summaryrefslogtreecommitdiff
path: root/examples/LAparser.py
diff options
context:
space:
mode:
authorPaul McGuire <ptmcg@austin.rr.com>2019-07-13 13:36:36 -0500
committerPaul McGuire <ptmcg@austin.rr.com>2019-07-13 13:36:36 -0500
commit5a566b59170fb3fe705a7691806c4afd158df520 (patch)
tree7bf9c6077b3e0c03217b1c33055e1a7188cf5bcc /examples/LAparser.py
parent7d96e569a1b5f4505dac8d6f24c4b27562acf875 (diff)
downloadpyparsing-git-5a566b59170fb3fe705a7691806c4afd158df520.tar.gz
Update/cleanup code in examples
Diffstat (limited to 'examples/LAparser.py')
-rw-r--r--examples/LAparser.py876
1 files changed, 462 insertions, 414 deletions
diff --git a/examples/LAparser.py b/examples/LAparser.py
index 41e8b4f..330b8f5 100644
--- a/examples/LAparser.py
+++ b/examples/LAparser.py
@@ -1,414 +1,462 @@
-"""
-Purpose: Linear Algebra Parser
-Based on: SimpleCalc.py example (author Paul McGuire) in pyparsing-1.3.3
-Author: Mike Ellis
-Copyright: Ellis & Grant, Inc. 2005
-License: You may freely use, modify, and distribute this software.
-Warranty: THIS SOFTWARE HAS NO WARRANTY WHATSOEVER. USE AT YOUR OWN RISK.
-Notes: Parses infix linear algebra (LA) notation for vectors, matrices, and scalars.
- Output is C code function calls. The parser can be run as an interactive
- interpreter or included as module to use for in-place substitution into C files
- containing LA equations.
-
- Supported operations are:
- OPERATION: INPUT OUTPUT
- Scalar addition: "a = b+c" "a=(b+c)"
- Scalar subtraction: "a = b-c" "a=(b-c)"
- Scalar multiplication: "a = b*c" "a=b*c"
- Scalar division: "a = b/c" "a=b/c"
- Scalar exponentiation: "a = b^c" "a=pow(b,c)"
- Vector scaling: "V3_a = V3_b * c" "vCopy(a,vScale(b,c))"
- Vector addition: "V3_a = V3_b + V3_c" "vCopy(a,vAdd(b,c))"
- Vector subtraction: "V3_a = V3_b - V3_c" "vCopy(a,vSubtract(b,c))"
- Vector dot product: "a = V3_b * V3_c" "a=vDot(b,c)"
- Vector outer product: "M3_a = V3_b @ V3_c" "a=vOuterProduct(b,c)"
- Vector magn. squared: "a = V3_b^Mag2" "a=vMagnitude2(b)"
- Vector magnitude: "a = V3_b^Mag" "a=sqrt(vMagnitude2(b))"
- Matrix scaling: "M3_a = M3_b * c" "mCopy(a,mScale(b,c))"
- Matrix addition: "M3_a = M3_b + M3_c" "mCopy(a,mAdd(b,c))"
- Matrix subtraction: "M3_a = M3_b - M3_c" "mCopy(a,mSubtract(b,c))"
- Matrix multiplication: "M3_a = M3_b * M3_c" "mCopy(a,mMultiply(b,c))"
- Matrix by vector mult.: "V3_a = M3_b * V3_c" "vCopy(a,mvMultiply(b,c))"
- Matrix inversion: "M3_a = M3_b^-1" "mCopy(a,mInverse(b))"
- Matrix transpose: "M3_a = M3_b^T" "mCopy(a,mTranspose(b))"
- Matrix determinant: "a = M3_b^Det" "a=mDeterminant(b)"
-
- The parser requires the expression to be an equation. Each non-scalar variable
- must be prefixed with a type tag, 'M3_' for 3x3 matrices and 'V3_' for 3-vectors.
- For proper compilation of the C code, the variables need to be declared without
- the prefix as float[3] for vectors and float[3][3] for matrices. The operations do
- not modify any variables on the right-hand side of the equation.
-
- Equations may include nested expressions within parentheses. The allowed binary
- operators are '+-*/^' for scalars, and '+-*^@' for vectors and matrices with the
- meanings defined in the table above.
-
- Specifying an improper combination of operands, e.g. adding a vector to a matrix,
- is detected by the parser and results in a Python TypeError Exception. The usual cause
- of this is omitting one or more tag prefixes. The parser knows nothing about a
- a variable's C declaration and relies entirely on the type tags. Errors in C
- declarations are not caught until compile time.
-
-Usage: To process LA equations embedded in source files, import this module and
- pass input and output file objects to the fprocess() function. You can
- can also invoke the parser from the command line, e.g. 'python LAparser.py',
- to run a small test suite and enter an interactive loop where you can enter
- LA equations and see the resulting C code.
-
-"""
-
-import re,sys
-from pyparsing import Word, alphas, ParseException, Literal, CaselessLiteral \
-, Combine, Optional, nums, Forward, ZeroOrMore, \
- StringEnd, alphanums
-
-# Debugging flag can be set to either "debug_flag=True" or "debug_flag=False"
-debug_flag=False
-
-#----------------------------------------------------------------------------
-# Variables that hold intermediate parsing results and a couple of
-# helper functions.
