summaryrefslogtreecommitdiff
path: root/doc/pyOpenSSL.tex
blob: 9039856b2c32907d8f0a9d2fef143fd43659fdc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
\documentclass{howto}

\title{Python OpenSSL Manual}

\release{0.6}

\author{Martin Sjögren}
\authoraddress{\email{martin@strakt.com}}

\usepackage[english]{babel}
\usepackage[T1]{fontenc}

\begin{document}

\maketitle

\begin{abstract}
\noindent
This module is a rather thin wrapper around (a subset of) the OpenSSL library.
With thin wrapper I mean that a lot of the object methods do nothing more than
calling a corresponding function in the OpenSSL library.
\end{abstract}

\tableofcontents


\section{Introduction \label{intro}}

The reason this module exists at all is that the SSL support in the socket
module in the Python 2.1 distribution (which is what we used, of course I
cannot speak for later versions) is severely limited.

When asking about SSL on the comp.lang.python newsgroup (or on
python-list@python.org) people usually pointed you to the M2Crypto package.
The M2Crypto.SSL module does implement a lot of OpenSSL's functionality but
unfortunately its error handling system does not seem to be finished,
especially for non-blocking I/O.  I think that much of the reason for this
is that M2Crypto\footnote{See \url{http://www.post1.com/home/ngps/m2/}} is
developed using SWIG\footnote{See \url{http://swig.sourceforge.net/}}.  This
makes it awkward to create functions that e.g. can return both an integer and
NULL since (as far as I know) you basically write C functions and SWIG makes
wrapper functions that parses the Python argument list and calls your C
function, and finally transforms your return value to a Python object.


\section{Building and Installing \label{building}}

These instructions can also be found in the file \verb|INSTALL|.

I have tested this on Debian Linux systems (woody and sid), Solaris 2.6 and
2.7. Others have successfully compiled it on Windows and NT.

\subsection{Building the Module on a Unix System \label{building-unix}}

pyOpenSSL uses distutils, so there really shouldn't be any problems. To build
the library:
\begin{verbatim}
python setup.py build
\end{verbatim}

If your OpenSSL header files aren't in \verb|/usr/include|, you may need to
supply the \verb|-I| flag to let the setup script know where to look. The same
goes for the libraries of course, use the \verb|-L| flag. Note that
\verb|build| won't accept these flags, so you have to run first
\verb|build_ext| and then \verb|build|! Example:
\begin{verbatim}
python setup.py build_ext -I/usr/local/ssl/include -L/usr/local/ssl/lib
python setup.py build
\end{verbatim}

Now you should have a directory called \verb|OpenSSL| that contains e.g.
\verb|SSL.so| and \verb|__init__.py| somewhere in the build dicrectory,
so just:
\begin{verbatim}
python setup.py install
\end{verbatim}

If you, for some arcane reason, don't want the module to appear in the
\verb|site-packages| directory, use the \verb|--prefix| option.

You can, of course, do
\begin{verbatim}
python setup.py --help
\end{verbatim}

to find out more about how to use the script.

\subsection{Building the Module on a Windows System \label{building-windows}}

Big thanks to Itamar Shtull-Trauring and Oleg Orlov for their help with
Windows build instructions.  Same as for Unix systems, we have to separate
the \verb|build_ext| and the \verb|build|.

Building the library:

\begin{verbatim}
setup.py build_ext -I ...\openssl\inc32 -L ...\openssl\out32dll
setup.py build
\end{verbatim}

Where \verb|...\openssl| is of course the location of your OpenSSL installation.

Installation is the same as for Unix systems:
\begin{verbatim}
setup.py install
\end{verbatim}

And similarily, you can do
\begin{verbatim}
setup.py --help
\end{verbatim}

to get more information.


\section{\module{OpenSSL} --- Python interface to OpenSSL \label{openssl}}

\declaremodule{extension}{OpenSSL}
\modulesynopsis{Python interface to OpenSSL}

This package provides a high-level interface to the functions in the
OpenSSL library. The following modules are defined:

\begin{datadesc}{crypto}
Generic cryptographic module. Note that if anything is incomplete, this module is!
\end{datadesc}

\begin{datadesc}{rand}
An interface to the OpenSSL pseudo random number generator.
\end{datadesc}

\begin{datadesc}{SSL}
An interface to the SSL-specific parts of OpenSSL.
\end{datadesc}


% % % crypto moduleOpenSSL

\subsection{\module{crypto} --- Generic cryptographic module \label{openssl-crypto}}

