summaryrefslogtreecommitdiff
path: root/tests/examplefiles/coq_RelationClasses
diff options
context:
space:
mode:
Diffstat (limited to 'tests/examplefiles/coq_RelationClasses')
-rw-r--r--tests/examplefiles/coq_RelationClasses447
1 files changed, 0 insertions, 447 deletions
diff --git a/tests/examplefiles/coq_RelationClasses b/tests/examplefiles/coq_RelationClasses
deleted file mode 100644
index 94c51bf1..00000000
--- a/tests/examplefiles/coq_RelationClasses
+++ /dev/null
@@ -1,447 +0,0 @@
-(* -*- coding: utf-8 -*- *)
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(** * Typeclass-based relations, tactics and standard instances
-
- This is the basic theory needed to formalize morphisms and setoids.
-
- Author: Matthieu Sozeau
- Institution: LRI, CNRS UMR 8623 - University Paris Sud
-*)
-
-(* $Id: RelationClasses.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
-Require Export Coq.Classes.Init.
-Require Import Coq.Program.Basics.
-Require Import Coq.Program.Tactics.
-Require Import Coq.Relations.Relation_Definitions.
-
-(** We allow to unfold the [relation] definition while doing morphism search. *)
-
-Notation inverse R := (flip (R:relation _) : relation _).
-
-Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
-
-(** Opaque for proof-search. *)
-Typeclasses Opaque complement.
-
-(** These are convertible. *)
-
-Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
-Proof. reflexivity. Qed.
-
-(** We rebind relations in separate classes to be able to overload each proof. *)
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Class Reflexive {A} (R : relation A) :=
- reflexivity : forall x, R x x.
-
-Class Irreflexive {A} (R : relation A) :=
- irreflexivity : Reflexive (complement R).
-
-Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
-
-Class Symmetric {A} (R : relation A) :=
- symmetry : forall x y, R x y -> R y x.
-
-Class Asymmetric {A} (R : relation A) :=
- asymmetry : forall x y, R x y -> R y x -> False.
-
-Class Transitive {A} (R : relation A) :=
- transitivity : forall x y z, R x y -> R y z -> R x z.
-
-Hint Resolve @irreflexivity : ord.
-
-Unset Implicit Arguments.
-
-(** A HintDb for relations. *)
-
-Ltac solve_relation :=
- match goal with
- | [ |- ?R ?x ?x ] => reflexivity
- | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
- end.
-
-Hint Extern 4 => solve_relation : relations.
-
-(** We can already dualize all these properties. *)
-
-Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
-
-Lemma flip_Reflexive `{Reflexive A R} : Reflexive (flip R).
-Proof. tauto. Qed.
-
-Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
-
-Program Definition flip_Irreflexive `(Irreflexive A R) : Irreflexive (flip R) :=
- irreflexivity (R:=R).
-
-Program Definition flip_Symmetric `(Symmetric A R) : Symmetric (flip R) :=
- fun x y H => symmetry (R:=R) H.
-
-Program Definition flip_Asymmetric `(Asymmetric A R) : Asymmetric (flip R) :=
- fun x y H H' => asymmetry (R:=R) H H'.
-
-Program Definition flip_Transitive `(Transitive A R) : Transitive (flip R) :=
- fun x y z H H' => transitivity (R:=R) H' H.
-
-Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
-Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
-Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
-Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
-
-Definition Reflexive_complement_Irreflexive `(Reflexive A (R : relation A))
- : Irreflexive (complement R).
-Proof. firstorder. Qed.
-
-Definition complement_Symmetric `(Symmetric A (R : relation A)) : Symmetric (complement R).
-Proof. firstorder. Qed.
-
-Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
-Hint Extern 3 (Irreflexive (complement _)) => class_apply Reflexive_complement_Irreflexive : typeclass_instances.
-
-(** * Standard instances. *)
-
-Ltac reduce_hyp H :=
- match type of H with
- | context [ _ <-> _ ] => fail 1
- | _ => red in H ; try reduce_hyp H
- end.
-
-Ltac reduce_goal :=
- match goal with
- | [ |- _ <-> _ ] => fail 1
- | _ => red ; intros ; try reduce_goal
- end.
-
-Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
-
-Ltac reduce := reduce_goal.
-
-Tactic Notation "apply" "*" constr(t) :=
- first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
- refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
-
-Ltac simpl_relation :=
- unfold flip, impl, arrow ; try reduce ; program_simpl ;
- try ( solve [ intuition ]).
-
-Local Obligation Tactic := simpl_relation.
-
-(** Logical implication. *)
-
-Program Instance impl_Reflexive : Reflexive impl.
-Program Instance impl_Transitive : Transitive impl.
-
-(** Logical equivalence. *)
-
-Program Instance iff_Reflexive : Reflexive iff.
-Program Instance iff_Symmetric : Symmetric iff.
-Program Instance iff_Transitive : Transitive iff.
-
-(** Leibniz equality. *)
-
-Instance eq_Reflexive {A} : Reflexive (@eq A) := @eq_refl A.