-exprStack = [] # Holds operators and operands parsed from input.
-targetvar = None # Holds variable name to left of '=' sign in LA equation.
-
-
-def _pushFirst( str, loc, toks ):
- if debug_flag: print("pushing ", toks[0], "str is ", str)
- exprStack.append( toks[0] )
-
-def _assignVar( str, loc, toks ):
- global targetvar
- targetvar = toks[0]
-
-#-----------------------------------------------------------------------------
-# The following statements define the grammar for the parser.
-
-point = Literal('.')
-e = CaselessLiteral('E')
-plusorminus = Literal('+') | Literal('-')
-number = Word(nums)
-integer = Combine( Optional(plusorminus) + number )
-floatnumber = Combine( integer +
- Optional( point + Optional(number) ) +
- Optional( e + integer )
- )
-
-lbracket = Literal("[")
-rbracket = Literal("]")
-ident = Forward()
-## The definition below treats array accesses as identifiers. This means your expressions
-## can include references to array elements, rows and columns, e.g., a = b[i] + 5.
-## Expressions within []'s are not presently supported, so a = b[i+1] will raise
-## a ParseException.
-ident = Combine(Word(alphas + '-',alphanums + '_') + \
- ZeroOrMore(lbracket + (Word(alphas + '-',alphanums + '_')|integer) + rbracket) \
- )
-
-plus = Literal( "+" )
-minus = Literal( "-" )
-mult = Literal( "*" )
-div = Literal( "/" )
-outer = Literal( "@" )
-lpar = Literal( "(" ).suppress()
-rpar = Literal( ")" ).suppress()
-addop = plus | minus
-multop = mult | div | outer
-expop = Literal( "^" )
-assignop = Literal( "=" )
-
-expr = Forward()
-atom = ( ( e | floatnumber | integer | ident ).setParseAction(_pushFirst) |
- ( lpar + expr.suppress() + rpar )
- )
-factor = Forward()
-factor << atom + ZeroOrMore( ( expop + factor ).setParseAction( _pushFirst ) )
-
-term = factor + ZeroOrMore( ( multop + factor ).setParseAction( _pushFirst ) )
-expr << term + ZeroOrMore( ( addop + term ).setParseAction( _pushFirst ) )
-equation = (ident + assignop).setParseAction(_assignVar) + expr + StringEnd()
-
-# End of grammar definition
-#-----------------------------------------------------------------------------
-## The following are helper variables and functions used by the Binary Infix Operator
-## Functions described below.
-
-vprefix = 'V3_'
-vplen = len(vprefix)
-mprefix = 'M3_'
-mplen = len(mprefix)
-
-## We don't support unary negation for vectors and matrices
-class UnaryUnsupportedError(Exception): pass
-
-def _isvec(ident):
- if ident[0] == '-' and ident[1:vplen+1] == vprefix:
- raise UnaryUnsupportedError
- else: return ident[0:vplen] == vprefix
-
-def _ismat(ident):
- if ident[0] == '-' and ident[1:mplen+1] == mprefix:
- raise UnaryUnsupportedError
- else: return ident[0:mplen] == mprefix
-
-def _isscalar(ident): return not (_isvec(ident) or _ismat(ident))
-
-## Binary infix operator (BIO) functions. These are called when the stack evaluator
-## pops a binary operator like '+' or '*". The stack evaluator pops the two operand, a and b,
-## and calls the function that is mapped to the operator with a and b as arguments. Thus,
-## 'x + y' yields a call to addfunc(x,y). Each of the BIO functions checks the prefixes of its
-## arguments to determine whether the operand is scalar, vector, or matrix. This information
-## is used to generate appropriate C code. For scalars, this is essentially the input string, e.g.
-## 'a + b*5' as input yields 'a + b*5' as output. For vectors and matrices, the input is translated to
-## nested function calls, e.g. "V3_a + V3_b*5" yields "V3_vAdd(a,vScale(b,5)". Note that prefixes are
-## stripped from operands and function names within the argument list to the outer function and
-## the appropriate prefix is placed on the outer function for removal later as the stack evaluation
-## recurses toward the final assignment statement.
-
-def _addfunc(a,b):
- if _isscalar(a) and _isscalar(b): return "(%s+%s)"%(a,b)
- if _isvec(a) and _isvec(b): return "%svAdd(%s,%s)"%(vprefix,a[vplen:],b[vplen:])
- if _ismat(a) and _ismat(b): return "%smAdd(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
- else: raise TypeError
-
-def _subfunc(a,b):
- if _isscalar(a) and _isscalar(b): return "(%s-%s)"%(a,b)
- if _isvec(a) and _isvec(b): return "%svSubtract(%s,%s)"%(vprefix,a[vplen:],b[vplen:])
- if _ismat(a) and _ismat(b): return "%smSubtract(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
- else: raise TypeError
-
-def _mulfunc(a,b):
- if _isscalar(a) and _isscalar(b): return "%s*%s"%(a,b)
- if _isvec(a) and _isvec(b): return "vDot(%s,%s)"%(a[vplen:],b[vplen:])
- if _ismat(a) and _ismat(b): return "%smMultiply(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
- if _ismat(a) and _isvec(b): return "%smvMultiply(%s,%s)"%(vprefix,a[mplen:],b[vplen:])
- if _ismat(a) and _isscalar(b): return "%smScale(%s,%s)"%(mprefix,a[mplen:],b)
- if _isvec(a) and _isscalar(b): return "%svScale(%s,%s)"%(vprefix,a[mplen:],b)
- else: raise TypeError
-
-def _outermulfunc(a,b):
- ## The '@' operator is used for the vector outer product.