\declaremodule{extension}{crypto}
\modulesynopsis{Generic cryptographic module}

\begin{datadesc}{X509Type}
A Python type object representing the X509 object type.
\end{datadesc}

\begin{funcdesc}{X509}{}
Factory function that creates an X509 object.
\end{funcdesc}

\begin{datadesc}{X509NameType}
A Python type object representing the X509Name object type.
\end{datadesc}

\begin{funcdesc}{X509Name}{x509name}
Factory function that creates a copy of \var{x509name}.
\end{funcdesc}

\begin{datadesc}{X509ReqType}
A Python type object representing the X509Req object type.
\end{datadesc}

\begin{funcdesc}{X509Req}{}
Factory function that creates an X509Req object.
\end{funcdesc}

\begin{datadesc}{X509StoreType}
A Python type object representing the X509Store object type.
\end{datadesc}

\begin{datadesc}{PKeyType}
A Python type object representing the PKey object type.
\end{datadesc}

\begin{funcdesc}{PKey}{}
Factory function that creates a PKey object.
\end{funcdesc}

\begin{datadesc}{PKCS7Type}
A Python type object representing the PKCS7 object type.
\end{datadesc}

\begin{datadesc}{PKCS12Type}
A Python type object representing the PKCS12 object type.
\end{datadesc}

\begin{datadesc}{X509ExtensionType}
A Python type object representing the X509Extension object type.
\end{datadesc}

\begin{funcdesc}{X509Extension}{typename, critical, value}
Factory function that creates a X509Extension object.
\end{funcdesc}

\begin{datadesc}{NetscapeSPKIType}
A Python type object representing the NetscapeSPKI object type.
\end{datadesc}

\begin{funcdesc}{NetscapeSPKI}{\optional{enc}}
Factory function that creates a NetscapeSPKI object. If the \var{enc} argument
is present, it should be a base64-encoded string representing a NetscapeSPKI
object, as returned by the \method{b64_encode} method.
\end{funcdesc}

\begin{datadesc}{FILETYPE_PEM}
\dataline{FILETYPE_ASN1}
File type constants.
\end{datadesc}

\begin{datadesc}{TYPE_RSA}
\dataline{TYPE_DSA}
Key type constants.
\end{datadesc}

\begin{excdesc}{Error}
Generic exception used in the \module{crypto} module.
\end{excdesc}

\begin{funcdesc}{dump_certificate}{type, cert}
Dump the certificate \var{cert} into a buffer string encoded with the type
\var{type}.
\end{funcdesc}

\begin{funcdesc}{dump_certificate_request}{type, req}
Dump the certificate request \var{req} into a buffer string encoded with the
type \var{type}.
\end{funcdesc}

\begin{funcdesc}{dump_privatekey}{type, pkey\optional{, cipher, passphrase}}
Dump the private key \var{pkey} into a buffer string encoded with the type
\var{type}, optionally (if \var{type} is \constant{FILETYPE_PEM}) encrypting it
using \var{cipher} and \var{passphrase}.

\var{passphrase} must be either a string or a callback for providing the
pass phrase.
\end{funcdesc}

\begin{funcdesc}{load_certificate}{type, buffer}
Load a certificate (X509) from the string \var{buffer} encoded with the
type \var{type}.
\end{funcdesc}

\begin{funcdesc}{load_certificate_request}{type, buffer}
Load a certificate request (X509Req) from the string \var{buffer} encoded with
the type \var{type}.
\end{funcdesc}

\begin{funcdesc}{load_privatekey}{type, buffer\optional{, passphrase}}
Load a private key (PKey) from the string \var{buffer} encoded with
the type \var{type} (must be one of \constant{FILETYPE_PEM} and
\constant{FILETYPE_ASN1}).

\var{passphrase} must be either a string or a callback for providing the
pass phrase.
\end{funcdesc}

\begin{funcdesc}{load_pkcs7_data}{type, buffer}
Load pkcs7 data from the string \var{buffer} encoded with the type \var{type}.
\end{funcdesc}

\begin{funcdesc}{load_pkcs12}{buffer\optional{, passphrase}}
Load pkcs12 data from the string \var{buffer}. If the pkcs12 structure is
encrypted, a \var{passphrase} must be included.
\end{funcdesc}


\subsubsection{X509 objects \label{openssl-x509}}

X509 objects have the following methods:

\begin{methoddesc}[X509]{get_issuer}{}
Return a \em{borrowed reference} to a X509Name object representing the issuer
of the certificate.  When the corresponding X509 or X509Req object is
destroyed, this object will be invalid!
\end{methoddesc}

\begin{methoddesc}[X509]{get_pubkey}{}
Return a PKey object representing the public key of the certificate.
\end{methoddesc}

\begin{methoddesc}[X509]{get_serial_number}{}
Return the certificate serial number.
\end{methoddesc}

\begin{methoddesc}[X509]{get_subject}{}
Return a \em{borrowed reference} to a X509Name object representing the subject
of the certificate.  When the corresponding X509 or X509Req object is
destroyed, this object will be invalid!
\end{methoddesc}

