summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/arm/assembler-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/assembler-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/assembler-arm.cc363
1 files changed, 238 insertions, 125 deletions
diff --git a/src/3rdparty/v8/src/arm/assembler-arm.cc b/src/3rdparty/v8/src/arm/assembler-arm.cc
index ec28da4..b679efa 100644
--- a/src/3rdparty/v8/src/arm/assembler-arm.cc
+++ b/src/3rdparty/v8/src/arm/assembler-arm.cc
@@ -32,7 +32,7 @@
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
-// Copyright 2011 the V8 project authors. All rights reserved.
+// Copyright 2012 the V8 project authors. All rights reserved.
#include "v8.h"
@@ -52,17 +52,20 @@ unsigned CpuFeatures::found_by_runtime_probing_ = 0;
// Get the CPU features enabled by the build. For cross compilation the
-// preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP_INSTRUCTIONS
+// preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
// can be defined to enable ARMv7 and VFPv3 instructions when building the
// snapshot.
-static uint64_t CpuFeaturesImpliedByCompiler() {
- uint64_t answer = 0;
+static unsigned CpuFeaturesImpliedByCompiler() {
+ unsigned answer = 0;
#ifdef CAN_USE_ARMV7_INSTRUCTIONS
answer |= 1u << ARMv7;
-#endif // def CAN_USE_ARMV7_INSTRUCTIONS
-#ifdef CAN_USE_VFP_INSTRUCTIONS
- answer |= 1u << VFP3 | 1u << ARMv7;
-#endif // def CAN_USE_VFP_INSTRUCTIONS
+#endif // CAN_USE_ARMV7_INSTRUCTIONS
+#ifdef CAN_USE_VFP3_INSTRUCTIONS
+ answer |= 1u << VFP3 | 1u << VFP2 | 1u << ARMv7;
+#endif // CAN_USE_VFP3_INSTRUCTIONS
+#ifdef CAN_USE_VFP2_INSTRUCTIONS
+ answer |= 1u << VFP2;
+#endif // CAN_USE_VFP2_INSTRUCTIONS
#ifdef __arm__
// If the compiler is allowed to use VFP then we can use VFP too in our code
@@ -70,18 +73,21 @@ static uint64_t CpuFeaturesImpliedByCompiler() {
// point support implies VFPv3, see ARM DDI 0406B, page A1-6.
#if defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(__VFP_FP__) \
&& !defined(__SOFTFP__)
- answer |= 1u << VFP3 | 1u << ARMv7;
+ answer |= 1u << VFP3 | 1u << ARMv7 | 1u << VFP2;
#endif // defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(__VFP_FP__)
// && !defined(__SOFTFP__)
-#endif // def __arm__
+#endif // _arm__
+ if (answer & (1u << ARMv7)) {
+ answer |= 1u << UNALIGNED_ACCESSES;
+ }
return answer;
}
void CpuFeatures::Probe() {
- unsigned standard_features = (OS::CpuFeaturesImpliedByPlatform() |
- CpuFeaturesImpliedByCompiler());
+ unsigned standard_features = static_cast<unsigned>(
+ OS::CpuFeaturesImpliedByPlatform()) | CpuFeaturesImpliedByCompiler();
ASSERT(supported_ == 0 || supported_ == standard_features);
#ifdef DEBUG
initialized_ = true;
@@ -101,27 +107,53 @@ void CpuFeatures::Probe() {
// For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
// enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
if (FLAG_enable_vfp3) {
- supported_ |= 1u << VFP3 | 1u << ARMv7;
+ supported_ |= 1u << VFP3 | 1u << ARMv7 | 1u << VFP2;
}
// For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
if (FLAG_enable_armv7) {
supported_ |= 1u << ARMv7;
}
-#else // def __arm__
+
+ if (FLAG_enable_sudiv) {
+ supported_ |= 1u << SUDIV;
+ }
+
+ if (FLAG_enable_movw_movt) {
+ supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
+ }
+#else // __arm__
// Probe for additional features not already known to be available.
if (!IsSupported(VFP3) && OS::ArmCpuHasFeature(VFP3)) {
// This implementation also sets the VFP flags if runtime
- // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
+ // detection of VFP returns true. VFPv3 implies ARMv7 and VFP2, see ARM DDI
// 0406B, page A1-6.