- if _isvec(a) and _isvec(b):
- return "%svOuterProduct(%s,%s)"%(mprefix,a[vplen:],b[vplen:])
- else: raise TypeError
-
-def _divfunc(a,b):
- ## The '/' operator is used only for scalar division
- if _isscalar(a) and _isscalar(b): return "%s/%s"%(a,b)
- else: raise TypeError
-
-def _expfunc(a,b):
- ## The '^' operator is used for exponentiation on scalars and
- ## as a marker for unary operations on vectors and matrices.
- if _isscalar(a) and _isscalar(b): return "pow(%s,%s)"%(str(a),str(b))
- if _ismat(a) and b=='-1': return "%smInverse(%s)"%(mprefix,a[mplen:])
- if _ismat(a) and b=='T': return "%smTranspose(%s)"%(mprefix,a[mplen:])
- if _ismat(a) and b=='Det': return "mDeterminant(%s)"%(a[mplen:])
- if _isvec(a) and b=='Mag': return "sqrt(vMagnitude2(%s))"%(a[vplen:])
- if _isvec(a) and b=='Mag2': return "vMagnitude2(%s)"%(a[vplen:])
- else: raise TypeError
-
-def _assignfunc(a,b):
- ## The '=' operator is used for assignment
- if _isscalar(a) and _isscalar(b): return "%s=%s"%(a,b)
- if _isvec(a) and _isvec(b): return "vCopy(%s,%s)"%(a[vplen:],b[vplen:])
- if _ismat(a) and _ismat(b): return "mCopy(%s,%s)"%(a[mplen:],b[mplen:])
- else: raise TypeError
-
-## End of BIO func definitions
-##----------------------------------------------------------------------------
-
-# Map operator symbols to corresponding BIO funcs
-opn = { "+" : ( _addfunc ),
- "-" : ( _subfunc ),
- "*" : ( _mulfunc ),
- "@" : ( _outermulfunc ),
- "/" : ( _divfunc),
- "^" : ( _expfunc ), }
-
-
-##----------------------------------------------------------------------------
-# Recursive function that evaluates the expression stack
-def _evaluateStack( s ):
- op = s.pop()
- if op in "+-*/@^":
- op2 = _evaluateStack( s )
- op1 = _evaluateStack( s )
- result = opn[op]( op1, op2 )
- if debug_flag: print(result)
- return result
- else:
- return op
-
-##----------------------------------------------------------------------------
-# The parse function that invokes all of the above.
-def parse(input_string):
- """
- Accepts an input string containing an LA equation, e.g.,
- "M3_mymatrix = M3_anothermatrix^-1" returns C code function
- calls that implement the expression.
- """
-
- global exprStack
- global targetvar
-
- # Start with a blank exprStack and a blank targetvar
- exprStack = []
- targetvar=None
-
- if input_string != '':
- # try parsing the input string
- try:
- L=equation.parseString( input_string )
- except ParseException as err:
- print('Parse Failure', file=sys.stderr)
- print(err.line, file=sys.stderr)
- print(" "*(err.column-1) + "^", file=sys.stderr)
- print(err, file=sys.stderr)
- raise
-
- # show result of parsing the input string
- if debug_flag:
- print(input_string, "->", L)
- print("exprStack=", exprStack)
-
- # Evaluate the stack of parsed operands, emitting C code.
- try:
- result=_evaluateStack(exprStack)
- except TypeError:
- print("Unsupported operation on right side of '%s'.\nCheck for missing or incorrect tags on non-scalar operands."%input_string, file=sys.stderr)
- raise
- except UnaryUnsupportedError:
- print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
- raise
-
- # Create final assignment and print it.
- if debug_flag: print("var=",targetvar)
- if targetvar != None:
- try:
- result = _assignfunc(targetvar,result)
- except TypeError:
- print("Left side tag does not match right side of '%s'"%input_string, file=sys.stderr)
- raise
- except UnaryUnsupportedError:
- print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
- raise
-
- return result
- else:
- print("Empty left side in '%s'"%input_string, file=sys.stderr)
- raise TypeError
-
-##-----------------------------------------------------------------------------------
-def fprocess(infilep,outfilep):
- """
- Scans an input file for LA equations between double square brackets,
- e.g. [[ M3_mymatrix = M3_anothermatrix^-1 ]], and replaces the expression
- with a comment containing the equation followed by nested function calls
- that implement the equation as C code. A trailing semi-colon is appended.
- The equation within [[ ]] should NOT end with a semicolon as that will raise
- a ParseException. However, it is ok to have a semicolon after the right brackets.
-
- Other text in the file is unaltered.
-
- The arguments are file objects (NOT file names) opened for reading and
- writing, respectively.