\begin{methoddesc}[X509]{get_version}{}
Return the certificate version.
\end{methoddesc}

\begin{methoddesc}[X509]{gmtime_adj_notBefore}{time}
Adjust the timestamp (in GMT) when the certificate starts being valid.
\end{methoddesc}

\begin{methoddesc}[X509]{gmtime_adj_notAfter}{time}
Adjust the timestamp (in GMT) when the certificate stops being valid.
\end{methoddesc}

\begin{methoddesc}[X509]{has_expired}{}
Checks the certificate's time stamp against current time. Returns true if the
certificate has expired and false otherwise.
\end{methoddesc}

\begin{methoddesc}[X509]{set_issuer}{issuer}
Set the issuer of the certificate to \var{issuer}.
\end{methoddesc}

\begin{methoddesc}[X509]{set_pubkey}{pkey}
Set the public key of the certificate to \var{pkey}.
\end{methoddesc}

\begin{methoddesc}[X509]{set_serial_number}{serialno}
Set the serial number of the certificate to \var{serialno}.
\end{methoddesc}

\begin{methoddesc}[X509]{set_subject}{subject}
Set the subject of the certificate to \var{subject}.
\end{methoddesc}

\begin{methoddesc}[X509]{set_version}{version}
Set the certificate version to \var{version}.
\end{methoddesc}

\begin{methoddesc}[X509]{sign}{pkey, digest}
Sign the certificate, using the key \var{pkey} and the message digest algorithm
identified by the string \var{digest}.
\end{methoddesc}

\begin{methoddesc}[X509]{subject_name_hash}{}
Return the hash of the certificate subject.
\end{methoddesc}

\begin{methoddesc}[X509]{digest}{digest_name}
Return a digest of the certificate, using the \var{digest_name} method.
\end{methoddesc}

\begin{methoddesc}[X509]{add_extensions}{extensions}
Add the extensions in the sequence \var{extensions} to the certificate.
\end{methoddesc}

\subsubsection{X509Name objects \label{openssl-x509name}}

X509Name objects have the following members:

\begin{memberdesc}[X509Name]{countryName}
The country of the entity. \code{C} may be used as an alias for
\code{countryName}.
\end{memberdesc}

\begin{memberdesc}[X509Name]{stateOrProvinceName}
The state or province of the entity. \code{ST} may be used as an alias for
\code{stateOrProvinceName}·
\end{memberdesc}

\begin{memberdesc}[X509Name]{localityName}
The locality of the entity. \code{L} may be used as an alias for
\code{localityName}.
\end{memberdesc}

\begin{memberdesc}[X509Name]{organizationName}
The organization name of the entity. \code{O} may be used as an alias for
\code{organizationName}.
\end{memberdesc}

\begin{memberdesc}[X509Name]{organizationalUnitName}
The organizational unit of the entity. \code{OU} may be used as an alias for
\code{organizationalUnitName}.
\end{memberdesc}

\begin{memberdesc}[X509Name]{commonName}
The common name of the entity. \code{CN} may be used as an alias for
\code{commonName}.
\end{memberdesc}

\begin{memberdesc}[X509Name]{emailAddress}
The e-mail address of the entity.
\end{memberdesc}

\subsubsection{X509Req objects \label{openssl-x509req}}

X509Req objects have the following methods:

\begin{methoddesc}[X509Req]{get_pubkey}{}
Return a PKey object representing the public key of the certificate request.
\end{methoddesc}

\begin{methoddesc}[X509Req]{get_subject}{}
Return a \em{borrowed reference} to a X509Name object representing the subject
of the certificate.  When the corresponding X509 or X509Req object is
destroyed, this object will be invalid!
\end{methoddesc}

\begin{methoddesc}[X509Req]{set_pubkey}{pkey}
Set the public key of the certificate request to \var{pkey}.
\end{methoddesc}

\begin{methoddesc}[X509Req]{sign}{pkey, digest}
Sign the certificate request, using the key \var{pkey} and the message digest
algorithm identified by the string \var{digest}.
\end{methoddesc}

\begin{methoddesc}[X509Req]{verify}{pkey}
Verify a certificate request using the public key \var{pkey}.
\end{methoddesc}

\subsubsection{X509Store objects \label{openssl-x509store}}

The X509Store object has currently just one method:

\begin{methoddesc}[X509Store]{add_cert}{cert}
Add the certificate \var{cert} to the certificate store.
\end{methoddesc}

