summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/mips/full-codegen-mips.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/mips/full-codegen-mips.cc')
-rw-r--r--src/3rdparty/v8/src/mips/full-codegen-mips.cc4377
1 files changed, 4377 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/mips/full-codegen-mips.cc b/src/3rdparty/v8/src/mips/full-codegen-mips.cc
new file mode 100644
index 0000000..2f989bc
--- /dev/null
+++ b/src/3rdparty/v8/src/mips/full-codegen-mips.cc
@@ -0,0 +1,4377 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_MIPS)
+
+// Note on Mips implementation:
+//
+// The result_register() for mips is the 'v0' register, which is defined
+// by the ABI to contain function return values. However, the first
+// parameter to a function is defined to be 'a0'. So there are many
+// places where we have to move a previous result in v0 to a0 for the
+// next call: mov(a0, v0). This is not needed on the other architectures.
+
+#include "code-stubs.h"
+#include "codegen.h"
+#include "compiler.h"
+#include "debug.h"
+#include "full-codegen.h"
+#include "parser.h"
+#include "scopes.h"
+#include "stub-cache.h"
+
+#include "mips/code-stubs-mips.h"
+#include "mips/macro-assembler-mips.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+
+static unsigned GetPropertyId(Property* property) {
+ return property->id();
+}
+
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
+// (raw 16 bit immediate value is used) is the delta from the pc to the first
+// instruction of the patchable code.
+// The marker instruction is effectively a NOP (dest is zero_reg) and will
+// never be emitted by normal code.
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+ explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+ info_emitted_ = false;
+#endif
+ }
+
+ ~JumpPatchSite() {
+ ASSERT(patch_site_.is_bound() == info_emitted_);
+ }
+
+ // When initially emitting this ensure that a jump is always generated to skip
+ // the inlined smi code.
+ void EmitJumpIfNotSmi(Register reg, Label* target) {
+ ASSERT(!patch_site_.is_bound() && !info_emitted_);
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ bind(&patch_site_);
+ __ andi(at, reg, 0);
+ // Always taken before patched.
+ __ Branch(target, eq, at, Operand(zero_reg));
+ }
+
+ // When initially emitting this ensure that a jump is never generated to skip
+ // the inlined smi code.
+ void EmitJumpIfSmi(Register reg, Label* target) {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ ASSERT(!patch_site_.is_bound() && !info_emitted_);
+ __ bind(&patch_site_);
+ __ andi(at, reg, 0);
+ // Never taken before patched.
+ __ Branch(target, ne, at, Operand(zero_reg));
+ }
+
+ void EmitPatchInfo() {
+ if (patch_site_.is_bound()) {
+ int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+ Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
+ __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
+#ifdef DEBUG
+ info_emitted_ = true;
+#endif
+ } else {
+ __ nop(); // Signals no inlined code.
+ }
+ }
+
+ private:
+ MacroAssembler* masm_;
+ Label patch_site_;
+#ifdef DEBUG
+ bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function. On entry to the function the receiver
+// and arguments have been pushed on the stack left to right. The actual
+// argument count matches the formal parameter count expected by the
+// function.
+//
+// The live registers are:
+// o a1: the JS function object being called (ie, ourselves)
+// o cp: our context
+// o fp: our caller's frame pointer
+// o sp: stack pointer
+// o ra: return address
+//
+// The function builds a JS frame. Please see JavaScriptFrameConstants in
+// frames-mips.h for its layout.
+void FullCodeGenerator::Generate(CompilationInfo* info) {
+ ASSERT(info_ == NULL);
+ info_ = info;
+ scope_ = info->scope();
+ SetFunctionPosition(function());
+ Comment cmnt(masm_, "[ function compiled by full code generator");
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+ __ stop("stop-at");
+ }
+#endif
+
+ // Strict mode functions and builtins need to replace the receiver
+ // with undefined when called as functions (without an explicit
+ // receiver object). t1 is zero for method calls and non-zero for
+ // function calls.
+ if (info->is_strict_mode() || info->is_native()) {
+ Label ok;
+ __ Branch(&ok, eq, t1, Operand(zero_reg));
+ int receiver_offset = info->scope()->num_parameters() * kPointerSize;
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ __ sw(a2, MemOperand(sp, receiver_offset));
+ __ bind(&ok);
+ }
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // MANUAL indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done below).