-Instance eq_Symmetric {A} : Symmetric (@eq A) := @eq_sym A.
-Instance eq_Transitive {A} : Transitive (@eq A) := @eq_trans A.
-
-(** Various combinations of reflexivity, symmetry and transitivity. *)
-
-(** A [PreOrder] is both Reflexive and Transitive. *)
-
-Class PreOrder {A} (R : relation A) : Prop := {
- PreOrder_Reflexive :> Reflexive R ;
- PreOrder_Transitive :> Transitive R }.
-
-(** A partial equivalence relation is Symmetric and Transitive. *)
-
-Class PER {A} (R : relation A) : Prop := {
- PER_Symmetric :> Symmetric R ;
- PER_Transitive :> Transitive R }.
-
-(** Equivalence relations. *)
-
-Class Equivalence {A} (R : relation A) : Prop := {
- Equivalence_Reflexive :> Reflexive R ;
- Equivalence_Symmetric :> Symmetric R ;
- Equivalence_Transitive :> Transitive R }.
-
-(** An Equivalence is a PER plus reflexivity. *)
-
-Instance Equivalence_PER `(Equivalence A R) : PER R | 10 :=
- { PER_Symmetric := Equivalence_Symmetric ;
- PER_Transitive := Equivalence_Transitive }.
-
-(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
-
-Class Antisymmetric A eqA `{equ : Equivalence A eqA} (R : relation A) :=
- antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.
-
-Program Definition flip_antiSymmetric `(Antisymmetric A eqA R) :
- Antisymmetric A eqA (flip R).
-Proof. firstorder. Qed.
-
-(** Leibinz equality [eq] is an equivalence relation.
- The instance has low priority as it is always applicable
- if only the type is constrained. *)
-
-Program Instance eq_equivalence : Equivalence (@eq A) | 10.
-
-(** Logical equivalence [iff] is an equivalence relation. *)
-
-Program Instance iff_equivalence : Equivalence iff.
-
-(** We now develop a generalization of results on relations for arbitrary predicates.
- The resulting theory can be applied to homogeneous binary relations but also to
- arbitrary n-ary predicates. *)
-
-Local Open Scope list_scope.
-
-(* Notation " [ ] " := nil : list_scope. *)
-(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
-
-(** A compact representation of non-dependent arities, with the codomain singled-out. *)
-
-Fixpoint arrows (l : list Type) (r : Type) : Type :=
- match l with
- | nil => r
- | A :: l' => A -> arrows l' r
- end.
-
-(** We can define abbreviations for operation and relation types based on [arrows]. *)
-
-Definition unary_operation A := arrows (A::nil) A.
-Definition binary_operation A := arrows (A::A::nil) A.
-Definition ternary_operation A := arrows (A::A::A::nil) A.
-
-(** We define n-ary [predicate]s as functions into [Prop]. *)
-
-Notation predicate l := (arrows l Prop).
-
-(** Unary predicates, or sets. *)
-
-Definition unary_predicate A := predicate (A::nil).
-
-(** Homogeneous binary relations, equivalent to [relation A]. *)
-
-Definition binary_relation A := predicate (A::A::nil).
-
-(** We can close a predicate by universal or existential quantification. *)
-
-Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
- match l with
- | nil => fun f => f
- | A :: tl => fun f => forall x : A, predicate_all tl (f x)
- end.
-
-Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
- match l with
- | nil => fun f => f
- | A :: tl => fun f => exists x : A, predicate_exists tl (f x)
- end.
-
-(** Pointwise extension of a binary operation on [T] to a binary operation
- on functions whose codomain is [T].
- For an operator on [Prop] this lifts the operator to a binary operation. *)
-
-Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
- (l : list Type) : binary_operation (arrows l T) :=
- match l with
- | nil => fun R R' => op R R'
- | A :: tl => fun R R' =>
- fun x => pointwise_extension op tl (R x) (R' x)
- end.
-
-(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
-
-Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
- match l with
- | nil => fun R R' => op R R'
- | A :: tl => fun R R' =>
- forall x, pointwise_lifting op tl (R x) (R' x)
- end.
-
-(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
-
-Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
- pointwise_lifting iff l.
-
-(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
-
-Definition predicate_implication {l : list Type} :=
- pointwise_lifting impl l.
-
-(** Notations for pointwise equivalence and implication of predicates. *)
-
-Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
-Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope.
-
-Open Local Scope predicate_scope.
-
-(** The pointwise liftings of conjunction and disjunctions.
- Note that these are [binary_operation]s, building new relations out of old ones. *)
-
-Definition predicate_intersection := pointwise_extension and.
-Definition predicate_union := pointwise_extension or.
-
-Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
-Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
-
-(** The always [True] and always [False] predicates. *)
-
-Fixpoint true_predicate {l : list Type} : predicate l :=
- match l with
- | nil => True
- | A :: tl => fun _ => @true_predicate tl
- end.