\subsubsection{PKey objects \label{openssl-pkey}}

The PKey object has the following methods:

\begin{methoddesc}[PKey]{bits}{}
Return the number of bits of the key.
\end{methoddesc}

\begin{methoddesc}[PKey]{generate_key}{type, bits}
Generate a public/private key pair of the type \var{type} (one of
\constant{TYPE_RSA} and \constant{TYPE_DSA}) with the size \var{bits}.
\end{methoddesc}

\begin{methoddesc}[PKey]{type}{}
Return the type of the key.
\end{methoddesc}

\subsubsection{PKCS7 objects \label{openssl-pkcs7}}

PKCS7 objects have the following methods:

\begin{methoddesc}[PKCS7]{type_is_signed}{}
FIXME
\end{methoddesc}

\begin{methoddesc}[PKCS7]{type_is_enveloped}{}
FIXME
\end{methoddesc}

\begin{methoddesc}[PKCS7]{type_is_signedAndEnveloped}{}
FIXME
\end{methoddesc}

\begin{methoddesc}[PKCS7]{type_is_data}{}
FIXME
\end{methoddesc}

\begin{methoddesc}[PKCS7]{get_type_name}{}
Get the type name of the PKCS7.
\end{methoddesc}

\subsubsection{PKCS12 objects \label{openssl-pkcs12}}

PKCS12 objects have the following methods:

\begin{methoddesc}[PKCS12]{get_certificate}{}
Return certificate portion of the PKCS12 structure.
\end{methoddesc}

\begin{methoddesc}[PKCS12]{get_privatekey}{}
Return private key portion of the PKCS12 structure
\end{methoddesc}

\begin{methoddesc}[PKCS12]{get_ca_certificates}{}
Return CA certificates within the PKCS12 object as a tuple. Returns
None if no CA certificates are present.
\end{methoddesc}

\subsubsection{X509Extension objects \label{openssl-509ext}}

X509Extension objects currently only have one method:

\begin{methoddesc}[X509Extension]{get_critical}{}
Return the critical field of the extension object.
\end{methoddesc}

\subsubsection{NetscapeSPKI objects \label{openssl-netscape-spki}}

NetscapeSPKI objects have the following methods:

\begin{methoddesc}[NetscapeSPKI]{b64_encode}{}
Return a base64-encoded string representation of the object.
\end{methoddesc}

\begin{methoddesc}[NetscapeSPKI]{get_pubkey}{}
Return the public key of object.
\end{methoddesc}

\begin{methoddesc}[NetscapeSPKI]{set_pubkey}{key}
Set the public key of the object to \var{key}.
\end{methoddesc}

\begin{methoddesc}[NetscapeSPKI]{sign}{key, digest_name}
Sign the NetscapeSPKI object using the given \var{key} and \var{digest_name}.
\end{methoddesc}

\begin{methoddesc}[NetscapeSPKI]{verify}{key}
Verify the NetscapeSPKI object using the given \var{key}.
\end{methoddesc}


% % % rand module

\subsection{\module{rand} --- An interface to the OpenSSL pseudo random number generator \label{openssl-rand}}

\declaremodule{extension}{rand}
\modulesynopsis{An interface to the OpenSSL pseudo random number generator}

This module handles the OpenSSL pseudo random number generator (PRNG) and
declares the following:

\begin{funcdesc}{add}{string, entropy}
Mix bytes from \var{string} into the PRNG state. The \var{entropy} argument is
(the lower bound of) an estimate of how much randomness is contained in
\var{string}, measured in bytes. For more information, see e.g. \rfc{1750}.
\end{funcdesc}

\begin{funcdesc}{egd}{path\optional{, bytes}}
Query the Entropy Gathering Daemon\footnote{See
\url{http://www.lothar.com/tech/crypto/}} on socket \var{path} for \var{bytes}
bytes of random data and and uses \function{add} to seed the PRNG. The default
value of \var{bytes} is 255.
\end{funcdesc}

\begin{funcdesc}{load_file}{path\optional{, bytes}}
Read \var{bytes} bytes (or all of it, if \var{bytes} is negative) of data from
the file \var{path} to seed the PRNG. The default value of \var{bytes} is -1.
\end{funcdesc}

\begin{funcdesc}{screen}{}
Add the current contents of the screen to the PRNG state.
Availability: Windows.
\end{funcdesc}

\begin{funcdesc}{seed}{string}
This is equivalent to calling \function{add} with \var{entropy} as the length
of the string.
\end{funcdesc}

\begin{funcdesc}{status}{}
Returns true if the PRNG has been seeded with enough data, and false otherwise.
\end{funcdesc}

\begin{funcdesc}{write_file}{path}
Write a number of random bytes (currently 1024) to the file \var{path}. This
file can then be used with \function{load_file} to seed the PRNG again.
\end{funcdesc}



% % % SSL module

\subsection{\module{SSL} --- An interface to the SSL-specific parts of OpenSSL \label{openssl-ssl}}

\declaremodule{extension}{SSL}
\modulesynopsis{An interface to the SSL-specific parts of OpenSSL}

This module handles things specific to SSL. There are two objects defined:
Context, Connection.