- """
- pattern = r'\[\[\s*(.*?)\s*\]\]'
- eqn = re.compile(pattern,re.DOTALL)
- s = infilep.read()
- def parser(mo):
- ccode = parse(mo.group(1))
- return "/* %s */\n%s;\nLAParserBufferReset();\n"%(mo.group(1),ccode)
-
- content = eqn.sub(parser,s)
- outfilep.write(content)
-
-##-----------------------------------------------------------------------------------
-def test():
- """
- Tests the parsing of various supported expressions. Raises
- an AssertError if the output is not what is expected. Prints the
- input, expected output, and actual output for all tests.
- """
- print("Testing LAParser")
- testcases = [
- ("Scalar addition","a = b+c","a=(b+c)"),
- ("Vector addition","V3_a = V3_b + V3_c","vCopy(a,vAdd(b,c))"),
- ("Vector addition","V3_a=V3_b+V3_c","vCopy(a,vAdd(b,c))"),
- ("Matrix addition","M3_a = M3_b + M3_c","mCopy(a,mAdd(b,c))"),
- ("Matrix addition","M3_a=M3_b+M3_c","mCopy(a,mAdd(b,c))"),
- ("Scalar subtraction","a = b-c","a=(b-c)"),
- ("Vector subtraction","V3_a = V3_b - V3_c","vCopy(a,vSubtract(b,c))"),
- ("Matrix subtraction","M3_a = M3_b - M3_c","mCopy(a,mSubtract(b,c))"),
- ("Scalar multiplication","a = b*c","a=b*c"),
- ("Scalar division","a = b/c","a=b/c"),
- ("Vector multiplication (dot product)","a = V3_b * V3_c","a=vDot(b,c)"),
- ("Vector multiplication (outer product)","M3_a = V3_b @ V3_c","mCopy(a,vOuterProduct(b,c))"),
- ("Matrix multiplication","M3_a = M3_b * M3_c","mCopy(a,mMultiply(b,c))"),
- ("Vector scaling","V3_a = V3_b * c","vCopy(a,vScale(b,c))"),
- ("Matrix scaling","M3_a = M3_b * c","mCopy(a,mScale(b,c))"),
- ("Matrix by vector multiplication","V3_a = M3_b * V3_c","vCopy(a,mvMultiply(b,c))"),
- ("Scalar exponentiation","a = b^c","a=pow(b,c)"),
- ("Matrix inversion","M3_a = M3_b^-1","mCopy(a,mInverse(b))"),
- ("Matrix transpose","M3_a = M3_b^T","mCopy(a,mTranspose(b))"),
- ("Matrix determinant","a = M3_b^Det","a=mDeterminant(b)"),
- ("Vector magnitude squared","a = V3_b^Mag2","a=vMagnitude2(b)"),
- ("Vector magnitude","a = V3_b^Mag","a=sqrt(vMagnitude2(b))"),
- ("Complicated expression", "myscalar = (M3_amatrix * V3_bvector)^Mag + 5*(-xyz[i] + 2.03^2)","myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(-xyz[i]+pow(2.03,2)))"),
- ("Complicated Multiline", "myscalar = \n(M3_amatrix * V3_bvector)^Mag +\n 5*(xyz + 2.03^2)","myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(xyz+pow(2.03,2)))")
-
- ]
-
- for t in testcases:
- name,input,expected = t
- print(name)
- print(" %s input"%input)
- print(" %s expected"%expected)
- result = parse(input)
- print(" %s received"%result)
- print("")
- assert expected == result
-
- ##TODO: Write testcases with invalid expressions and test that the expected
- ## exceptions are raised.
-
- print("Tests completed!")
-##----------------------------------------------------------------------------
-## The following is executed only when this module is executed as
-## command line script. It runs a small test suite (see above)
-## and then enters an interactive loop where you
-## can enter expressions and see the resulting C code as output.
-
-if __name__ == '__main__':
- # run testcases
- test()
-
- # input_string
- input_string=''
-
- # Display instructions on how to use the program interactively
- interactiveusage = """
- Entering interactive mode:
- Type in an equation to be parsed or 'quit' to exit the program.
- Type 'debug on' to print parsing details as each string is processed.
- Type 'debug off' to stop printing parsing details
- """
- print(interactiveusage)
- input_string = input("> ")
-
- while input_string != 'quit':
- if input_string == "debug on":
- debug_flag = True
- elif input_string == "debug off":
- debug_flag = False
- else:
- try:
- print(parse(input_string))
- except Exception:
- pass
-
- # obtain new input string
- input_string = input("> ")
-
- # if user types 'quit' then say goodbye
- print("Good bye!")
+"""
+Purpose: Linear Algebra Parser
+Based on: SimpleCalc.py example (author Paul McGuire) in pyparsing-1.3.3
+Author: Mike Ellis
+Copyright: Ellis & Grant, Inc. 2005
+License: You may freely use, modify, and distribute this software.
+Warranty: THIS SOFTWARE HAS NO WARRANTY WHATSOEVER. USE AT YOUR OWN RISK.
+Notes: Parses infix linear algebra (LA) notation for vectors, matrices, and scalars.
