summaryrefslogtreecommitdiff
path: root/tests/examplefiles/test.lean
blob: a7b7e261790fc6b66862144ace6af5413a9aea0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/-
Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
by Robert L. Constable and Anne Trostle
http://www.nuprl.org/MathLibrary/LogicalInvestigations/
-/
import logic

-- 2. The Minimal Implicational Calculus
theorem thm1 {A B : Prop} : A → B → A :=
assume Ha Hb, Ha

theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C) :=
assume Hab Habc Ha,
  Habc Ha (Hab Ha)

theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C) :=
assume Hab Hbc Ha,
  Hbc (Hab Ha)

-- 3. False Propositions and Negation
theorem thm4 {P Q : Prop} : ¬P → P → Q :=
assume Hnp Hp,
  absurd Hp Hnp

theorem thm5 {P : Prop} : P → ¬¬P :=
assume (Hp : P) (HnP : ¬P),
  absurd Hp HnP

theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P) :=
assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P),
  have Hq : Q, from Hpq Hp,
  show false, from absurd Hq Hnq

theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q) :=
assume Hpnp Hp,
  absurd Hp (Hpnp Hp)

theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q) :=
assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q),
  -- Rermak we don't even need the hypothesis Hp
  have H : P → Q, from assume H', Hq,
  absurd H Hn

-- 4. Conjunction and Disjunction
theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P) :=
assume (em : P ∨ ¬P) (Hnn : ¬¬P),
  or_elim em
    (assume Hp, Hp)
    (assume Hn, absurd Hn Hnn)

theorem thm10 {P : Prop} : ¬¬(P ∨ ¬P) :=
assume Hnem : ¬(P ∨ ¬P),
  have Hnp : ¬P, from
    assume Hp : P,
      have Hem : P ∨ ¬P, from or_inl Hp,
      absurd Hem Hnem,
  have Hem : P ∨ ¬P, from or_inr Hnp,
  absurd Hem Hnem

theorem thm11 {P Q : Prop} : ¬P ∨ ¬Q → ¬(P ∧ Q) :=
assume (H : ¬P ∨ ¬Q) (Hn : P ∧ Q),
  or_elim H
    (assume Hnp : ¬P, absurd (and_elim_left Hn) Hnp)
    (assume Hnq : ¬Q, absurd (and_elim_right Hn) Hnq)

theorem thm12 {P Q : Prop} : ¬(P ∨ Q) → ¬P ∧ ¬Q :=
assume H : ¬(P ∨ Q),
  have Hnp : ¬P, from assume Hp : P, absurd (or_inl Hp) H,
  have Hnq : ¬Q, from assume Hq : Q, absurd (or_inr Hq) H,
  and_intro Hnp Hnq

theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P ∨ Q) :=
assume (H : ¬P ∧ ¬Q) (Hn : P ∨ Q),
  or_elim Hn
    (assume Hp : P, absurd Hp (and_elim_left H))
    (assume Hq : Q, absurd Hq (and_elim_right H))

theorem thm14 {P Q : Prop} : ¬P ∨ Q → P → Q :=
assume (Hor : ¬P ∨ Q) (Hp : P),
  or_elim Hor
    (assume Hnp : ¬P, absurd Hp Hnp)
    (assume Hq : Q, Hq)

theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P ∨ Q) :=
assume (Hpq : P → Q) (Hn : ¬(¬P ∨ Q)),
  have H1 : ¬¬P ∧ ¬Q, from thm12 Hn,
  have Hnp : ¬P, from mt Hpq (and_elim_right H1),
  absurd Hnp (and_elim_left H1)

theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)) → ¬P ∨ Q :=
assume H : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)),
  have Hpq : P → Q, from and_elim_left H,
  or_elim (and_elim_right H)
    (assume Hem1 : P ∨ ¬P, or_elim Hem1
      (assume Hp : P, or_inr (Hpq Hp))
      (assume Hnp : ¬P, or_inl Hnp))
    (assume Hem2 : Q ∨ ¬Q, or_elim Hem2
      (assume Hq : Q, or_inr Hq)
      (assume Hnq : ¬Q, or_inl (mt Hpq Hnq)))