\begin{datadesc}{SSLv2_METHOD}
\dataline{SSLv3_METHOD}
\dataline{SSLv23_METHOD}
\dataline{TLSv1_METHOD}
These constants represent the different SSL methods to use when creating a
context object.
\end{datadesc}

\begin{datadesc}{VERIFY_NONE}
\dataline{VERIFY_PEER}
\dataline{VERIFY_FAIL_IF_NO_PEER_CERT}
These constants represent the verification mode used by the Context
object's \method{set_verify} method.
\end{datadesc}

\begin{datadesc}{FILETYPE_PEM}
\dataline{FILETYPE_ASN1}
File type constants used with the \method{use_certificate_file} and
\method{use_privatekey_file} methods of Context objects.
\end{datadesc}

\begin{datadesc}{OP_SINGLE_DH_USE}
\dataline{OP_EPHEMERAL_RSA}
\dataline{OP_NO_SSLv2}
\dataline{OP_NO_SSLv3}
\dataline{OP_NO_TLSv1}
Constants used with \method{set_options} of Context objects.
\constant{OP_SINGLE_DH_USE} means to always create a new key when using ephemeral
Diffie-Hellman. \constant{OP_EPHEMERAL_RSA} means to always use ephemeral RSA keys
when doing RSA operations. \constant{OP_NO_SSLv2}, \constant{OP_NO_SSLv3} and
\constant{OP_NO_TLSv1} means to disable those specific protocols. This is
interesting if you're using e.g. \constant{SSLv23_METHOD} to get an SSLv2-compatible
handshake, but don't want to use SSLv2.
\end{datadesc}

\begin{datadesc}{ContextType}
A Python type object representing the Context object type.
\end{datadesc}

\begin{funcdesc}{Context}{method}
Factory function that creates a new Context object given an SSL method. The
method should be \constant{SSLv2_METHOD}, \constant{SSLv3_METHOD},
\constant{SSLv23_METHOD} or \constant{TLSv1_METHOD}.
\end{funcdesc}

\begin{datadesc}{ConnectionType}
A Python type object representing the Connection object type.
\end{datadesc}

\begin{funcdesc}{Connection}{context, socket}
Factory fucnction that creates a new Connection object given an SSL context and
a socket \footnote{Actually, all that is required is an object that
\emph{behaves} like a socket, you could even use files, even though it'd be
tricky to get the handshakes right!} object.
\end{funcdesc}

\begin{excdesc}{Error}
This exception is used as a base class for the other SSL-related
exceptions, but may also be raised directly.

Whenever this exception is raised directly, it has a list of error messages
from the OpenSSL error queue, where each item is a tuple \code{(\var{lib},
\var{function}, \var{reason})}. Here \var{lib}, \var{function} and \var{reason}
are all strings, describing where and what the problem is. See \manpage{err}{3}
for more information.
\end{excdesc}

\begin{excdesc}{ZeroReturnError}
This exception matches the error return code \code{SSL_ERROR_ZERO_RETURN}, and
is raised when the SSL Connection has been closed. In SSL 3.0 and TLS 1.0, this
only occurs if a closure alert has occurred in the protocol, i.e. the
connection has been closed cleanly. Note that this does not necessarily
mean that the transport layer (e.g. a socket) has been closed.

It may seem a little strange that this is an exception, but it does match an
\code{SSL_ERROR} code, and is very convenient.
\end{excdesc}

\begin{excdesc}{WantReadError}
The operation did not complete; the same I/O method should be called again
later, with the same arguments. Any I/O method can lead to this since new
handshakes can occur at any time.
\end{excdesc}

\begin{excdesc}{WantWriteError}
See \exception{WantReadError}.
\end{excdesc}

\begin{excdesc}{WantX509LookupError}
The operation did not complete because an application callback has asked to be
called again. The I/O method should be called again later, with the same
arguments. Note: This won't occur in this version, as there are no such
callbacks in this version.
\end{excdesc}

\begin{excdesc}{SysCallError}
The \exception{SysCallError} occurs when there's an I/O error and OpenSSL's
error queue does not contain any information. This can mean two things: An
error in the transport protocol, or an end of file that violates the protocol.
The parameter to the exception is always a pair \code{(\var{errnum},
\var{errstr})}.
\end{excdesc}