+ Output is C code function calls. The parser can be run as an interactive
+ interpreter or included as module to use for in-place substitution into C files
+ containing LA equations.
+
+ Supported operations are:
+ OPERATION: INPUT OUTPUT
+ Scalar addition: "a = b+c" "a=(b+c)"
+ Scalar subtraction: "a = b-c" "a=(b-c)"
+ Scalar multiplication: "a = b*c" "a=b*c"
+ Scalar division: "a = b/c" "a=b/c"
+ Scalar exponentiation: "a = b^c" "a=pow(b,c)"
+ Vector scaling: "V3_a = V3_b * c" "vCopy(a,vScale(b,c))"
+ Vector addition: "V3_a = V3_b + V3_c" "vCopy(a,vAdd(b,c))"
+ Vector subtraction: "V3_a = V3_b - V3_c" "vCopy(a,vSubtract(b,c))"
+ Vector dot product: "a = V3_b * V3_c" "a=vDot(b,c)"
+ Vector outer product: "M3_a = V3_b @ V3_c" "a=vOuterProduct(b,c)"
+ Vector magn. squared: "a = V3_b^Mag2" "a=vMagnitude2(b)"
+ Vector magnitude: "a = V3_b^Mag" "a=sqrt(vMagnitude2(b))"
+ Matrix scaling: "M3_a = M3_b * c" "mCopy(a,mScale(b,c))"
+ Matrix addition: "M3_a = M3_b + M3_c" "mCopy(a,mAdd(b,c))"
+ Matrix subtraction: "M3_a = M3_b - M3_c" "mCopy(a,mSubtract(b,c))"
+ Matrix multiplication: "M3_a = M3_b * M3_c" "mCopy(a,mMultiply(b,c))"
+ Matrix by vector mult.: "V3_a = M3_b * V3_c" "vCopy(a,mvMultiply(b,c))"
+ Matrix inversion: "M3_a = M3_b^-1" "mCopy(a,mInverse(b))"
+ Matrix transpose: "M3_a = M3_b^T" "mCopy(a,mTranspose(b))"
+ Matrix determinant: "a = M3_b^Det" "a=mDeterminant(b)"
+
+ The parser requires the expression to be an equation. Each non-scalar variable
+ must be prefixed with a type tag, 'M3_' for 3x3 matrices and 'V3_' for 3-vectors.
+ For proper compilation of the C code, the variables need to be declared without
+ the prefix as float[3] for vectors and float[3][3] for matrices. The operations do
+ not modify any variables on the right-hand side of the equation.
+
+ Equations may include nested expressions within parentheses. The allowed binary
+ operators are '+-*/^' for scalars, and '+-*^@' for vectors and matrices with the
+ meanings defined in the table above.
+
+ Specifying an improper combination of operands, e.g. adding a vector to a matrix,
+ is detected by the parser and results in a Python TypeError Exception. The usual cause
+ of this is omitting one or more tag prefixes. The parser knows nothing about a
+ a variable's C declaration and relies entirely on the type tags. Errors in C
+ declarations are not caught until compile time.
+
+Usage: To process LA equations embedded in source files, import this module and
+ pass input and output file objects to the fprocess() function. You can
+ can also invoke the parser from the command line, e.g. 'python LAparser.py',
+ to run a small test suite and enter an interactive loop where you can enter
+ LA equations and see the resulting C code.
+
+"""
+
+import re,sys
+from pyparsing import Word, alphas, ParseException, Literal, CaselessLiteral \
+, Combine, Optional, nums, Forward, ZeroOrMore, \
+ StringEnd, alphanums
+
+# Debugging flag can be set to either "debug_flag=True" or "debug_flag=False"
+debug_flag=False
+
+#----------------------------------------------------------------------------
+# Variables that hold intermediate parsing results and a couple of
+# helper functions.
+exprStack = [] # Holds operators and operands parsed from input.
+targetvar = None # Holds variable name to left of '=' sign in LA equation.
+
+
+def _pushFirst( str, loc, toks ):
+ if debug_flag: print("pushing ", toks[0], "str is ", str)
+ exprStack.append( toks[0] )
+
+def _assignVar( str, loc, toks ):
+ global targetvar
+ targetvar = toks[0]
+
+#-----------------------------------------------------------------------------
+# The following statements define the grammar for the parser.
+
+point = Literal('.')
+e = CaselessLiteral('E')
+plusorminus = Literal('+') | Literal('-')
+number = Word(nums)
+integer = Combine( Optional(plusorminus) + number )
+floatnumber = Combine( integer +
+ Optional( point + Optional(number) ) +
+ Optional( e + integer )
+ )
+
+lbracket = Literal("[")
+rbracket = Literal("]")
+ident = Forward()
+## The definition below treats array accesses as identifiers. This means your expressions
+## can include references to array elements, rows and columns, e.g., a = b[i] + 5.
+## Expressions within []'s are not presently supported, so a = b[i+1] will raise
+## a ParseException.