-
-Fixpoint false_predicate {l : list Type} : predicate l :=
- match l with
- | nil => False
- | A :: tl => fun _ => @false_predicate tl
- end.
-
-Notation "∙⊤∙" := true_predicate : predicate_scope.
-Notation "∙⊥∙" := false_predicate : predicate_scope.
-
-(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
-
-Program Instance predicate_equivalence_equivalence : Equivalence (@predicate_equivalence l).
- Next Obligation.
- induction l ; firstorder.
- Qed.
- Next Obligation.
- induction l ; firstorder.
- Qed.
- Next Obligation.
- fold pointwise_lifting.
- induction l. firstorder.
- intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
- firstorder.
- Qed.
-
-Program Instance predicate_implication_preorder :
- PreOrder (@predicate_implication l).
- Next Obligation.
- induction l ; firstorder.
- Qed.
- Next Obligation.
- induction l. firstorder.
- unfold predicate_implication in *. simpl in *.
- intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
- Qed.
-
-(** We define the various operations which define the algebra on binary relations,
- from the general ones. *)
-
-Definition relation_equivalence {A : Type} : relation (relation A) :=
- @predicate_equivalence (_::_::nil).
-
-Class subrelation {A:Type} (R R' : relation A) : Prop :=
- is_subrelation : @predicate_implication (A::A::nil) R R'.
-
-Implicit Arguments subrelation [[A]].
-
-Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
- @predicate_intersection (A::A::nil) R R'.
-
-Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
- @predicate_union (A::A::nil) R R'.
-
-(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
-
-Set Automatic Introduction.
-
-Instance relation_equivalence_equivalence (A : Type) :
- Equivalence (@relation_equivalence A).
-Proof. exact (@predicate_equivalence_equivalence (A::A::nil)). Qed.
-
-Instance relation_implication_preorder A : PreOrder (@subrelation A).
-Proof. exact (@predicate_implication_preorder (A::A::nil)). Qed.
-
-(** *** Partial Order.
- A partial order is a preorder which is additionally antisymmetric.
- We give an equivalent definition, up-to an equivalence relation
- on the carrier. *)
-
-Class PartialOrder {A} eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
- partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
-
-(** The equivalence proof is sufficient for proving that [R] must be a morphism
- for equivalence (see Morphisms).
- It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
-
-Instance partial_order_antisym `(PartialOrder A eqA R) : ! Antisymmetric A eqA R.
-Proof with auto.
- reduce_goal.
- pose proof partial_order_equivalence as poe. do 3 red in poe.
- apply <- poe. firstorder.
-Qed.
-
-(** The partial order defined by subrelation and relation equivalence. *)
-
-Program Instance subrelation_partial_order :
- ! PartialOrder (relation A) relation_equivalence subrelation.
-
- Next Obligation.
- Proof.
- unfold relation_equivalence in *. firstorder.
- Qed.
-
-Typeclasses Opaque arrows predicate_implication predicate_equivalence
- relation_equivalence pointwise_lifting.
-
-(** Rewrite relation on a given support: declares a relation as a rewrite
- relation for use by the generalized rewriting tactic.
- It helps choosing if a rewrite should be handled
- by the generalized or the regular rewriting tactic using leibniz equality.
- Users can declare an [RewriteRelation A RA] anywhere to declare default
- relations. This is also done automatically by the [Declare Relation A RA]
- commands. *)
-
-Class RewriteRelation {A : Type} (RA : relation A).
-
-Instance: RewriteRelation impl.
-Instance: RewriteRelation iff.
-Instance: RewriteRelation (@relation_equivalence A).
-
-(** Any [Equivalence] declared in the context is automatically considered
- a rewrite relation. *)
-
-Instance equivalence_rewrite_relation `(Equivalence A eqA) : RewriteRelation eqA.
-
-(** Strict Order *)
-
-Class StrictOrder {A : Type} (R : relation A) := {
- StrictOrder_Irreflexive :> Irreflexive R ;
- StrictOrder_Transitive :> Transitive R
-}.
-
-Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
-Proof. firstorder. Qed.
-
-(** Inversing a [StrictOrder] gives another [StrictOrder] *)
-
-Lemma StrictOrder_inverse `(StrictOrder A R) : StrictOrder (inverse R).
-Proof. firstorder. Qed.
-
-(** Same for [PartialOrder]. *)
-
-Lemma PreOrder_inverse `(PreOrder A R) : PreOrder (inverse R).
-Proof. firstorder. Qed.
-
-Hint Extern 3 (StrictOrder (inverse _)) => class_apply StrictOrder_inverse : typeclass_instances.
-Hint Extern 3 (PreOrder (inverse _)) => class_apply PreOrder_inverse : typeclass_instances.
-
-Lemma PartialOrder_inverse `(PartialOrder A eqA R) : PartialOrder eqA (inverse R).
-Proof. firstorder. Qed.
-
-Hint Extern 3 (PartialOrder (inverse _)) => class_apply PartialOrder_inverse : typeclass_instances.