summaryrefslogtreecommitdiff
path: root/scss/ast.py
blob: 16a45185fb050e3a8c7a28b3c72038fec4ea13f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""Syntax tree for parsed Sass expressions.

The overall structure for a Sass file uses a different kind of AST; have a look
at :mod:`scss.blockast`.
"""
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals

from functools import partial
import logging
import operator

try:
    from collections import OrderedDict
except ImportError:
    # Backport
    from ordereddict import OrderedDict

import six

from scss.cssdefs import COLOR_NAMES
from scss.cssdefs import is_builtin_css_function
from scss.types import Boolean
from scss.types import Color
from scss.types import Function
from scss.types import List
from scss.types import Map
from scss.types import Null
from scss.types import String
from scss.types import Undefined
from scss.types import Url
from scss.types import Value
from scss.util import normalize_var


log = logging.getLogger(__name__)


class Expression(object):
    def __repr__(self):
        return '<%s()>' % (self.__class__.__name__)

    def evaluate(self, calculator, divide=False):
        """Evaluate this AST node, and return a Sass value.

        `divide` indicates whether a descendant node representing a division
        should be forcibly treated as a division.  See the commentary in
        `BinaryOp`.
        """
        raise NotImplementedError


class Parentheses(Expression):
    """An expression of the form `(foo)`.

    Only exists to force a slash to be interpreted as division when contained
    within parentheses.
    """
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.contents))

    def __init__(self, contents):
        self.contents = contents

    def evaluate(self, calculator, divide=False):
        return self.contents.evaluate(calculator, divide=True)


class UnaryOp(Expression):
    def __repr__(self):
        return '<%s(%s, %s)>' % (self.__class__.__name__, repr(self.op), repr(self.operand))

    def __init__(self, op, operand):
        self.op = op
        self.operand = operand

    def evaluate(self, calculator, divide=False):
        return self.op(self.operand.evaluate(calculator, divide=True))


class BinaryOp(Expression):
    OPERATORS = {
        operator.lt: '<',
        operator.gt: '>',
        operator.le: '<=',
        operator.ge: '>=',
        operator.eq: '==',
        operator.eq: '!=',
        operator.add: '+',
        operator.sub: '-',
        operator.mul: '*',
        operator.truediv: '/',
        operator.mod: '%',
    }

    def __repr__(self):
        return '<%s(%s, %s, %s)>' % (self.__class__.__name__, repr(self.op), repr(self.left), repr(self.right))

    def __init__(self, op, left, right):
        self.op = op
        self.left = left
        self.right = right

    def evaluate(self, calculator, divide=False):
        left = self.left.evaluate(calculator, divide=True)
        right = self.right.evaluate(calculator, divide=True)

        # Determine whether to actually evaluate, or just print the operator
        # literally.
        literal = False

        # If either operand starts with an interpolation, treat the whole
        # shebang as literal.
        if any(isinstance(operand, Interpolation) and operand.parts[0] == ''
                for operand in (self.left, self.right)):
            literal = True

        # Special handling of division: treat it as a literal slash if both
        # operands are literals, there are no parentheses, and this isn't part
        # of a bigger expression.
        # The first condition is covered by the type check.  The other two are
        # covered by the `divide` argument: other nodes that perform arithmetic
        # will pass in True, indicating that this should always be a division.
        elif (
            self.op is operator.truediv
            and not divide
            and isinstance(self.left, Literal)
            and isinstance(self.right, Literal)
        ):
            literal = True

        if literal:
            # TODO we don't currently preserve the spacing, whereas Sass
            # remembers whether there was space on either side
            op = " {0} ".format(self.OPERATORS[self.op])
            return String.unquoted(left.render() + op + right.render())

        return self.op(left, right)


class AnyOp(Expression):
    def __repr__(self):
        return '<%s(*%s)>' % (self.__class__.__name__, repr(self.operands))

    def __init__(self, *operands):
        self.operands = operands

    def evaluate(self, calculator, divide=False):
        for operand in self.operands:
            value = operand.evaluate(calculator, divide=True)
            if value:
                return value
        return value