+ident = Combine(Word(alphas + '-',alphanums + '_') + \
+ ZeroOrMore(lbracket + (Word(alphas + '-',alphanums + '_')|integer) + rbracket) \
+ )
+
+plus = Literal( "+" )
+minus = Literal( "-" )
+mult = Literal( "*" )
+div = Literal( "/" )
+outer = Literal( "@" )
+lpar = Literal( "(" ).suppress()
+rpar = Literal( ")" ).suppress()
+addop = plus | minus
+multop = mult | div | outer
+expop = Literal( "^" )
+assignop = Literal( "=" )
+
+expr = Forward()
+atom = ( ( e | floatnumber | integer | ident ).setParseAction(_pushFirst) |
+ ( lpar + expr.suppress() + rpar )
+ )
+factor = Forward()
+factor << atom + ZeroOrMore( ( expop + factor ).setParseAction( _pushFirst ) )
+
+term = factor + ZeroOrMore( ( multop + factor ).setParseAction( _pushFirst ) )
+expr << term + ZeroOrMore( ( addop + term ).setParseAction( _pushFirst ) )
+equation = (ident + assignop).setParseAction(_assignVar) + expr + StringEnd()
+
+# End of grammar definition
+#-----------------------------------------------------------------------------
+## The following are helper variables and functions used by the Binary Infix Operator
+## Functions described below.
+
+vprefix = 'V3_'
+vplen = len(vprefix)
+mprefix = 'M3_'
+mplen = len(mprefix)
+
+## We don't support unary negation for vectors and matrices
+class UnaryUnsupportedError(Exception): pass
+
+def _isvec(ident):
+ if ident[0] == '-' and ident[1:vplen+1] == vprefix:
+ raise UnaryUnsupportedError
+ else: return ident[0:vplen] == vprefix
+
+def _ismat(ident):
+ if ident[0] == '-' and ident[1:mplen+1] == mprefix:
+ raise UnaryUnsupportedError
+ else: return ident[0:mplen] == mprefix
+
+def _isscalar(ident): return not (_isvec(ident) or _ismat(ident))
+
+## Binary infix operator (BIO) functions. These are called when the stack evaluator
+## pops a binary operator like '+' or '*". The stack evaluator pops the two operand, a and b,
+## and calls the function that is mapped to the operator with a and b as arguments. Thus,
+## 'x + y' yields a call to addfunc(x,y). Each of the BIO functions checks the prefixes of its
+## arguments to determine whether the operand is scalar, vector, or matrix. This information
+## is used to generate appropriate C code. For scalars, this is essentially the input string, e.g.
+## 'a + b*5' as input yields 'a + b*5' as output. For vectors and matrices, the input is translated to
+## nested function calls, e.g. "V3_a + V3_b*5" yields "V3_vAdd(a,vScale(b,5)". Note that prefixes are
+## stripped from operands and function names within the argument list to the outer function and
+## the appropriate prefix is placed on the outer function for removal later as the stack evaluation
+## recurses toward the final assignment statement.
+
+def _addfunc(a,b):
+ if _isscalar(a) and _isscalar(b): return "(%s+%s)"%(a,b)
+ if _isvec(a) and _isvec(b): return "%svAdd(%s,%s)"%(vprefix,a[vplen:],b[vplen:])
+ if _ismat(a) and _ismat(b): return "%smAdd(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
+ else: raise TypeError
+
+def _subfunc(a,b):
+ if _isscalar(a) and _isscalar(b): return "(%s-%s)"%(a,b)
+ if _isvec(a) and _isvec(b): return "%svSubtract(%s,%s)"%(vprefix,a[vplen:],b[vplen:])
+ if _ismat(a) and _ismat(b): return "%smSubtract(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
+ else: raise TypeError
+
+def _mulfunc(a,b):
+ if _isscalar(a) and _isscalar(b): return "%s*%s"%(a,b)
+ if _isvec(a) and _isvec(b): return "vDot(%s,%s)"%(a[vplen:],b[vplen:])
+ if _ismat(a) and _ismat(b): return "%smMultiply(%s,%s)"%(mprefix,a[mplen:],b[mplen:])
+ if _ismat(a) and _isvec(b): return "%smvMultiply(%s,%s)"%(vprefix,a[mplen:],b[vplen:])
+ if _ismat(a) and _isscalar(b): return "%smScale(%s,%s)"%(mprefix,a[mplen:],b)
+ if _isvec(a) and _isscalar(b): return "%svScale(%s,%s)"%(vprefix,a[mplen:],b)
+ else: raise TypeError
+
+def _outermulfunc(a,b):
+ ## The '@' operator is used for the vector outer product.
+ if _isvec(a) and _isvec(b):
+ return "%svOuterProduct(%s,%s)"%(mprefix,a[vplen:],b[vplen:])
+ else: raise TypeError
+
+def _divfunc(a,b):
+ ## The '/' operator is used only for scalar division
+ if _isscalar(a) and _isscalar(b): return "%s/%s"%(a,b)
+ else: raise TypeError
+
+def _expfunc(a,b):
+ ## The '^' operator is used for exponentiation on scalars and
+ ## as a marker for unary operations on vectors and matrices.