\subsubsection{Context objects \label{openssl-context}}

Context objects have the following methods:

\begin{methoddesc}[Context]{check_privatekey}{}
Check if the private key (loaded with \method{use_privatekey\optional{_file}})
matches the certificate (loaded with \method{use_certificate\optional{_file}}).
Returns true if they match, false otherwise.
\end{methoddesc}

\begin{methoddesc}[Context]{get_app_data}{}
Retrieve application data as set by \method{set_app_data}.
\end{methoddesc}

\begin{methoddesc}[Context]{get_cert_store}{}
Retrieve the certificate store (a X509Store object) that the context uses.
This can be used to add "trusted" certificates without using the.
\method{load_verify_locations()} method.
\end{methoddesc}

\begin{methoddesc}[Context]{get_timeout}{}
Retrieve session timeout, as set by \method{set_timeout}. The default is 300
seconds.
\end{methoddesc}

\begin{methoddesc}[Context]{get_verify_depth}{}
Retrieve the Context object's verify depth, as set by
\method{set_verify_depth}.
\end{methoddesc}

\begin{methoddesc}[Context]{get_verify_mode}{}
Retrieve the Context object's verify mode, as set by \method{set_verify_mode}.
\end{methoddesc}

\begin{methoddesc}[Context]{load_client_ca}{pemfile}
Read a file with PEM-formatted certificates that will be sent to the client
when requesting a client certificate.
\end{methoddesc}

\begin{methoddesc}[Context]{load_verify_locations}{pemfile}
Specify where CA certificates for verification purposes are located. These are
trusted certificates. Note that the certificates have to be in PEM format.
\end{methoddesc}

\begin{methoddesc}[Context]{load_tmp_dh}{dhfile}
Load parameters for Ephemeral Diffie-Hellman from \var{dhfile}.
\end{methoddesc}

\begin{methoddesc}[Context]{set_app_data}{data}
Associate \var{data} with this Context object. \var{data} can be retrieved
later using the \method{get_app_data} method.
\end{methoddesc}

\begin{methoddesc}[Context]{set_cipher_list}{ciphers}
Set the list of ciphers to be used in this context. See the OpenSSL manual for
more information (e.g. ciphers(1))
\end{methoddesc}

\begin{methoddesc}[Context]{set_info_callback}{callback}
Set the information callback to \var{callback}. This function will be called
from time to time during SSL handshakes.

\var{callback} should take three arguments: a Connection object and two
integers. The first integer specifies where in the SSL handshake the function
was called, and the other the return code from a (possibly failed) internal
function call.
\end{methoddesc}

\begin{methoddesc}[Context]{set_options}{options}
Add SSL options. Options you have set before are not cleared!

This method should be used with the \constant{OP_*} constants.
\end{methoddesc}

\begin{methoddesc}[Context]{set_passwd_cb}{callback\optional{, userdata}}
Set the passphrase callback to \var{callback}. This function will be called
when a private key with a passphrase is loaded.

\var{callback} should take a boolean argument \var{repeat} and an arbitrary
argument \var{data} and return the passphrase entered by the user. If
\var{repeat} is true then \var{callback} should ask for the passphrase twice
and make sure that the two entries are equal. The \var{data} argument is the
\var{userdata} variable passed to the \method{set_passwd_cb} method. If an
error occurs, \var{callback} should return a false value (e.g. an empty
string).
\end{methoddesc}

\begin{methoddesc}[Context]{set_session_id}{name}
Set the context \var{name} within which a session can be reused for this
Context object. This is needed when doing session resumption, because there is
no way for a stored session to know which Context object it is associated with.
\var{name} may be any binary data.
\end{methoddesc}

\begin{methoddesc}[Context]{set_timeout}{timeout}
Set the timeout for newly created sessions for this Context object to
\var{timeout}. \var{timeout} must be given in (whole) seconds. The default
value is 300 seconds. See the OpenSSL manual for more information (e.g.
SSL_CTX_set_timeout(3)).
\end{methoddesc}

\begin{methoddesc}[Context]{set_verify}{mode, callback}
Set the verification flags for this Context object to \var{mode} and specify
that \var{callback} should be used for verification callbacks. \var{mode}
should be one of \constant{VERIFY_NONE} and \constant{VERIFY_PEER}. If
\constant{VERIFY_PEER} is used, \var{mode} can be OR:ed with
\constant{VERIFY_FAIL_IF_NO_PEER_CERT} and \constant{VERIFY_CLIENT_ONCE} to
further control the behaviour.

\var{callback} should take five arguments: A Connection object, an X509 object,
and three integer variables, which are in turn potential error number, error
depth and return code. \var{callback} should return true if verification passes
and false otherwise.
\end{methoddesc}

\begin{methoddesc}[Context]{set_verify_depth}{depth}
Set the maximum depth for the certificate chain verification that shall be
allowed for this Context object.
\end{methoddesc}

\begin{methoddesc}[Context]{use_certificate}{cert}
Use the certificate \var{cert} which has to be a X509 object.
\end{methoddesc}

\begin{methoddesc}[Context]{use_certificate_chain_file}{file}
Load a certificate chain from \var{file} which must be PEM encoded.
\end{methoddesc}

\begin{methoddesc}[Context]{use_privatekey}{pkey}
Use the private key \var{pkey} which has to be a PKey object.
\end{methoddesc}

\begin{methoddesc}[Context]{use_certificate_file}{file\optional{, format}}
Load the first certificate found in \var{file}. The certificate must be in the
format specified by \var{format}, which is either \constant{FILETYPE_PEM} or
\constant{FILETYPE_ASN1}. The default is \constant{FILETYPE_PEM}.
\end{methoddesc}

\begin{methoddesc}[Context]{use_privatekey_file}{file\optional{, format}}
Load the first private key found in \var{file}. The private key must be in the
format specified by \var{format}, which is either \constant{FILETYPE_PEM} or
\constant{FILETYPE_ASN1}. The default is \constant{FILETYPE_PEM}.
\end{methoddesc}


