summaryrefslogtreecommitdiff
path: root/tests/examplefiles/example.als
blob: 3a5ab82bf89e3b78cf584b100a6f9b8f3e1b2e57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
module examples/systems/views

/*
 * Model of views in object-oriented programming.
 *
 * Two object references, called the view and the backing,
 * are related by a view mechanism when changes to the
 * backing are automatically propagated to the view. Note
 * that the state of a view need not be a projection of the
 * state of the backing; the keySet method of Map, for
 * example, produces two view relationships, and for the
 * one in which the map is modified by changes to the key
 * set, the value of the new map cannot be determined from
 * the key set. Note that in the iterator view mechanism,
 * the iterator is by this definition the backing object,
 * since changes are propagated from iterator to collection
 * and not vice versa. Oddly, a reference may be a view of
 * more than one backing: there can be two iterators on the
 * same collection, eg. A reference cannot be a view under
 * more than one view type.
 *
 * A reference is made dirty when it is a backing for a view
 * with which it is no longer related by the view invariant.
 * This usually happens when a view is modified, either
 * directly or via another backing. For example, changing a
 * collection directly when it has an iterator invalidates
 * it, as does changing the collection through one iterator
 * when there are others.
 *
 * More work is needed if we want to model more closely the
 * failure of an iterator when its collection is invalidated.
 *
 * As a terminological convention, when there are two
 * complementary view relationships, we will give them types
 * t and t'. For example, KeySetView propagates from map to
 * set, and KeySetView' propagates from set to map.
 *
 * author: Daniel Jackson
 */

open util/ordering[State] as so
open util/relation as rel

sig Ref {}
sig Object {}

-- t->b->v in views when v is view of type t of backing b
-- dirty contains refs that have been invalidated
sig State {
  refs: set Ref,
  obj: refs -> one Object,
  views: ViewType -> refs -> refs,
  dirty: set refs
--  , anyviews: Ref -> Ref -- for visualization
  }
-- {anyviews = ViewType.views}

sig Map extends Object {
  keys: set Ref,
  map: keys -> one Ref
  }{all s: State |  keys + Ref.map in s.refs}
sig MapRef extends Ref {}
fact {State.obj[MapRef] in Map}

sig Iterator extends Object {
  left, done: set Ref,
  lastRef: lone done
  }{all s: State | done + left + lastRef in s.refs}
sig IteratorRef extends Ref {}
fact {State.obj[IteratorRef] in Iterator}

sig Set extends Object {
  elts: set Ref
  }{all s: State | elts in s.refs}
sig SetRef extends Ref {}
fact {State.obj[SetRef] in Set}

abstract sig ViewType {}
one sig KeySetView, KeySetView', IteratorView extends ViewType {}
fact ViewTypes {
  State.views[KeySetView] in MapRef -> SetRef
  State.views[KeySetView'] in SetRef -> MapRef
  State.views[IteratorView] in IteratorRef -> SetRef
  all s: State | s.views[KeySetView] = ~(s.views[KeySetView'])
  }

/**
 * mods is refs modified directly or by view mechanism
 * doesn't handle possibility of modifying an object and its view at once?
 * should we limit frame conds to non-dirty refs?
 */
pred modifies [pre, post: State, rs: set Ref] {
  let vr = pre.views[ViewType], mods = rs.*vr {
    all r: pre.refs - mods | pre.obj[r] = post.obj[r]
    all b: mods, v: pre.refs, t: ViewType |
      b->v in pre.views[t] => viewFrame [t, pre.obj[v], post.obj[v], post.obj[b]]
    post.dirty = pre.dirty +
      {b: pre.refs | some v: Ref, t: ViewType |
          b->v in pre.views[t] && !viewFrame [t, pre.obj[v], post.obj[v], post.obj[b]]
      }
    }
  }

pred allocates [pre, post: State, rs: set Ref] {
  no rs & pre.refs
  post.refs = pre.refs + rs
  }

/** 
 * models frame condition that limits change to view object from v to v' when backing object changes to b'
 */
pred viewFrame [t: ViewType, v, v', b': Object] {
  t in KeySetView => v'.elts = dom [b'.map]
  t in KeySetView' => b'.elts = dom [v'.map]
  t in KeySetView' => (b'.elts) <: (v.map) = (b'.elts) <: (v'.map)
  t in IteratorView => v'.elts = b'.left + b'.done
  }

pred MapRef.keySet [pre, post: State, setRefs: SetRef] {
  post.obj[setRefs].elts = dom [pre.obj[this].map]
  modifies [pre, post, none]
  allocates [pre, post, setRefs]
  post.views = pre.views + KeySetView->this->setRefs + KeySetView'->setRefs->this
  }

pred MapRef.put [pre, post: State, k, v: Ref] {
  post.obj[this].map = pre.obj[this].map ++ k->v
  modifies [pre, post, this]
  allocates [pre, post, none]
  post.views = pre.views
  }

pred SetRef.iterator [pre, post: State, iterRef: IteratorRef] {
  let i = post.obj[iterRef] {
    i.left = pre.obj[this].elts
    no i.done + i.lastRef
    }
  modifies [pre,post,none]
  allocates [pre, post, iterRef]
  post.views = pre.views + IteratorView->iterRef->this
  }

pred IteratorRef.remove [pre, post: State] {
  let i = pre.obj[this], i' = post.obj[this] {
    i'.left = i.left
    i'.done = i.done - i.lastRef
    no i'.lastRef
    }
  modifies [pre,post,this]
  allocates [pre, post, none]
  pre.views = post.views
  }

pred IteratorRef.next [pre, post: State, ref: Ref] {
  let i = pre.obj[this], i' = post.obj[this] {
    ref in i.left
    i'.left = i.left - ref
    i'.done = i.done + ref
    i'.lastRef = ref
    }
  modifies [pre, post, this]
  allocates [pre, post, none]
  pre.views = post.views
  }

pred IteratorRef.hasNext [s: State] {
  some s.obj[this].left
  }

assert zippishOK {
  all
    ks, vs: SetRef,
    m: MapRef,
    ki, vi: IteratorRef,
    k, v: Ref |
    let s0=so/first,
    s1=so/next[s0],
    s2=so/next[s1],
    s3=so/next[s2],
    s4=so/next[s3],
    s5=so/next[s4],
    s6=so/next[s5],
    s7=so/next[s6] |
  ({
    precondition [s0, ks, vs, m]
    no s0.dirty
    ks.iterator [s0, s1, ki]
    vs.iterator [s1, s2, vi]
    ki.hasNext [s2]
    vi.hasNext [s2]
    ki.this/next [s2, s3, k]
    vi.this/next [s3, s4, v]
    m.put [s4, s5, k, v]
    ki.remove [s5, s6]
    vi.remove [s6, s7]
  } => no State.dirty)
  }

pred precondition [pre: State, ks, vs, m: Ref] {
  // all these conditions and other errors discovered in scope of 6 but 8,3
  // in initial state, must have view invariants hold
  (all t: ViewType, b, v: pre.refs |
    b->v in pre.views[t] => viewFrame [t, pre.obj[v], pre.obj[v], pre.obj[b]])
  // sets are not aliases
--  ks != vs
  // sets are not views of map
--  no (ks+vs)->m & ViewType.pre.views
  // no iterator currently on either set
--  no Ref->(ks+vs) & ViewType.pre.views
  }

check zippishOK for 6 but 8 State, 3 ViewType expect 1

/** 
 * experiment with controlling heap size
 */
fact {all s: State | #s.obj < 5}