- supported_ |= 1u << VFP3 | 1u << ARMv7;
- found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7;
+ found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7 | 1u << VFP2;
+ } else if (!IsSupported(VFP2) && OS::ArmCpuHasFeature(VFP2)) {
+ found_by_runtime_probing_ |= 1u << VFP2;
}
if (!IsSupported(ARMv7) && OS::ArmCpuHasFeature(ARMv7)) {
- supported_ |= 1u << ARMv7;
found_by_runtime_probing_ |= 1u << ARMv7;
}
+
+ if (!IsSupported(SUDIV) && OS::ArmCpuHasFeature(SUDIV)) {
+ found_by_runtime_probing_ |= 1u << SUDIV;
+ }
+
+ if (!IsSupported(UNALIGNED_ACCESSES) && OS::ArmCpuHasFeature(ARMv7)) {
+ found_by_runtime_probing_ |= 1u << UNALIGNED_ACCESSES;
+ }
+
+ if (OS::GetCpuImplementer() == QUALCOMM_IMPLEMENTER &&
+ OS::ArmCpuHasFeature(ARMv7)) {
+ found_by_runtime_probing_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
+ }
+
+ supported_ |= found_by_runtime_probing_;
#endif
+
+ // Assert that VFP3 implies VFP2 and ARMv7.
+ ASSERT(!IsSupported(VFP3) || (IsSupported(VFP2) && IsSupported(ARMv7)));
}
@@ -292,8 +324,8 @@ static const int kMinimalBufferSize = 4*KB;
Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size)
: AssemblerBase(arg_isolate),
- positions_recorder_(this),
- emit_debug_code_(FLAG_debug_code) {
+ recorded_ast_id_(TypeFeedbackId::None()),
+ positions_recorder_(this) {
if (buffer == NULL) {
// Do our own buffer management.
if (buffer_size <= kMinimalBufferSize) {
@@ -705,12 +737,6 @@ void Assembler::next(Label* L) {
}
-static Instr EncodeMovwImmediate(uint32_t immediate) {
- ASSERT(immediate < 0x10000);
- return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
-}
-
-
// Low-level code emission routines depending on the addressing mode.
// If this returns true then you have to use the rotate_imm and immed_8
// that it returns, because it may have already changed the instruction
@@ -746,7 +772,7 @@ static bool fits_shifter(uint32_t imm32,
}
}
} else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
- if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
+ if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
*instr ^= kCmpCmnFlip;
return true;
}
@@ -754,7 +780,7 @@ static bool fits_shifter(uint32_t imm32,
Instr alu_insn = (*instr & kALUMask);
if (alu_insn == ADD ||
alu_insn == SUB) {
- if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
+ if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
*instr ^= kAddSubFlip;
return true;
}
@@ -775,13 +801,14 @@ static bool fits_shifter(uint32_t imm32,
// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
// space. There is no guarantee that the relocated location can be similarly
// encoded.
-bool Operand::must_use_constant_pool() const {
+bool Operand::must_output_reloc_info(const Assembler* assembler) const {
if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG
if (!Serializer::enabled()) {
Serializer::TooLateToEnableNow();
}
#endif // def DEBUG
+ if (assembler != NULL && assembler->predictable_code_size()) return true;
return Serializer::enabled();
} else if (rmode_ == RelocInfo::NONE) {
return false;
@@ -790,24 +817,28 @@ bool Operand::must_use_constant_pool() const {
}
-bool Operand::is_single_instruction(Instr instr) const {
+static bool use_movw_movt(const Operand& x, const Assembler* assembler) {
+ if (Assembler::use_immediate_embedded_pointer_loads(assembler)) {
+ return true;
+ }
+ if (x.must_output_reloc_info(assembler)) {
+ return false;
+ }
+ return CpuFeatures::IsSupported(ARMv7);
+}
+
+
+bool Operand::is_single_instruction(const Assembler* assembler,
+ Instr instr) const {
if (rm_.is_valid()) return true;
uint32_t dummy1, dummy2;
- if (must_use_constant_pool() ||
+ if (must_output_reloc_info(assembler) ||
!fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
// The immediate operand cannot be encoded as a shifter operand, or use of
// constant pool is required. For a mov instruction not setting the
// condition code additional instruction conventions can be used.