\subsubsection{Connection objects \label{openssl-connection}}

Connection objects have the following methods:

\begin{methoddesc}[Connection]{accept}{}
Call the \method{accept} method of the underlying socket and set up SSL on the
returned socket, using the Context object supplied to this Connection object at
creation. Returns a pair \code{(\var{conn}, \var{address})}. where \var{conn}
is the new Connection object created, and \var{address} is as returned by the
socket's \method{accept}.
\end{methoddesc}

\begin{methoddesc}[Connection]{bind}{address}
Call the \method{bind} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{close}{}
Call the \method{close} method of the underlying socket. Note: If you want
correct SSL closure, you need to call the \method{shutdown} method first.
\end{methoddesc}

\begin{methoddesc}[Connection]{connect}{address}
Call the \method{connect} method of the underlying socket and set up SSL on the
socket, using the Context object supplied to this Connection object at
creation.
\end{methoddesc}

\begin{methoddesc}[Connection]{connect_ex}{address}
Call the \method{connect_ex} method of the underlying socket and set up SSL on
the socket, using the Context object supplied to this Connection object at
creation. Note that if the \method{connect_ex} method of the socket doesn't
return 0, SSL won't be initialized.
\end{methoddesc}

\begin{methoddesc}[Connection]{do_handshake}{}
Perform an SSL handshake (usually called after \method{renegotiate} or one of
\method{set_accept_state} or \method{set_accept_state}). This can raise the
same exceptions as \method{send} and \method{recv}.
\end{methoddesc}

\begin{methoddesc}[Connection]{fileno}{}
Retrieve the file descriptor number for the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{listen}{backlog}
Call the \method{listen} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{get_app_data}{}
Retrieve application data as set by \method{set_app_data}.
\end{methoddesc}

\begin{methoddesc}[Connection]{get_cipher_list}{}
Retrieve the list of ciphers used by the Connection object. WARNING: This API
has changed. It used to take an optional parameter and just return a string,
but not it returns the entire list in one go.
\end{methoddesc}

\begin{methoddesc}[Connection]{get_context}{}
Retrieve the Context object associated with this Connection.
\end{methoddesc}

\begin{methoddesc}[Connection]{get_peer_certificate}{}
Retrieve the other side's certificate (if any)
\end{methoddesc}

\begin{methoddesc}[Connection]{getpeername}{}
Call the \method{getpeername} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{getsockname}{}
Call the \method{getsockname} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{getsockopt}{level, optname\optional{, buflen}}
Call the \method{getsockopt} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{pending}{}
Retrieve the number of bytes that can be safely read from the SSL buffer.
\end{methoddesc}

\begin{methoddesc}[Connection]{recv}{bufsize}
Receive data from the Connection. The return value is a string representing the
data received. The maximum amount of data to be received at once, is specified
by \var{bufsize}.
\end{methoddesc}

\begin{methoddesc}[Connection]{renegotiate}{}
Renegotiate the SSL session. Call this if you wish to change cipher suites or
anything like that.
\end{methoddesc}

\begin{methoddesc}[Connection]{send}{string}
Send the \var{string} data to the Connection.
\end{methoddesc}

\begin{methoddesc}[Connection]{sendall}{string}
Send all of the \var{string} data to the Connection. This calls \method{send}
repeatedly until all data is sent. If an error occurs, it's impossible to tell
how much data has been sent.
\end{methoddesc}

\begin{methoddesc}[Connection]{set_accept_state}{}
Set the connection to work in server mode. The handshake will be handled
automatically by read/write.
\end{methoddesc}

\begin{methoddesc}[Connection]{set_app_data}{data}
Associate \var{data} with this Connection object. \var{data} can be retrieved
later using the \method{get_app_data} method.
\end{methoddesc}

\begin{methoddesc}[Connection]{set_connect_state}{}
Set the connection to work in client mode. The handshake will be handled
automatically by read/write.
\end{methoddesc}

\begin{methoddesc}[Connection]{setblocking}{flag}
Call the \method{setblocking} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{setsockopt}{level, optname, value}
Call the \method{setsockopt} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{shutdown}{}
Send the shutdown message to the Connection. Returns true if the shutdown
message exchange is completed and false otherwise (in which case you call
\method{recv()} or \method{send()} when the connection becomes
readable/writeable.
\end{methoddesc}

\begin{methoddesc}[Connection]{sock_shutdown}{how}
Call the \method{shutdown} method of the underlying socket.
\end{methoddesc}

\begin{methoddesc}[Connection]{state_string}{}
Retrieve a verbose string detailing the state of the Connection.
\end{methoddesc}

\begin{methoddesc}[Connection]{want_read}{}
Checks if more data has to be read from the transport layer to complete an
operation.
\end{methoddesc}

\begin{methoddesc}[Connection]{want_write}{}
Checks if there is data to write to the transport layer to complete an
operation.
\end{methoddesc}