+ if _isscalar(a) and _isscalar(b): return "pow(%s,%s)"%(str(a),str(b))
+ if _ismat(a) and b=='-1': return "%smInverse(%s)"%(mprefix,a[mplen:])
+ if _ismat(a) and b=='T': return "%smTranspose(%s)"%(mprefix,a[mplen:])
+ if _ismat(a) and b=='Det': return "mDeterminant(%s)"%(a[mplen:])
+ if _isvec(a) and b=='Mag': return "sqrt(vMagnitude2(%s))"%(a[vplen:])
+ if _isvec(a) and b=='Mag2': return "vMagnitude2(%s)"%(a[vplen:])
+ else: raise TypeError
+
+def _assignfunc(a,b):
+ ## The '=' operator is used for assignment
+ if _isscalar(a) and _isscalar(b): return "%s=%s"%(a,b)
+ if _isvec(a) and _isvec(b): return "vCopy(%s,%s)"%(a[vplen:],b[vplen:])
+ if _ismat(a) and _ismat(b): return "mCopy(%s,%s)"%(a[mplen:],b[mplen:])
+ else: raise TypeError
+
+## End of BIO func definitions
+##----------------------------------------------------------------------------
+
+# Map operator symbols to corresponding BIO funcs
+opn = { "+" : ( _addfunc ),
+ "-" : ( _subfunc ),
+ "*" : ( _mulfunc ),
+ "@" : ( _outermulfunc ),
+ "/" : ( _divfunc),
+ "^" : ( _expfunc ), }
+
+
+##----------------------------------------------------------------------------
+# Recursive function that evaluates the expression stack
+def _evaluateStack( s ):
+ op = s.pop()
+ if op in "+-*/@^":
+ op2 = _evaluateStack( s )
+ op1 = _evaluateStack( s )
+ result = opn[op]( op1, op2 )
+ if debug_flag: print(result)
+ return result
+ else:
+ return op
+
+##----------------------------------------------------------------------------
+# The parse function that invokes all of the above.
+def parse(input_string):
+ """
+ Accepts an input string containing an LA equation, e.g.,
+ "M3_mymatrix = M3_anothermatrix^-1" returns C code function
+ calls that implement the expression.
+ """
+
+ global exprStack
+ global targetvar
+
+ # Start with a blank exprStack and a blank targetvar
+ exprStack = []
+ targetvar=None
+
+ if input_string != '':
+ # try parsing the input string
+ try:
+ L=equation.parseString( input_string )
+ except ParseException as err:
+ print('Parse Failure', file=sys.stderr)
+ print(err.line, file=sys.stderr)
+ print(" "*(err.column-1) + "^", file=sys.stderr)
+ print(err, file=sys.stderr)
+ raise
+
+ # show result of parsing the input string
+ if debug_flag:
+ print(input_string, "->", L)
+ print("exprStack=", exprStack)
+
+ # Evaluate the stack of parsed operands, emitting C code.
+ try:
+ result=_evaluateStack(exprStack)
+ except TypeError:
+ print("Unsupported operation on right side of '%s'.\nCheck for missing or incorrect tags on non-scalar operands."%input_string, file=sys.stderr)
+ raise
+ except UnaryUnsupportedError:
+ print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
+ raise
+
+ # Create final assignment and print it.
+ if debug_flag: print("var=",targetvar)
+ if targetvar != None:
+ try:
+ result = _assignfunc(targetvar,result)
+ except TypeError:
+ print("Left side tag does not match right side of '%s'"%input_string, file=sys.stderr)
+ raise
+ except UnaryUnsupportedError:
+ print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
+ raise
+
+ return result
+ else:
+ print("Empty left side in '%s'"%input_string, file=sys.stderr)
+ raise TypeError
+
+##-----------------------------------------------------------------------------------
+def fprocess(infilep,outfilep):
+ """
+ Scans an input file for LA equations between double square brackets,
+ e.g. [[ M3_mymatrix = M3_anothermatrix^-1 ]], and replaces the expression
+ with a comment containing the equation followed by nested function calls
+ that implement the equation as C code. A trailing semi-colon is appended.
+ The equation within [[ ]] should NOT end with a semicolon as that will raise
+ a ParseException. However, it is ok to have a semicolon after the right brackets.
+
+ Other text in the file is unaltered.
+
+ The arguments are file objects (NOT file names) opened for reading and
+ writing, respectively.
+ """
+ pattern = r'\[\[\s*(.*?)\s*\]\]'
+ eqn = re.compile(pattern,re.DOTALL)
+ s = infilep.read()
+ def parser(mo):
+ ccode = parse(mo.group(1))
+ return "/* %s */\n%s;\nLAParserBufferReset();\n"%(mo.group(1),ccode)
+
+ content = eqn.sub(parser,s)
+ outfilep.write(content)
+
+##-----------------------------------------------------------------------------------
+def test():
+ """
+ Tests the parsing of various supported expressions. Raises
+ an AssertError if the output is not what is expected. Prints the
+ input, expected output, and actual output for all tests.