class AllOp(Expression):
    def __repr__(self):
        return '<%s(*%s)>' % (self.__class__.__name__, repr(self.operands))

    def __init__(self, *operands):
        self.operands = operands

    def evaluate(self, calculator, divide=False):
        for operand in self.operands:
            value = operand.evaluate(calculator, divide=True)
            if not value:
                return value
        return value


class NotOp(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.operand))

    def __init__(self, operand):
        self.operand = operand

    def evaluate(self, calculator, divide=False):
        operand = self.operand.evaluate(calculator, divide=True)
        return Boolean(not(operand))


class CallOp(Expression):
    def __repr__(self):
        return '<%s(%s, %s)>' % (self.__class__.__name__, repr(self.func_name), repr(self.argspec))

    def __init__(self, func_name, argspec):
        self.func_name = func_name
        self.argspec = argspec

    def evaluate(self, calculator, divide=False):
        # TODO bake this into the context and options "dicts", plus library
        func_name = normalize_var(self.func_name)

        argspec_node = self.argspec

        # Turn the pairs of arg tuples into *args and **kwargs
        # TODO unclear whether this is correct -- how does arg, kwarg, arg
        # work?
        args, kwargs = argspec_node.evaluate_call_args(calculator)
        argspec_len = len(args) + len(kwargs)

        # Translate variable names to Python identifiers
        # TODO what about duplicate kw names?  should this happen in argspec?
        # how does that affect mixins?
        kwargs = dict(
            (key.lstrip('$').replace('-', '_'), value)
            for key, value in kwargs.items())

        # TODO merge this with the library
        funct = None
        try:
            funct = calculator.namespace.function(func_name, argspec_len)
        except KeyError:
            try:
                # DEVIATION: Fall back to single parameter
                funct = calculator.namespace.function(func_name, 1)
                args = [List(args, use_comma=True)]
            except KeyError:
                if not is_builtin_css_function(func_name):
                    log.error("Function not found: %s:%s", func_name, argspec_len, extra={'stack': True})

        if funct:
            if getattr(funct, '_pyscss_needs_namespace', False):
                # @functions and some Python functions take the namespace as an
                # extra first argument
                ret = funct(calculator.namespace, *args, **kwargs)
            else:
                ret = funct(*args, **kwargs)
            if not isinstance(ret, Value):
                raise TypeError("Expected Sass type as return value, got %r" % (ret,))
            return ret

        # No matching function found, so render the computed values as a CSS
        # function call.  Slurpy arguments are expanded and named arguments are
        # unsupported.
        if kwargs:
            raise TypeError("The CSS function %s doesn't support keyword arguments." % (func_name,))

        # TODO another candidate for a "function call" sass type
        rendered_args = [arg.render() for arg in args]

        return String(
            "%s(%s)" % (func_name, ", ".join(rendered_args)),
            quotes=None)


# TODO this class should delegate the unescaping to the type, rather than
# burying it in the parser
class Interpolation(Expression):
    """A string that may contain any number of interpolations:

        foo#{...}bar#{...}baz
    """
    def __init__(self, parts, quotes=None, type=String, **kwargs):
        self.parts = parts
        self.quotes = quotes
        self.type = type
        self.kwargs = kwargs

    def __repr__(self):
        repr_parts = []
        for i, part in enumerate(self.parts):
            if i % 2 == 0:
                if part:
                    repr_parts.append(repr(part))
            else:
                repr_parts.append('#{' + repr(part) + '}')

        return "<{0} {1}>".format(type(self).__name__, " ".join(repr_parts))