if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
- if (must_use_constant_pool() ||
- !CpuFeatures::IsSupported(ARMv7)) {
- // mov instruction will be an ldr from constant pool (one instruction).
- return true;
- } else {
- // mov instruction will be a mov or movw followed by movt (two
- // instructions).
- return false;
- }
+ return !use_movw_movt(*this, assembler);
} else {
// If this is not a mov or mvn instruction there will always an additional
// instructions - either mov or ldr. The mov might actually be two
@@ -823,6 +854,29 @@ bool Operand::is_single_instruction(Instr instr) const {
}
+void Assembler::move_32_bit_immediate(Condition cond,
+ Register rd,
+ SBit s,
+ const Operand& x) {
+ if (rd.code() != pc.code() && s == LeaveCC) {
+ if (use_movw_movt(x, this)) {
+ if (x.must_output_reloc_info(this)) {
+ RecordRelocInfo(x.rmode_, x.imm32_, DONT_USE_CONSTANT_POOL);
+ // Make sure the movw/movt doesn't get separated.
+ BlockConstPoolFor(2);
+ }
+ emit(cond | 0x30*B20 | rd.code()*B12 |
+ EncodeMovwImmediate(x.imm32_ & 0xffff));
+ movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
+ return;
+ }
+ }
+
+ RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
+ ldr(rd, MemOperand(pc, 0), cond);
+}
+
+
void Assembler::addrmod1(Instr instr,
Register rn,
Register rd,
@@ -833,7 +887,7 @@ void Assembler::addrmod1(Instr instr,
// Immediate.
uint32_t rotate_imm;
uint32_t immed_8;
- if (x.must_use_constant_pool() ||
+ if (x.must_output_reloc_info(this) ||
!fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
// The immediate operand cannot be encoded as a shifter operand, so load
// it first to register ip and change the original instruction to use ip.
@@ -842,24 +896,19 @@ void Assembler::addrmod1(Instr instr,
CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
Condition cond = Instruction::ConditionField(instr);
if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
- if (x.must_use_constant_pool() ||
- !CpuFeatures::IsSupported(ARMv7)) {
- RecordRelocInfo(x.rmode_, x.imm32_);
- ldr(rd, MemOperand(pc, 0), cond);
- } else {
- // Will probably use movw, will certainly not use constant pool.
- mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
- movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
- }
+ move_32_bit_immediate(cond, rd, LeaveCC, x);
} else {
- // If this is not a mov or mvn instruction we may still be able to avoid
- // a constant pool entry by using mvn or movw.
- if (!x.must_use_constant_pool() &&
- (instr & kMovMvnMask) != kMovMvnPattern) {
- mov(ip, x, LeaveCC, cond);
- } else {
- RecordRelocInfo(x.rmode_, x.imm32_);
+ if ((instr & kMovMvnMask) == kMovMvnPattern) {
+ // Moves need to use a constant pool entry.
+ RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
ldr(ip, MemOperand(pc, 0), cond);
+ } else if (x.must_output_reloc_info(this)) {
+ // Otherwise, use most efficient form of fetching from constant pool.
+ move_32_bit_immediate(cond, ip, LeaveCC, x);
+ } else {
+ // If this is not a mov or mvn instruction we may still be able to
+ // avoid a constant pool entry by using mvn or movw.