\section{Internals \label{internals}}

We ran into three main problems developing this: Exceptions, callbacks and
accessing socket methods. This is what this chapter is about.

\subsection{Exceptions \label{exceptions}}

We realized early that most of the exceptions would be raised by the I/O
functions of OpenSSL, so it felt natural to mimic OpenSSL's error code system,
translating them into Python exceptions. This naturally gives us the exceptions
\exception{SSL.ZeroReturnError}, \exception{SSL.WantReadError},
\exception{SSL.WantWriteError}, \exception{SSL.WantX509LookupError} and
\exception{SSL.SysCallError}.

For more information about this, see section \ref{openssl-ssl}.


\subsection{Callbacks \label{callbacks}}

There are a number of problems with callbacks. First of all, OpenSSL is written
as a C library, it's not meant to have Python callbacks, so a way around that
is needed. Another problem is thread support. A lot of the OpenSSL I/O
functions can block if the socket is in blocking mode, and then you want other
Python threads to be able to do other things. The real trouble is if you've
released the thread lock to do a potentially blocking operation, and the
operation calls a callback. Then we must take the thread lock back\footnote{I'm
not sure why this is necessary, but otherwise I get a segmentation violation on
\cfunction{PyEval_CallObject}}.

There are two solutions to the first problem, both of which are necessary. The
first solution to use is if the C callback allows ''userdata'' to be passed to
it (an arbitrary pointer normally). This is great! We can set our Python
function object as the real userdata and emulate userdata for the Python
function in another way. The other solution can be used if an object with an
''app_data'' system always is passed to the callback. For example, the SSL
object in OpenSSL has app_data functions and in e.g. the verification
callbacks, you can retrieve the related SSL object. What we do is to set our
wrapper \class{Connection} object as app_data for the SSL object, and we can
easily find the Python callback.

The other problem is also partially solved by app_data. Since we're associating
our wrapper objects with the ''real'' objects, we can easily access data from
the \class{Connection} object. The solution then is to simply include a
\ctype{PyThreadState} variable in the \class{Connection} declaration, and write
macros similar to \cfunction{Py_BEGIN_ALLOW_THREADS} and
\cfunction{Py_END_ALLOW_THREADS} that allows specifying of the
\ctype{PyThreadState} variable to use. Now we can simply ''begin allow
threads'' before a potentially blocking operation, and ''end allow threads''
before calling a callback.


\subsection{Acessing Socket Methods \label{socket-methods}}

We quickly saw the benefit of wrapping socket methods in the
\class{SSL.Connection} class, for an easy transition into using SSL. The
problem here is that the \module{socket} module lacks a C API, and all the
methods are declared static. One approach would be to have \module{OpenSSL} as
a submodule to the \module{socket} module, placing all the code in
\file{socketmodule.c}, but this is obviously not a good solution, since you
might not want to import tonnes of extra stuff you're not going to use when
importing the \module{socket} module. The other approach is to somehow get a
pointer to the method to be called, either the C function, or a callable Python
object. This is not really a good solution either, since there's a lot of
lookups involved.

The way it works is that you have to supply a ``\class{socket}-like'' transport
object to the \class{SSL.Connection}. The only requirement of this object is
that it has a \method{fileno()} method that returns a file descriptor that's
valid at the C level (i.e. you can use the system calls read and write). If you
want to use the \method{connect()} or \method{accept()} methods of the
\class{SSL.Connection} object, the transport object has to supply such
methods too. Apart from them, any method lookups in the \class{SSL.Connection}
object that fail are passed on to the underlying transport object.

Future changes might be to allow Python-level transport objects, that instead
of having \method{fileno()} methods, have \method{read()} and \method{write()}
methods, so more advanced features of Python can be used. This would probably
entail some sort of OpenSSL ``BIOs'', but converting Python strings back and
forth is expensive, so this shouldn't be used unless necessary. Other nice
things would be to be able to pass in different transport objects for reading
and writing, but then the \method{fileno()} method of \class{SSL.Connection}
becomes virtually useless. Also, should the method resolution be used on the
read-transport or the write-transport?


\end{document}