+ FrameScope frame_scope(masm_, StackFrame::MANUAL);
+
+ int locals_count = info->scope()->num_stack_slots();
+
+ __ Push(ra, fp, cp, a1);
+ if (locals_count > 0) {
+ // Load undefined value here, so the value is ready for the loop
+ // below.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ }
+ // Adjust fp to point to caller's fp.
+ __ Addu(fp, sp, Operand(2 * kPointerSize));
+
+ { Comment cmnt(masm_, "[ Allocate locals");
+ for (int i = 0; i < locals_count; i++) {
+ __ push(at);
+ }
+ }
+
+ bool function_in_register = true;
+
+ // Possibly allocate a local context.
+ int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment cmnt(masm_, "[ Allocate local context");
+ // Argument to NewContext is the function, which is in a1.
+ __ push(a1);
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(heap_slots);
+ __ CallStub(&stub);
+ } else {
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ function_in_register = false;
+ // Context is returned in both v0 and cp. It replaces the context
+ // passed to us. It's saved in the stack and kept live in cp.
+ __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = info->scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Variable* var = scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ lw(a0, MemOperand(fp, parameter_offset));
+ // Store it in the context.
+ MemOperand target = ContextOperand(cp, var->index());
+ __ sw(a0, target);
+
+ // Update the write barrier.
+ __ RecordWriteContextSlot(
+ cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
+ }
+ }
+ }
+
+ Variable* arguments = scope()->arguments();
+ if (arguments != NULL) {
+ // Function uses arguments object.
+ Comment cmnt(masm_, "[ Allocate arguments object");
+ if (!function_in_register) {
+ // Load this again, if it's used by the local context below.
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ } else {
+ __ mov(a3, a1);
+ }
+ // Receiver is just before the parameters on the caller's stack.
+ int num_parameters = info->scope()->num_parameters();
+ int offset = num_parameters * kPointerSize;
+ __ Addu(a2, fp,
+ Operand(StandardFrameConstants::kCallerSPOffset + offset));
+ __ li(a1, Operand(Smi::FromInt(num_parameters)));
+ __ Push(a3, a2, a1);
+
+ // Arguments to ArgumentsAccessStub:
+ // function, receiver address, parameter count.
+ // The stub will rewrite receiever and parameter count if the previous
+ // stack frame was an arguments adapter frame.
+ ArgumentsAccessStub::Type type;
+ if (is_strict_mode()) {
+ type = ArgumentsAccessStub::NEW_STRICT;
+ } else if (function()->has_duplicate_parameters()) {
+ type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
+ } else {
+ type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
+ }
+ ArgumentsAccessStub stub(type);
+ __ CallStub(&stub);
+
+ SetVar(arguments, v0, a1, a2);
+ }
+
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+
+ // Visit the declarations and body unless there is an illegal
+ // redeclaration.
+ if (scope()->HasIllegalRedeclaration()) {
+ Comment cmnt(masm_, "[ Declarations");
+ scope()->VisitIllegalRedeclaration(this);
+
+ } else {
+ PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
+ { Comment cmnt(masm_, "[ Declarations");
+ // For named function expressions, declare the function name as a
+ // constant.
+ if (scope()->is_function_scope() && scope()->function() != NULL) {
+ int ignored = 0;
+ VariableProxy* proxy = scope()->function();
+ ASSERT(proxy->var()->mode() == CONST ||
+ proxy->var()->mode() == CONST_HARMONY);
+ EmitDeclaration(proxy, proxy->var()->mode(), NULL, &ignored);
+ }
+ VisitDeclarations(scope()->declarations());
+ }
+
+ { Comment cmnt(masm_, "[ Stack check");
+ PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS);
+ Label ok;
+ __ LoadRoot(t0, Heap::kStackLimitRootIndex);
+ __ Branch(&ok, hs, sp, Operand(t0));
+ StackCheckStub stub;
+ __ CallStub(&stub);
+ __ bind(&ok);
+ }
+
+ { Comment cmnt(masm_, "[ Body");
+ ASSERT(loop_depth() == 0);
+ VisitStatements(function()->body());
+ ASSERT(loop_depth() == 0);
+ }
+ }
+
+ // Always emit a 'return undefined' in case control fell off the end of
+ // the body.