+ """
+ print("Testing LAParser")
+ testcases = [
+ ("Scalar addition","a = b+c","a=(b+c)"),
+ ("Vector addition","V3_a = V3_b + V3_c","vCopy(a,vAdd(b,c))"),
+ ("Vector addition","V3_a=V3_b+V3_c","vCopy(a,vAdd(b,c))"),
+ ("Matrix addition","M3_a = M3_b + M3_c","mCopy(a,mAdd(b,c))"),
+ ("Matrix addition","M3_a=M3_b+M3_c","mCopy(a,mAdd(b,c))"),
+ ("Scalar subtraction","a = b-c","a=(b-c)"),
+ ("Vector subtraction","V3_a = V3_b - V3_c","vCopy(a,vSubtract(b,c))"),
+ ("Matrix subtraction","M3_a = M3_b - M3_c","mCopy(a,mSubtract(b,c))"),
+ ("Scalar multiplication","a = b*c","a=b*c"),
+ ("Scalar division","a = b/c","a=b/c"),
+ ("Vector multiplication (dot product)","a = V3_b * V3_c","a=vDot(b,c)"),
+ ("Vector multiplication (outer product)","M3_a = V3_b @ V3_c","mCopy(a,vOuterProduct(b,c))"),
+ ("Matrix multiplication","M3_a = M3_b * M3_c","mCopy(a,mMultiply(b,c))"),
+ ("Vector scaling","V3_a = V3_b * c","vCopy(a,vScale(b,c))"),
+ ("Matrix scaling","M3_a = M3_b * c","mCopy(a,mScale(b,c))"),
+ ("Matrix by vector multiplication","V3_a = M3_b * V3_c","vCopy(a,mvMultiply(b,c))"),
+ ("Scalar exponentiation","a = b^c","a=pow(b,c)"),
+ ("Matrix inversion","M3_a = M3_b^-1","mCopy(a,mInverse(b))"),
+ ("Matrix transpose","M3_a = M3_b^T","mCopy(a,mTranspose(b))"),
+ ("Matrix determinant","a = M3_b^Det","a=mDeterminant(b)"),
+ ("Vector magnitude squared","a = V3_b^Mag2","a=vMagnitude2(b)"),
+ ("Vector magnitude","a = V3_b^Mag","a=sqrt(vMagnitude2(b))"),
+ ("Complicated expression", "myscalar = (M3_amatrix * V3_bvector)^Mag + 5*(-xyz[i] + 2.03^2)","myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(-xyz[i]+pow(2.03,2)))"),
+ ("Complicated Multiline", "myscalar = \n(M3_amatrix * V3_bvector)^Mag +\n 5*(xyz + 2.03^2)","myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(xyz+pow(2.03,2)))")
+
+ ]
+
+
+ all_passed = [True]
+
+ def post_test(test, parsed):
+
+ # copy exprStack to evaluate and clear before running next test
+ parsed_stack = exprStack[:]
+ exprStack.clear()
+
+ name, testcase, expected = next(tc for tc in testcases if tc[1] == test)
+
+ this_test_passed = False
+ try:
+ try:
+ result=_evaluateStack(parsed_stack)
+ except TypeError:
+ print("Unsupported operation on right side of '%s'.\nCheck for missing or incorrect tags on non-scalar operands."%input_string, file=sys.stderr)
+ raise
+ except UnaryUnsupportedError:
+ print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
+ raise
+
+ # Create final assignment and print it.
+ if debug_flag: print("var=",targetvar)
+ if targetvar != None:
+ try:
+ result = _assignfunc(targetvar,result)
+ except TypeError:
+ print("Left side tag does not match right side of '%s'"%input_string, file=sys.stderr)
+ raise
+ except UnaryUnsupportedError:
+ print("Unary negation is not supported for vectors and matrices: '%s'"%input_string, file=sys.stderr)
+ raise
+
+ else:
+ print("Empty left side in '%s'"%input_string, file=sys.stderr)
+ raise TypeError
+
+ parsed['result'] = result
+ parsed['passed'] = this_test_passed = result == expected
+
+ finally:
+ all_passed[0] = all_passed[0] and this_test_passed
+ print('\n' + name)
+
+ equation.runTests((t[1] for t in testcases), postParse=post_test)
+
+
+ ##TODO: Write testcases with invalid expressions and test that the expected
+ ## exceptions are raised.
+
+ print("Tests completed!")
+ print("PASSED" if all_passed[0] else "FAILED")
+ assert all_passed[0]
+
+##----------------------------------------------------------------------------
+## The following is executed only when this module is executed as
+## command line script. It runs a small test suite (see above)
+## and then enters an interactive loop where you
+## can enter expressions and see the resulting C code as output.
+
+if __name__ == '__main__':
+
+ import sys
+ if not sys.flags.interactive:
+ # run testcases
+ test()
+ sys.exit(0)
+
+ # input_string
+ input_string=''
+
+ # Display instructions on how to use the program interactively
+ interactiveusage = """
+ Entering interactive mode:
+ Type in an equation to be parsed or 'quit' to exit the program.
+ Type 'debug on' to print parsing details as each string is processed.
+ Type 'debug off' to stop printing parsing details
+ """
+ print(interactiveusage)
+ input_string = input("> ")
+
+ while input_string != 'quit':
+ if input_string == "debug on":
+ debug_flag = True
+ elif input_string == "debug off":
+ debug_flag = False
+ else:
+ try:
+ print(parse(input_string))
+ except Exception:
+ pass
+
+ # obtain new input string
+ input_string = input("> ")
+
+ # if user types 'quit' then say goodbye
+ print("Good bye!")
+ import os
+ os._exit(0)
+