summaryrefslogtreecommitdiff
path: root/src/gui/painting/qbezier.cpp
blob: 54c81ba3cf43221a45d8b5994c6d668ed0170c2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights.  These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qbezier_p.h"
#include <qdebug.h>
#include <qline.h>
#include <qpolygon.h>
#include <qvector.h>
#include <qlist.h>
#include <qmath.h>

#include <private/qnumeric_p.h>
#include <private/qmath_p.h>

QT_BEGIN_NAMESPACE

//#define QDEBUG_BEZIER

#ifdef FLOAT_ACCURACY
#define INV_EPS (1L<<23)
#else
/* The value of 1.0 / (1L<<14) is enough for most applications */
#define INV_EPS (1L<<14)
#endif

#ifndef M_SQRT2
#define M_SQRT2	1.41421356237309504880
#endif

#define log2(x) (qLn(x)/qLn(2.))

static inline qreal log4(qreal x)
{
    return qreal(0.5) * log2(x);
}

/*!
  \internal
*/
QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
                            const QPointF &p3, const QPointF &p4)
{
    QBezier b;
    b.x1 = p1.x();
    b.y1 = p1.y();
    b.x2 = p2.x();
    b.y2 = p2.y();
    b.x3 = p3.x();
    b.y3 = p3.y();
    b.x4 = p4.x();
    b.y4 = p4.y();
    return b;
}

/*!
  \internal
*/
QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const
{
    // flattening is done by splitting the bezier until we can replace the segment by a straight
    // line. We split further until the control points are close enough to the line connecting the
    // boundary points.
    //
    // the Distance of a point p from a line given by the points (a,b) is given by:
    //
    // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
    //
    // We can stop splitting if both control points are close enough to the line.
    // To make the algorithm faster we use the manhattan length of the line.

    QPolygonF polygon;
    polygon.append(QPointF(x1, y1));
    addToPolygon(&polygon, bezier_flattening_threshold);
    return polygon;
}

QBezier QBezier::mapBy(const QTransform &transform) const
{
    return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4()));
}

QBezier QBezier::getSubRange(qreal t0, qreal t1) const
{
    QBezier result;
    QBezier temp;

    // cut at t1
    if (qFuzzyIsNull(t1 - qreal(1.))) {
        result = *this;
    } else {
        temp = *this;
        temp.parameterSplitLeft(t1, &result);
    }

    // cut at t0
    if (!qFuzzyIsNull(t0))
        result.parameterSplitLeft(t0 / t1, &temp);

    return result;
}

static inline int quadraticRoots(qreal a, qreal b, qreal c,
                                 qreal *x1, qreal *x2)
{
    if (qFuzzyIsNull(a)) {
        if (qFuzzyIsNull(b))
            return 0;
        *x1 = *x2 = (-c / b);
        return 1;
    } else {
        const qreal det = b * b - 4 * a * c;
        if (qFuzzyIsNull(det)) {
            *x1 = *x2 = -b / (2 * a);
            return 1;
        }
        if (det > 0) {
            if (qFuzzyIsNull(b)) {
                *x2 = qSqrt(-c / a);
                *x1 = -(*x2);
                return 2;
            }
            const qreal stableA = b / (2 * a);
            const qreal stableB = c / (a * stableA * stableA);
            const qreal stableC = -1 - qSqrt(1 - stableB);
            *x2 = stableA * stableC;
            *x1 = (stableA * stableB) / stableC;
            return 2;
        } else
            return 0;
    }
}

static inline bool findInflections(qreal a, qreal b, qreal c,
                                   qreal *t1 , qreal *t2, qreal *tCups)
{
    qreal r1 = 0, r2 = 0;

    short rootsCount = quadraticRoots(a, b, c, &r1, &r2);

    if (rootsCount >= 1) {
        if (r1 < r2) {
            *t1 = r1;
            *t2 = r2;
        } else {
            *t1 = r2;
            *t2 = r1;
        }
        if (!qFuzzyIsNull(a))
            *tCups = 0.5 * (-b / a);
        else
            *tCups = 2;