    @classmethod
    def maybe(cls, parts, quotes=None, type=String, **kwargs):
        """Returns an interpolation if there are multiple parts, otherwise a
        plain Literal.  This keeps the AST somewhat simpler, but also is the
        only way `Literal.from_bareword` gets called.
        """
        if len(parts) > 1:
            return cls(parts, quotes=quotes, type=type, **kwargs)

        if quotes is None and type is String:
            return Literal.from_bareword(parts[0])

        return Literal(type(parts[0], quotes=quotes, **kwargs))

    def evaluate(self, calculator, divide=False):
        result = []
        for i, part in enumerate(self.parts):
            if i % 2 == 0:
                # First part and other odd parts are literal string
                result.append(part)
            else:
                # Interspersed (even) parts are nodes
                value = part.evaluate(calculator, divide)
                # TODO need to know whether to pass `compress` here
                result.append(value.render_interpolated())

        return self.type(''.join(result), quotes=self.quotes, **self.kwargs)



class Literal(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.value))

    def __init__(self, value):
        self.value = value

    @classmethod
    def from_bareword(cls, word):
        if word in COLOR_NAMES:
            value = Color.from_name(word)
        elif word == 'null':
            value = Null()
        elif word == 'undefined':
            value = Undefined()
        elif word == 'true':
            value = Boolean(True)
        elif word == 'false':
            value = Boolean(False)
        else:
            value = String(word, quotes=None)

        return cls(value)

    def evaluate(self, calculator, divide=False):
        if (isinstance(self.value, Undefined) and
                calculator.undefined_variables_fatal):
            raise SyntaxError("Undefined literal.")

        return self.value


class Variable(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.name))

    def __init__(self, name):
        self.name = name

    def evaluate(self, calculator, divide=False):
        try:
            value = calculator.namespace.variable(self.name)
        except KeyError:
            if calculator.undefined_variables_fatal:
                raise SyntaxError("Undefined variable: '%s'." % self.name)
            else:
                log.error("Undefined variable '%s'", self.name, extra={'stack': True})
                return Undefined()
        else:
            if isinstance(value, six.string_types):
                log.warn(
                    "Expected a Sass type for the value of {0}, "
                    "but found a string expression: {1!r}"
                    .format(self.name, value)
                )
                evald = calculator.evaluate_expression(value)
                if evald is not None:
                    return evald
            return value


class ListLiteral(Expression):
    def __repr__(self):
        return '<%s(%s, comma=%s)>' % (self.__class__.__name__, repr(self.items), repr(self.comma))

    def __init__(self, items, comma=True):
        self.items = items
        self.comma = comma

    def evaluate(self, calculator, divide=False):
        items = [item.evaluate(calculator, divide=divide) for item in self.items]

        # Whether this is a "plain" literal matters for null removal: nulls are
        # left alone if this is a completely vanilla CSS property
        literal = True
        if divide:
            # TODO sort of overloading "divide" here...  rename i think
            literal = False
        elif not all(isinstance(item, Literal) for item in self.items):
            literal = False

        return List(items, use_comma=self.comma, literal=literal)


class MapLiteral(Expression):
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.pairs))

    def __init__(self, pairs):
        self.pairs = tuple((var, value) for var, value in pairs if value is not None)

    def evaluate(self, calculator, divide=False):
        scss_pairs = []
        for key, value in self.pairs:
            scss_pairs.append((
                key.evaluate(calculator),
                value.evaluate(calculator),
            ))

        return Map(scss_pairs)


class ArgspecLiteral(Expression):
    """Contains pairs of argument names and values, as parsed from a function
    definition or function call.

    Note that the semantics are somewhat ambiguous.  Consider parsing:

        $foo, $bar: 3

    If this appeared in a function call, $foo would refer to a value; if it
    appeared in a function definition, $foo would refer to an existing
    variable.  This it's up to the caller to use the right iteration function.
    """
    def __repr__(self):
        return '<%s(%s)>' % (self.__class__.__name__, repr(self.argpairs))

    def __init__(self, argpairs, slurp=None):
        # argpairs is a list of 2-tuples, parsed as though this were a function
        # call, so (variable name as string or None, default value as AST
        # node).
        # slurp is the name of a variable to receive slurpy arguments.
        self.argpairs = tuple(argpairs)
        if slurp is all:
            # DEVIATION: special syntax to allow injecting arbitrary arguments
            # from the caller to the callee
            self.inject = True
            self.slurp = None
        elif slurp:
            self.inject = False
            self.slurp = Variable(slurp)
        else:
            self.inject = False
            self.slurp = None