+ mov(ip, x, LeaveCC, cond);
}
addrmod1(instr, rn, rd, Operand(ip));
}
@@ -1166,6 +1215,9 @@ void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
ASSERT(immediate < 0x10000);
+ // May use movw if supported, but on unsupported platforms will try to use
+ // equivalent rotated immed_8 value and other tricks before falling back to a
+ // constant pool load.
mov(reg, Operand(immediate), LeaveCC, cond);
}
@@ -1195,6 +1247,22 @@ void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
}
+void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
+ Condition cond) {
+ ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
+ emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
+ src2.code()*B8 | B7 | B4 | src1.code());
+}
+
+
+void Assembler::sdiv(Register dst, Register src1, Register src2,
+ Condition cond) {
+ ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
+ emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
+ src2.code()*B8 | B4 | src1.code());
+}
+
+
void Assembler::mul(Register dst, Register src1, Register src2,
SBit s, Condition cond) {
ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
@@ -1379,7 +1447,7 @@ void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
// Immediate.
uint32_t rotate_imm;
uint32_t immed_8;
- if (src.must_use_constant_pool() ||
+ if (src.must_output_reloc_info(this) ||
!fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
// Immediate operand cannot be encoded, load it first to register ip.
RecordRelocInfo(src.rmode_, src.imm32_);
@@ -1656,7 +1724,7 @@ void Assembler::vldr(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-628.
// cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
// Vdst(15-12) | 1011(11-8) | offset
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
int u = 1;
if (offset < 0) {
offset = -offset;
@@ -1698,7 +1766,7 @@ void Assembler::vldr(const SwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-628.
// cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
// Vdst(15-12) | 1010(11-8) | offset
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
int u = 1;
if (offset < 0) {
offset = -offset;
@@ -1742,7 +1810,7 @@ void Assembler::vstr(const DwVfpRegister src,
// Instruction details available in ARM DDI 0406A, A8-786.
// cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
// Vsrc(15-12) | 1011(11-8) | (offset/4)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
int u = 1;
if (offset < 0) {
offset = -offset;
@@ -1783,7 +1851,7 @@ void Assembler::vstr(const SwVfpRegister src,
// Instruction details available in ARM DDI 0406A, A8-786.
// cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
// Vdst(15-12) | 1010(11-8) | (offset/4)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
int u = 1;
if (offset < 0) {
offset = -offset;
@@ -1814,7 +1882,7 @@ void Assembler::vstr(const SwVfpRegister src,
const Condition cond) {
ASSERT(!operand.rm().is_valid());
ASSERT(operand.am_ == Offset);
- vldr(src, operand.rn(), operand.offset(), cond);
+ vstr(src, operand.rn(), operand.offset(), cond);
}
@@ -1826,7 +1894,7 @@ void Assembler::vldm(BlockAddrMode am,
// Instruction details available in ARM DDI 0406A, A8-626.
// cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
// first(15-12) | 1010(11-8) | (count * 2)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT_LE(first.code(), last.code());
ASSERT(am == ia || am == ia_w || am == db_w);
ASSERT(!base.is(pc));
@@ -1834,6 +1902,7 @@ void Assembler::vldm(BlockAddrMode am,
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
+ ASSERT(count <= 16);
emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
0xB*B8 | count*2);
}
@@ -1847,7 +1916,7 @@ void Assembler::vstm(BlockAddrMode am,
// Instruction details available in ARM DDI 0406A, A8-784.
// cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
// first(15-12) | 1011(11-8) | (count * 2)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT_LE(first.code(), last.code());
ASSERT(am == ia || am == ia_w || am == db_w);
ASSERT(!base.is(pc));
@@ -1855,6 +1924,7 @@ void Assembler::vstm(BlockAddrMode am,
int sd, d;
first.split_code(&sd, &d);
int count = last.code() - first.code() + 1;
+ ASSERT(count <= 16);
emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
0xB*B8 | count*2);
}
@@ -1867,7 +1937,7 @@ void Assembler::vldm(BlockAddrMode am,
// Instruction details available in ARM DDI 0406A, A8-626.
// cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
// first(15-12) | 1010(11-8) | (count/2)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT_LE(first.code(), last.code());
ASSERT(am == ia || am == ia_w || am == db_w);
ASSERT(!base.is(pc));
@@ -1888,7 +1958,7 @@ void Assembler::vstm(BlockAddrMode am,
// Instruction details available in ARM DDI 0406A, A8-784.
// cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
// first(15-12) | 1011(11-8) | (count/2)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT_LE(first.code(), last.code());
ASSERT(am == ia || am == ia_w || am == db_w);
ASSERT(!base.is(pc));
@@ -1911,7 +1981,7 @@ static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
// Only works for little endian floating point formats.
// We don't support VFP on the mixed endian floating point platform.
static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsSupported(VFP3));
// VMOV can accept an immediate of the form:
//
@@ -1961,13 +2031,14 @@ static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
void Assembler::vmov(const DwVfpRegister dst,
double imm,
+ const Register scratch,
const Condition cond) {
// Dd = immediate
// Instruction details available in ARM DDI 0406B, A8-640.
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
uint32_t enc;
- if (FitsVMOVDoubleImmediate(imm, &enc)) {
+ if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
// The double can be encoded in the instruction.
emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
} else {
@@ -1975,22 +2046,22 @@ void Assembler::vmov(const DwVfpRegister dst,
// using vldr from a constant pool.
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
+ mov(ip, Operand(lo));
- if (lo == hi) {
- // If the lo and hi parts of the double are equal, the literal is easier
- // to create. This is the case with 0.0.
- mov(ip, Operand(lo));
- vmov(dst, ip, ip);
- } else {
+ if (scratch.is(no_reg)) {
// Move the low part of the double into the lower of the corresponsing S
// registers of D register dst.
- mov(ip, Operand(lo));
vmov(dst.low(), ip, cond);
// Move the high part of the double into the higher of the corresponsing S
// registers of D register dst.
mov(ip, Operand(hi));
vmov(dst.high(), ip, cond);
+ } else {
+ // Move the low and high parts of the double to a D register in one
+ // instruction.
+ mov(scratch, Operand(hi));
+ vmov(dst, ip, scratch, cond);
}
}
}
@@ -2001,7 +2072,7 @@ void Assembler::vmov(const SwVfpRegister dst,
const Condition cond) {
// Sd = Sm
// Instruction details available in ARM DDI 0406B, A8-642.
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
int sd, d, sm, m;
dst.split_code(&sd, &d);
src.split_code(&sm, &m);
@@ -2014,7 +2085,7 @@ void Assembler::vmov(const DwVfpRegister dst,
const Condition cond) {
// Dd = Dm
// Instruction details available in ARM DDI 0406B, A8-642.
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0xB*B20 |
dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
}
@@ -2028,7 +2099,7 @@ void Assembler::vmov(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-646.
// cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
// Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT(!src1.is(pc) && !src2.is(pc));
emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
src1.code()*B12 | 0xB*B8 | B4 | dst.code());
@@ -2043,7 +2114,7 @@ void Assembler::vmov(const Register dst1,
// Instruction details available in ARM DDI 0406A, A8-646.
// cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
// Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT(!dst1.is(pc) && !dst2.is(pc));
emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
dst1.code()*B12 | 0xB*B8 | B4 | src.code());
@@ -2057,7 +2128,7 @@ void Assembler::vmov(const SwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-642.
// cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
// Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT(!src.is(pc));
int sn, n;
dst.split_code(&sn, &n);
@@ -2072,7 +2143,7 @@ void Assembler::vmov(const Register dst,
// Instruction details available in ARM DDI 0406A, A8-642.
// cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
// Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT(!dst.is(pc));
int sn, n;
src.split_code(&sn, &n);
@@ -2197,7 +2268,7 @@ void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
}
@@ -2206,7 +2277,7 @@ void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
}
@@ -2215,7 +2286,7 @@ void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
}
@@ -2224,7 +2295,7 @@ void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
}
@@ -2233,7 +2304,7 @@ void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
}
@@ -2242,7 +2313,7 @@ void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
}
@@ -2251,7 +2322,7 @@ void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode,
const Condition cond) {
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
}
@@ -2259,6 +2330,7 @@ void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
void Assembler::vneg(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0xB*B20 | B16 | dst.code()*B12 |
0x5*B9 | B8 | B6 | src.code());
}
@@ -2267,6 +2339,7 @@ void Assembler::vneg(const DwVfpRegister dst,
void Assembler::vabs(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
0x5*B9 | B8 | 0x3*B6 | src.code());
}
@@ -2281,7 +2354,7 @@ void Assembler::vadd(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-536.
// cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}
@@ -2296,7 +2369,7 @@ void Assembler::vsub(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-784.
// cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
}
@@ -2311,7 +2384,7 @@ void Assembler::vmul(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-784.
// cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}
@@ -2326,7 +2399,7 @@ void Assembler::vdiv(const DwVfpRegister dst,
// Instruction details available in ARM DDI 0406A, A8-584.
// cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
dst.code()*B12 | 0x5*B9 | B8 | src2.code());
}
@@ -2339,7 +2412,7 @@ void Assembler::vcmp(const DwVfpRegister src1,
// Instruction details available in ARM DDI 0406A, A8-570.
// cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
}
@@ -2352,7 +2425,7 @@ void Assembler::vcmp(const DwVfpRegister src1,
// Instruction details available in ARM DDI 0406A, A8-570.
// cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
ASSERT(src2 == 0.0);
emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
src1.code()*B12 | 0x5*B9 | B8 | B6);
@@ -2363,7 +2436,7 @@ void Assembler::vmsr(Register dst, Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-652.
// cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
// Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0xE*B20 | B16 |
dst.code()*B12 | 0xA*B8 | B4);
}
@@ -2373,7 +2446,7 @@ void Assembler::vmrs(Register dst, Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-652.
// cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
// Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | 0xF*B20 | B16 |
dst.code()*B12 | 0xA*B8 | B4);
}
@@ -2384,7 +2457,7 @@ void Assembler::vsqrt(const DwVfpRegister dst,
const Condition cond) {
// cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
// Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
- ASSERT(CpuFeatures::IsEnabled(VFP3));
+ ASSERT(CpuFeatures::IsEnabled(VFP2));
emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
}
@@ -2392,15 +2465,35 @@ void Assembler::vsqrt(const DwVfpRegister dst,
// Pseudo instructions.
void Assembler::nop(int type) {
- // This is mov rx, rx.
- ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
+ // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
+ // some of the CPU's pipeline and has to issue. Older ARM chips simply used
+ // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
+ // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
+ // a type.
+ ASSERT(0 <= type && type <= 14); // mov pc, pc isn't a nop.
emit(al | 13*B21 | type*B12 | type);
}
+bool Assembler::IsMovT(Instr instr) {
+ instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
+ ((kNumRegisters-1)*B12) | // mask out register
+ EncodeMovwImmediate(0xFFFF)); // mask out immediate value
+ return instr == 0x34*B20;
+}
+
+
+bool Assembler::IsMovW(Instr instr) {
+ instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
+ ((kNumRegisters-1)*B12) | // mask out destination
+ EncodeMovwImmediate(0xFFFF)); // mask out immediate value
+ return instr == 0x30*B20;
+}
+
+
bool Assembler::IsNop(Instr instr, int type) {
+ ASSERT(0 <= type && type <= 14); // mov pc, pc isn't a nop.
// Check for mov rx, rx where x = type.
- ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
return instr == (al | 13*B21 | type*B12 | type);
}
@@ -2435,6 +2528,14 @@ void Assembler::RecordComment(const char* msg) {
}
+void Assembler::RecordConstPool(int size) {
+ // We only need this for debugger support, to correctly compute offsets in the
+ // code.