        return true;
    }

    return false;
}


void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const
{
    QBezier beziers[32];
    beziers[0] = *this;
    QBezier *b = beziers;

    while (b >= beziers) {
        // check if we can pop the top bezier curve from the stack
        qreal y4y1 = b->y4 - b->y1;
        qreal x4x1 = b->x4 - b->x1;
        qreal l = qAbs(x4x1) + qAbs(y4y1);
        qreal d;
        if (l > 1.) {
            d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
                + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
        } else {
            d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
            l = 1.;
        }
        if (d < bezier_flattening_threshold*l || b == beziers + 31) {
            // good enough, we pop it off and add the endpoint
            polygon->append(QPointF(b->x4, b->y4));
            --b;
        } else {
            // split, second half of the polygon goes lower into the stack
            b->split(b+1, b);
            ++b;
        }
    }
}

QRectF QBezier::bounds() const
{
    qreal xmin = x1;
    qreal xmax = x1;
    if (x2 < xmin)
        xmin = x2;
    else if (x2 > xmax)
        xmax = x2;
    if (x3 < xmin)
        xmin = x3;
    else if (x3 > xmax)
        xmax = x3;
    if (x4 < xmin)
        xmin = x4;
    else if (x4 > xmax)
        xmax = x4;

    qreal ymin = y1;
    qreal ymax = y1;
    if (y2 < ymin)
        ymin = y2;
    else if (y2 > ymax)
        ymax = y2;
    if (y3 < ymin)
        ymin = y3;
    else if (y3 > ymax)
        ymax = y3;
    if (y4 < ymin)
        ymin = y4;
    else if (y4 > ymax)
        ymax = y4;
    return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
}


enum ShiftResult {
    Ok,
    Discard,
    Split,
    Circle
};

static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
{
    const qreal o2 = offset*offset;
    const qreal max_dist_line = threshold*offset*offset;
    const qreal max_dist_normal = threshold*offset;
    const qreal spacing = 0.25;
    for (qreal i = spacing; i < 0.99; i += spacing) {
        QPointF p1 = b1->pointAt(i);
        QPointF p2 = b2->pointAt(i);
        qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
        if (qAbs(d - o2) > max_dist_line)
            return Split;

        QPointF normalPoint = b1->normalVector(i);
        qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
        if (l != 0.) {
            d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
            if (d > max_dist_normal)
                return Split;
        }
    }
    return Ok;
}

static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
{
    int map[4];
    bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
    bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
    bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);

    QPointF points[4];
    int np = 0;
    points[np] = QPointF(orig->x1, orig->y1);
    map[0] = 0;
    ++np;
    if (!p1_p2_equal) {
        points[np] = QPointF(orig->x2, orig->y2);
        ++np;
    }
    map[1] = np - 1;
    if (!p2_p3_equal) {
        points[np] = QPointF(orig->x3, orig->y3);
        ++np;
    }
    map[2] = np - 1;
    if (!p3_p4_equal) {
        points[np] = QPointF(orig->x4, orig->y4);
        ++np;
    }
    map[3] = np - 1;
    if (np == 1)
        return Discard;

    QRectF b = orig->bounds();
    if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
        qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
                  (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
                  (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
                  (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
        qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
                    (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
        if (dot < 0 && dot*dot < 0.8*l)
            // the points are close and reverse dirction. Approximate the whole
            // thing by a semi circle
            return Circle;
    }

    QPointF points_shifted[4];

    QLineF prev = QLineF(QPointF(), points[1] - points[0]);
    QPointF prev_normal = prev.normalVector().unitVector().p2();

    points_shifted[0] = points[0] + offset * prev_normal;

    for (int i = 1; i < np - 1; ++i) {
        QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
        QPointF next_normal = next.normalVector().unitVector().p2();

