summaryrefslogtreecommitdiff
path: root/docs/persistence.rst
blob: 43c561768a9d7bff6a87dedeca6ac6ca55d27a7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
.. _persistence: Persistence

===========
Persistence
===========

RDFLib provides an :class:`abstracted Store API <rdflib.store.Store>`
for persistence of RDF and Notation 3. The
:class:`~rdflib.graph.Graph` class works with instances of this API
(as the first argument to its constructor) for triple-based management
of an RDF store including: garbage collection, transaction management,
update, pattern matching, removal, length, and database management
(:meth:`~rdflib.graph.Graph.open` / :meth:`~rdflib.graph.Graph.close`
/ :meth:`~rdflib.graph.Graph.destroy`).

Additional persistence mechanisms can be supported by implementing
this API for a different store.

Stores currently shipped with core RDFLib
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

* :class:`Memory <rdflib.plugins.stores.memory.Memory>` - not persistent!
* :class:`~rdflib.plugins.stores.berkeleydb.BerkeleyDB` - on disk persistence via Python's `berkeleydb package <https://pypi.org/project/berkeleydb/>`_
* :class:`~rdflib.plugins.stores.sparqlstore.SPARQLStore` - a read-only wrapper around a remote SPARQL Query endpoint
* :class:`~rdflib.plugins.stores.sparqlstore.SPARQLUpdateStore` - a read-write wrapper around a remote SPARQL query/update endpoint pair

Usage
^^^^^

In most cases, passing the name of the store to the Graph constructor is enough:

.. code-block:: python

    from rdflib import Graph

    graph = Graph(store='BerkeleyDB')


Most stores offering on-disk persistence will need to be opened before reading or writing.
When peristing a triplestore, rather than a ConjuntiveGraph quadstore, you need to specify
an identifier with which you can open the graph:

.. code-block:: python

   graph = Graph('BerkeleyDB', identifier='mygraph')

   # first time create the store:
   graph.open('/home/user/data/myRDFLibStore', create=True)
   
   # work with the graph: 
   data = """
          PREFIX : <https://example.org/>

          :a :b :c .
          :d :e :f .
          :d :g :h .
          """
   graph.parse(data=data, format="ttl")

   # when done!
   graph.close()



When done, :meth:`~rdflib.graph.Graph.close` must be called to free the resources associated with the store. 
	

Additional store plugins
^^^^^^^^^^^^^^^^^^^^^^^^

More store implementations are available in RDFLib extension projects: 

 * `rdflib-sqlalchemy <https://github.com/RDFLib/rdflib-sqlalchemy>`_, which supports stored on a wide-variety of RDBMs backends, 
 * `rdflib-leveldb <https://github.com/RDFLib/rdflib-leveldb>`_ - a store on to of Google's `LevelDB <https://code.google.com/p/leveldb/>`_ key-value store. 
 * `rdflib-kyotocabinet <https://github.com/RDFLib/rdflib-kyotocabinet>`_ - a store on to of the `Kyoto Cabinet <http://fallabs.com/kyotocabinet/>`_ key-value store. 

Example
^^^^^^^

* :mod:`examples.berkeleydb_example` contains an example for using a BerkeleyDB store.
* :mod:`examples.sparqlstore_example` contains an example for using a SPARQLStore.