm_aesenc_si128(m, self->ek[5]);
    m = _mm_aesenc_si128(m, self->ek[6]);
    m = _mm_aesenc_si128(m, self->ek[7]);
    m = _mm_aesenc_si128(m, self->ek[8]);
    m = _mm_aesenc_si128(m, self->ek[9]);
    if (self->rounds != 10) {
        /* two additional rounds for AES-192/256 */
        m = _mm_aesenc_si128(m, self->ek[10]);
        m = _mm_aesenc_si128(m, self->ek[11]);
        if (self->rounds == 14) {
            /* another two additional rounds for AES-256 */
            m = _mm_aesenc_si128(m, self->ek[12]);
            m = _mm_aesenc_si128(m, self->ek[13]);
        }
    }
    m = _mm_aesenclast_si128(m, self->ek[self->rounds]);
    _mm_storeu_si128((__m128i*) out, m);
}

static void block_decrypt(block_state* self, const u8* in, u8* out)
{
    __m128i m = _mm_loadu_si128((const __m128i*) in);
    /* first 9 rounds */
    m = _mm_xor_si128(m, self->dk[0]);
    m = _mm_aesdec_si128(m, self->dk[1]);
    m = _mm_aesdec_si128(m, self->dk[2]);
    m = _mm_aesdec_si128(m, self->dk[3]);
    m = _mm_aesdec_si128(m, self->dk[4]);
    m = _mm_aesdec_si128(m, self->dk[5]);
    m = _mm_aesdec_si128(m, self->dk[6]);
    m = _mm_aesdec_si128(m, self->dk[7]);
    m = _mm_aesdec_si128(m, self->dk[8]);
    m = _mm_aesdec_si128(m, self->dk[9]);
    if (self->rounds != 10) {
        /* two additional rounds for AES-192/256 */
        m = _mm_aesdec_si128(m, self->dk[10]);
        m = _mm_aesdec_si128(m, self->dk[11]);
        if (self->rounds == 14) {
            /* another two additional rounds for AES-256 */
            m = _mm_aesdec_si128(m, self->dk[12]);
            m = _mm_aesdec_si128(m, self->dk[13]);
        }
    }
    m = _mm_aesdeclast_si128(m, self->dk[self->rounds]);
    _mm_storeu_si128((__m128i*) out, m);
}

#include "block_template.c"