        QPointF normal_sum = prev_normal + next_normal;

        qreal r = 1.0 + prev_normal.x() * next_normal.x()
                  + prev_normal.y() * next_normal.y();

        if (qFuzzyIsNull(r)) {
            points_shifted[i] = points[i] + offset * prev_normal;
        } else {
            qreal k = offset / r;
            points_shifted[i] = points[i] + k * normal_sum;
        }

        prev_normal = next_normal;
    }

    points_shifted[np - 1] = points[np - 1] + offset * prev_normal;

    *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
                                   points_shifted[map[2]], points_shifted[map[3]]);

    return good_offset(orig, shifted, offset, threshold);
}

// This value is used to determine the length of control point vectors
// when approximating arc segments as curves. The factor is multiplied
// with the radius of the circle.
#define KAPPA 0.5522847498


static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
{
    QPointF normals[3];

    normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
    qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
    if (qFuzzyIsNull(dist))
        return false;
    normals[0] /= dist;
    normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
    dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
    if (qFuzzyIsNull(dist))
        return false;
    normals[2] /= dist;

    normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
    normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());

    qreal angles[2];
    qreal sign = 1.;
    for (int i = 0; i < 2; ++i) {
        qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
        if (cos_a > 1.)
            cos_a = 1.;
        if (cos_a < -1.)
            cos_a = -1;
        angles[i] = qAcos(cos_a)/Q_PI;
    }

    if (angles[0] + angles[1] > 1.) {
        // more than 180 degrees
        normals[1] = -normals[1];
        angles[0] = 1. - angles[0];
        angles[1] = 1. - angles[1];
        sign = -1.;

    }

    QPointF circle[3];
    circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
    circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
    circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;

    for (int i = 0; i < 2; ++i) {
        qreal kappa = 2.*KAPPA * sign * offset * angles[i];

        o->x1 = circle[i].x();
        o->y1 = circle[i].y();
        o->x2 = circle[i].x() - normals[i].y()*kappa;
        o->y2 = circle[i].y() + normals[i].x()*kappa;
        o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
        o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
        o->x4 = circle[i+1].x();
        o->y4 = circle[i+1].y();

        ++o;
    }
    return true;
}

int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
{
    Q_ASSERT(curveSegments);
    Q_ASSERT(maxSegments > 0);

    if (x1 == x2 && x1 == x3 && x1 == x4 &&
        y1 == y2 && y1 == y3 && y1 == y4)
        return 0;

    --maxSegments;
    QBezier beziers[10];
redo:
    beziers[0] = *this;
    QBezier *b = beziers;
    QBezier *o = curveSegments;

    while (b >= beziers) {
        int stack_segments = b - beziers + 1;
        if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
            threshold *= 1.5;
            if (threshold > 2.)
                goto give_up;
            goto redo;
        }
        ShiftResult res = shift(b, o, offset, threshold);
        if (res == Discard) {
            --b;
        } else if (res == Ok) {
            ++o;
            --b;
            continue;
        } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
            // add semi circle
            if (addCircle(b, offset, o))
                o += 2;
            --b;
        } else {
            b->split(b+1, b);
            ++b;
        }
    }

give_up:
    while (b >= beziers) {
        ShiftResult res = shift(b, o, offset, threshold);

        // if res isn't Ok or Split then *o is undefined
        if (res == Ok || res == Split)
            ++o;

        --b;
    }

    Q_ASSERT(o - curveSegments <= maxSegments);
    return o - curveSegments;
}

#ifdef QDEBUG_BEZIER
static QDebug operator<<(QDebug dbg, const QBezier &bz)
{
    dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
        << '[' << bz.x2 <<", " << bz.y2 << "], "
        << '[' << bz.x3 <<", " << bz.y3 << "], "
        << '[' << bz.x4 <<", " << bz.y4 << ']';
    return dbg;
}
#endif

static inline void splitBezierAt(const QBezier &bez, qreal t,
                                 QBezier *left, QBezier *right)
{
    left->x1 = bez.x1;
    left->y1 = bez.y1;

    left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
    left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );

    left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
    left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot

    right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
    right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );

    right->x2 = left->x3 + t * ( right->x3 - left->x3);
    right->y2 = left->y3 + t * ( right->y3 - left->y3);