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
+#endif
+}
+
void Assembler::GrowBuffer() {
if (!own_buffer_) FATAL("external code buffer is too small");
@@ -2508,15 +2609,21 @@ void Assembler::dd(uint32_t data) {
}
-void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
+void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data,
+ UseConstantPoolMode mode) {
// We do not try to reuse pool constants.
RelocInfo rinfo(pc_, rmode, data, NULL);
- if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
+ if (((rmode >= RelocInfo::JS_RETURN) &&
+ (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
+ (rmode == RelocInfo::CONST_POOL) ||
+ mode == DONT_USE_CONSTANT_POOL) {
// Adjust code for new modes.
ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
|| RelocInfo::IsJSReturn(rmode)
|| RelocInfo::IsComment(rmode)
- || RelocInfo::IsPosition(rmode));
+ || RelocInfo::IsPosition(rmode)
+ || RelocInfo::IsConstPool(rmode)
+ || mode == DONT_USE_CONSTANT_POOL);
// These modes do not need an entry in the constant pool.
} else {
ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo);
@@ -2542,7 +2649,10 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
}
ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
- RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId(), NULL);
+ RelocInfo reloc_info_with_ast_id(pc_,
+ rmode,
+ RecordedAstId().ToInt(),
+ NULL);
ClearRecordedAstId();
reloc_info_writer.Write(&reloc_info_with_ast_id);
} else {
@@ -2602,13 +2712,15 @@ void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
// pool (include the jump over the pool and the constant pool marker and
// the gap to the relocation information).
int jump_instr = require_jump ? kInstrSize : 0;
- int needed_space = jump_instr + kInstrSize +
- num_pending_reloc_info_ * kInstrSize + kGap;
+ int size = jump_instr + kInstrSize + num_pending_reloc_info_ * kPointerSize;
+ int needed_space = size + kGap;
while (buffer_space() <= needed_space) GrowBuffer();
{
// Block recursive calls to CheckConstPool.
BlockConstPoolScope block_const_pool(this);
+ RecordComment("[ Constant Pool");
+ RecordConstPool(size);
// Emit jump over constant pool if necessary.
Label after_pool;
@@ -2616,32 +2728,33 @@ void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
b(&after_pool);
}
- RecordComment("[ Constant Pool");
-
- // Put down constant pool marker "Undefined instruction" as specified by
- // A5.6 (ARMv7) Instruction set encoding.
- emit(kConstantPoolMarker | num_pending_reloc_info_);
+ // Put down constant pool marker "Undefined instruction".
+ emit(kConstantPoolMarker |
+ EncodeConstantPoolLength(num_pending_reloc_info_));
// Emit constant pool entries.
for (int i = 0; i < num_pending_reloc_info_; i++) {
RelocInfo& rinfo = pending_reloc_info_[i];
ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
rinfo.rmode() != RelocInfo::POSITION &&
- rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
+ rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
+ rinfo.rmode() != RelocInfo::CONST_POOL);
Instr instr = instr_at(rinfo.pc());
// Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
- ASSERT(IsLdrPcImmediateOffset(instr) &&
- GetLdrRegisterImmediateOffset(instr) == 0);
-
- int delta = pc_ - rinfo.pc() - kPcLoadDelta;
- // 0 is the smallest delta:
- // ldr rd, [pc, #0]
- // constant pool marker
- // data
- ASSERT(is_uint12(delta));
-
- instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
+ if (IsLdrPcImmediateOffset(instr) &&
+ GetLdrRegisterImmediateOffset(instr) == 0) {
+ int delta = pc_ - rinfo.pc() - kPcLoadDelta;
+ // 0 is the smallest delta:
+ // ldr rd, [pc, #0]
+ // constant pool marker
+ // data
+ ASSERT(is_uint12(delta));
+
+ instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
+ } else {
+ ASSERT(IsMovW(instr));
+ }
emit(rinfo.data());
}