+ { Comment cmnt(masm_, "[ return <undefined>;");
+ __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+ }
+ EmitReturnSequence();
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+ ASSERT(Smi::FromInt(0) == 0);
+ __ mov(v0, zero_reg);
+}
+
+
+void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt) {
+ // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
+ // to make sure it is constant. Branch may emit a skip-or-jump sequence
+ // instead of the normal Branch. It seems that the "skip" part of that
+ // sequence is about as long as this Branch would be so it is safe to ignore
+ // that.
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Comment cmnt(masm_, "[ Stack check");
+ Label ok;
+ __ LoadRoot(t0, Heap::kStackLimitRootIndex);
+ __ sltu(at, sp, t0);
+ __ beq(at, zero_reg, &ok);
+ // CallStub will emit a li t9, ... first, so it is safe to use the delay slot.
+ StackCheckStub stub;
+ __ CallStub(&stub);
+ // Record a mapping of this PC offset to the OSR id. This is used to find
+ // the AST id from the unoptimized code in order to use it as a key into
+ // the deoptimization input data found in the optimized code.
+ RecordStackCheck(stmt->OsrEntryId());
+
+ __ bind(&ok);
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+ // Record a mapping of the OSR id to this PC. This is used if the OSR
+ // entry becomes the target of a bailout. We don't expect it to be, but
+ // we want it to work if it is.
+ PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::EmitReturnSequence() {
+ Comment cmnt(masm_, "[ Return sequence");
+ if (return_label_.is_bound()) {
+ __ Branch(&return_label_);
+ } else {
+ __ bind(&return_label_);
+ if (FLAG_trace) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in v0.
+ __ push(v0);
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+
+#ifdef DEBUG
+ // Add a label for checking the size of the code used for returning.
+ Label check_exit_codesize;
+ masm_->bind(&check_exit_codesize);
+#endif
+ // Make sure that the constant pool is not emitted inside of the return
+ // sequence.
+ { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ // Here we use masm_-> instead of the __ macro to avoid the code coverage
+ // tool from instrumenting as we rely on the code size here.
+ int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
+ CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
+ __ RecordJSReturn();
+ masm_->mov(sp, fp);
+ masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
+ masm_->Addu(sp, sp, Operand(sp_delta));
+ masm_->Jump(ra);
+ }
+
+#ifdef DEBUG
+ // Check that the size of the code used for returning is large enough
+ // for the debugger's requirements.
+ ASSERT(Assembler::kJSReturnSequenceInstructions <=
+ masm_->InstructionsGeneratedSince(&check_exit_codesize));
+#endif
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
+ ASSERT(var->IsStackAllocated() || var->IsContextSlot());
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
+ ASSERT(var->IsStackAllocated() || var->IsContextSlot());
+ codegen()->GetVar(result_register(), var);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
+ ASSERT(var->IsStackAllocated() || var->IsContextSlot());
+ codegen()->GetVar(result_register(), var);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Variable* var) const {
+ // For simplicity we always test the accumulator register.
+ codegen()->GetVar(result_register(), var);
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ if (index == Heap::kUndefinedValueRootIndex ||
+ index == Heap::kNullValueRootIndex ||
+ index == Heap::kFalseValueRootIndex) {
+ if (false_label_ != fall_through_) __ Branch(false_label_);
+ } else if (index == Heap::kTrueValueRootIndex) {
+ if (true_label_ != fall_through_) __ Branch(true_label_);
+ } else {
+ __ LoadRoot(result_register(), index);
+ codegen()->DoTest(this);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Handle<Object> lit) const {
+ __ li(result_register(), Operand(lit));
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+ // Immediates cannot be pushed directly.
+ __ li(result_register(), Operand(lit));
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
+ if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+ if (false_label_ != fall_through_) __ Branch(false_label_);
+ } else if (lit->IsTrue() || lit->IsJSObject()) {
+ if (true_label_ != fall_through_) __ Branch(true_label_);
+ } else if (lit->IsString()) {
+ if (String::cast(*lit)->length() == 0) {
+ if (false_label_ != fall_through_) __ Branch(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ Branch(true_label_);
+ }
+ } else if (lit->IsSmi()) {
+ if (Smi::cast(*lit)->value() == 0) {
+ if (false_label_ != fall_through_) __ Branch(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ Branch(true_label_);
+ }
+ } else {
+ // For simplicity we always test the accumulator register.