    left->x3 = left->x2 + t * ( left->x3 - left->x2 );
    left->y3 = left->y2 + t * ( left->y3 - left->y2 );

    left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
    left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);

    right->x4 = bez.x4;
    right->y4 = bez.y4;
}

qreal QBezier::length(qreal error) const
{
    qreal length = 0.0;

    addIfClose(&length, error);

    return length;
}

void QBezier::addIfClose(qreal *length, qreal error) const
{
    QBezier left, right;     /* bez poly splits */

    qreal len = 0.0;        /* arc length */
    qreal chord;            /* chord length */

    len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
    len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
    len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();

    chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();

    if((len-chord) > error) {
        split(&left, &right);                 /* split in two */
        left.addIfClose(length, error);       /* try left side */
        right.addIfClose(length, error);      /* try right side */
        return;
    }

    *length = *length + len;

    return;
}

qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
{
    qreal py0 = pointAt(t0).y();
    qreal py1 = pointAt(t1).y();

    if (py0 > py1) {
        qSwap(py0, py1);
        qSwap(t0, t1);
    }

    Q_ASSERT(py0 <= py1);

    if (py0 >= y)
        return t0;
    else if (py1 <= y)
        return t1;

    Q_ASSERT(py0 < y && y < py1);

    qreal lt = t0;
    qreal dt;
    do {
        qreal t = 0.5 * (t0 + t1);

        qreal a, b, c, d;
        QBezier::coefficients(t, a, b, c, d);
        qreal yt = a * y1 + b * y2 + c * y3 + d * y4;

        if (yt < y) {
            t0 = t;
            py0 = yt;
        } else {
            t1 = t;
            py1 = yt;
        }
        dt = lt - t;
        lt = t;
    } while (qAbs(dt) > 1e-7);

    return t0;
}

int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
{
    // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
    // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
    // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))

    const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
    const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
    const qreal c = -y1 + y2;

    if (qFuzzyIsNull(a)) {
        if (qFuzzyIsNull(b))
            return 0;

        t0 = -c / b;
        return t0 > 0 && t0 < 1;
    }

    qreal reciprocal = b * b - 4 * a * c;

    if (qFuzzyIsNull(reciprocal)) {
        t0 = -b / (2 * a);
        return t0 > 0 && t0 < 1;
    } else if (reciprocal > 0) {
        qreal temp = qSqrt(reciprocal);

        t0 = (-b - temp)/(2*a);
        t1 = (-b + temp)/(2*a);

        if (t1 < t0)
            qSwap(t0, t1);

        int count = 0;
        qreal t[2] = { 0, 1 };

        if (t0 > 0 && t0 < 1)
            t[count++] = t0;
        if (t1 > 0 && t1 < 1)
            t[count++] = t1;

        t0 = t[0];
        t1 = t[1];

        return count;
    }

    return 0;
}

qreal QBezier::tAtLength(qreal l) const
{
    qreal len = length();
    qreal t   = 1.0;
    const qreal error = (qreal)0.01;
    if (l > len || qFuzzyCompare(l, len))
        return t;

    t *= 0.5;
    //int iters = 0;
    //qDebug()<<"LEN is "<<l<<len;
    qreal lastBigger = 1.;
    while (1) {
        //qDebug()<<"\tt is "<<t;
        QBezier right = *this;
        QBezier left;
        right.parameterSplitLeft(t, &left);
        qreal lLen = left.length();
        if (qAbs(lLen - l) < error)
            break;

        if (lLen < l) {
            t += (lastBigger - t)*.5;
        } else {
            lastBigger = t;
            t -= t*.5;
        }
        //++iters;
    }
    //qDebug()<<"number of iters is "<<iters;
    return t;
}

QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
{
    if (t0 == 0 && t1 == 1)
        return *this;

    QBezier bezier = *this;

    QBezier result;
    bezier.parameterSplitLeft(t0, &result);
    qreal trueT = (t1-t0)/(1-t0);
    bezier.parameterSplitLeft(trueT, &result);

    return result;
}

QT_END_NAMESPACE