    def iter_list_argspec(self):
        yield None, ListLiteral(zip(*self.argpairs)[1])

    def iter_def_argspec(self):
        """Interpreting this literal as a function definition, yields pairs of
        (variable name as a string, default value as an AST node or None).
        """
        started_kwargs = False
        seen_vars = set()

        for var, value in self.argpairs:
            if var is None:
                # value is actually the name
                var = value
                value = None

                if started_kwargs:
                    raise SyntaxError(
                        "Required argument %r must precede optional arguments"
                        % (var.name,))

            else:
                started_kwargs = True

            if not isinstance(var, Variable):
                raise SyntaxError("Expected variable name, got %r" % (var,))

            if var.name in seen_vars:
                raise SyntaxError("Duplicate argument %r" % (var.name,))
            seen_vars.add(var.name)

            yield var.name, value

    def evaluate_call_args(self, calculator):
        """Interpreting this literal as a function call, return a 2-tuple of
        ``(args, kwargs)``.
        """
        args = []
        kwargs = OrderedDict()  # Sass kwargs preserve order
        for var_node, value_node in self.argpairs:
            value = value_node.evaluate(calculator, divide=True)
            if var_node is None:
                # Positional
                args.append(value)
            else:
                # Named
                if not isinstance(var_node, Variable):
                    raise TypeError(
                        "Expected variable name, got {0!r}".format(var_node))
                kwargs[var_node.name] = value

        # Slurpy arguments go on the end of the args
        if self.slurp:
            args.extend(self.slurp.evaluate(calculator, divide=True))

        return args, kwargs


class FunctionLiteral(Expression):
    """Wraps an existing AST node in a literal (unevaluated) function call."""
    def __init__(self, child, function_name):
        self.child = child
        self.function_name = function_name

    def evaluate(self, calculator, divide=False):
        child = self.child.evaluate(calculator, divide)
        if isinstance(child, String):
            contents = child.value
            quotes = child.quotes
        else:
            # TODO compress
            contents = child.render()
            quotes = None

        # TODO unclear if this is the right place for this logic, or if it
        # should go in the Function constructor, or should be passed in
        # explicitly by the grammar, or even if Url should go away entirely
        if self.function_name == "url":
            return Url(contents, quotes=quotes)
        else:
            return Function(contents, self.function_name, quotes=quotes)


class AlphaFunctionLiteral(Expression):
    """Wraps an existing AST node in a literal (unevaluated) function call,
    prepending "opacity=" to the contents.
    """
    def __init__(self, child):
        self.child = child

    def evaluate(self, calculator, divide=False):
        child = self.child.evaluate(calculator, divide)
        if isinstance(child, String):
            contents = child.value
        else:
            # TODO compress
            contents = child.render()
        return Function('opacity=' + contents, 'alpha', quotes=None)


class TernaryOp(Expression):
    """Sass implements this with a function:

        prop: if(condition, true-value, false-value);

    However, the second and third arguments are guaranteed not to be evaluated
    unless necessary.  Functions always receive evaluated arguments, so this is
    a syntactic construct in disguise.
    """
    def __repr__(self):
        return '<%s(%r, %r, %r)>' % (
            self.__class__.__name__,
            self.condition,
            self.true_expression,
            self.false_expression,
        )

    def __init__(self, list_literal):
        args = list_literal.items
        if len(args) != 3:
            raise SyntaxError("if() must have exactly 3 arguments")
        self.condition, self.true_expression, self.false_expression = args

    def evaluate(self, calculator, divide=False):
        if self.condition.evaluate(calculator, divide=True):
            return self.true_expression.evaluate(calculator, divide=True)
        else:
            return self.false_expression.evaluate(calculator, divide=True)