-- 5. First-Order Logic: All and Exists
section
parameters {T : Type} {C : Prop} {P : T → Prop}
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x) :=
assume H : C → ∀x, P x,
  take x : T, assume Hc : C,
  H Hc x

theorem thm17b : (∀x, C → P x) → (C → ∀x, P x) :=
assume (H : ∀x, C → P x) (Hc : C),
  take x : T,
  H x Hc

theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C) :=
assume H : (∃x, P x) → C,
  take x, assume Hp : P x,
  have Hex : ∃x, P x, from exists_intro x Hp,
  H Hex

theorem thm18b : (∀x, P x → C) → (∃x, P x) → C :=
assume (H1 : ∀x, P x → C) (H2 : ∃x, P x),
  obtain (w : T) (Hw : P w), from H2,
  H1 w Hw

theorem thm19a : (C ∨ ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x) :=
assume (Hem : C ∨ ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x),
  or_elim Hem
    (assume Hc : C,
      obtain (w : T) (Hw : P w), from H1 Hc,
      have Hr : C → P w, from assume Hc, Hw,
      exists_intro w Hr)
    (assume Hnc : ¬C,
      obtain (w : T) (Hw : true), from Hin,
      have Hr : C → P w, from assume Hc, absurd Hc Hnc,
      exists_intro w Hr)

theorem thm19b : (∃x, C → P x) → C → (∃x, P x) :=
assume (H : ∃x, C → P x) (Hc : C),
  obtain (w : T) (Hw : C → P w), from H,
  exists_intro w (Hw Hc)

theorem thm20a : (C ∨ ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C) :=
assume Hem Hin Hnf H,
  or_elim Hem
    (assume Hc : C,
      obtain (w : T) (Hw : true), from Hin,
      exists_intro w (assume H : P w, Hc))
    (assume Hnc : ¬C,
      have H1 : ¬(∀x, P x), from mt H Hnc,
      have H2 : ∃x, ¬P x, from Hnf H1,
      obtain (w : T) (Hw : ¬P w), from H2,
      exists_intro w (assume H : P w, absurd H Hw))

theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C :=
assume Hex Hall,
  obtain (w : T) (Hw : P w → C), from Hex,
  Hw (Hall w)

theorem thm21a : (∃x : T, true) → ((∃x, P x) ∨ C) → (∃x, P x ∨ C) :=
assume Hin H,
  or_elim H
    (assume Hex : ∃x, P x,
      obtain (w : T) (Hw : P w), from Hex,
      exists_intro w (or_inl Hw))
    (assume Hc  : C,
      obtain (w : T) (Hw : true), from Hin,
      exists_intro w (or_inr Hc))

theorem thm21b : (∃x, P x ∨ C) → ((∃x, P x) ∨ C) :=
assume H,
  obtain (w : T) (Hw : P w ∨ C), from H,
  or_elim Hw
    (assume H : P w, or_inl (exists_intro w H))
    (assume Hc : C, or_inr Hc)

theorem thm22a : (∀x, P x) ∨ C → ∀x, P x ∨ C :=
assume H, take x,
  or_elim H
    (assume Hl, or_inl (Hl x))
    (assume Hr, or_inr Hr)

theorem thm22b : (C ∨ ¬C) → (∀x, P x ∨ C) → ((∀x, P x) ∨ C) :=
assume Hem H1,
  or_elim Hem
    (assume Hc : C,   or_inr Hc)
    (assume Hnc : ¬C,
      have Hx : ∀x, P x, from
        take x,
        have H1 : P x ∨ C, from H1 x,
        resolve_left H1 Hnc,
      or_inl Hx)

theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C) :=
assume H,
  have Hex : ∃x, P x, from and_elim_left H,
  have Hc : C, from and_elim_right H,
  obtain (w : T) (Hw : P w), from Hex,
  exists_intro w (and_intro Hw Hc)

theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C :=
assume H,
  obtain (w : T) (Hw : P w ∧ C), from H,
  have Hex : ∃x, P x, from exists_intro w (and_elim_left Hw),
  and_intro Hex (and_elim_right Hw)

theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C) :=
assume H, take x,
  and_intro (and_elim_left H x) (and_elim_right H)

theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C :=
assume Hin H,
  obtain (w : T) (Hw : true), from Hin,
  have Hc : C, from and_elim_right (H w),
  have Hx : ∀x, P x, from take x, and_elim_left (H x),
  and_intro Hx Hc

end -- of section