+ __ li(result_register(), Operand(lit));
+ codegen()->DoTest(this);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ __ Drop(count);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
+ int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ __ Drop(count);
+ __ Move(result_register(), reg);
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ if (count > 1) __ Drop(count - 1);
+ __ sw(reg, MemOperand(sp, 0));
+}
+
+
+void FullCodeGenerator::TestContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ // For simplicity we always test the accumulator register.
+ __ Drop(count);
+ __ Move(result_register(), reg);
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ codegen()->DoTest(this);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ ASSERT(materialize_true == materialize_false);
+ __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+ __ Branch(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ push(at);
+ __ Branch(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ __ push(at);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ ASSERT(materialize_true == true_label_);
+ ASSERT(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(bool flag) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(result_register(), value_root_index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(at, value_root_index);
+ __ push(at);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ if (flag) {
+ if (true_label_ != fall_through_) __ Branch(true_label_);
+ } else {
+ if (false_label_ != fall_through_) __ Branch(false_label_);
+ }
+}
+
+
+void FullCodeGenerator::DoTest(Expression* condition,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (CpuFeatures::IsSupported(FPU)) {
+ ToBooleanStub stub(result_register());
+ __ CallStub(&stub);
+ __ mov(at, zero_reg);
+ } else {
+ // Call the runtime to find the boolean value of the source and then
+ // translate it into control flow to the pair of labels.
+ __ push(result_register());
+ __ CallRuntime(Runtime::kToBool, 1);
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ }
+ Split(ne, v0, Operand(at), if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cc,
+ Register lhs,
+ const Operand& rhs,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (if_false == fall_through) {
+ __ Branch(if_true, cc, lhs, rhs);
+ } else if (if_true == fall_through) {
+ __ Branch(if_false, NegateCondition(cc), lhs, rhs);
+ } else {
+ __ Branch(if_true, cc, lhs, rhs);
+ __ Branch(if_false);
+ }
+}
+
+
+MemOperand FullCodeGenerator::StackOperand(Variable* var) {
+ ASSERT(var->IsStackAllocated());
+ // Offset is negative because higher indexes are at lower addresses.
+ int offset = -var->index() * kPointerSize;
+ // Adjust by a (parameter or local) base offset.
+ if (var->IsParameter()) {
+ offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
+ } else {
+ offset += JavaScriptFrameConstants::kLocal0Offset;
+ }
+ return MemOperand(fp, offset);
+}
+
+
+MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
+ ASSERT(var->IsContextSlot() || var->IsStackAllocated());
+ if (var->IsContextSlot()) {
+ int context_chain_length = scope()->ContextChainLength(var->scope());
+ __ LoadContext(scratch, context_chain_length);
+ return ContextOperand(scratch, var->index());
+ } else {
+ return StackOperand(var);
+ }
+}
+
+
+void FullCodeGenerator::GetVar(Register dest, Variable* var) {
+ // Use destination as scratch.
+ MemOperand location = VarOperand(var, dest);
+ __ lw(dest, location);
+}
+
+
+void FullCodeGenerator::SetVar(Variable* var,
+ Register src,
+ Register scratch0,
+ Register scratch1) {
+ ASSERT(var->IsContextSlot() || var->IsStackAllocated());
+ ASSERT(!scratch0.is(src));
+ ASSERT(!scratch0.is(scratch1));
+ ASSERT(!scratch1.is(src));
+ MemOperand location = VarOperand(var, scratch0);
+ __ sw(src, location);
+ // Emit the write barrier code if the location is in the heap.
+ if (var->IsContextSlot()) {
+ __ RecordWriteContextSlot(scratch0,
+ location.offset(),
+ src,
+ scratch1,
+ kRAHasBeenSaved,
+ kDontSaveFPRegs);
+ }
+}
+
+
+void FullCodeGenerator::PrepareForBailoutBeforeSplit(State state,
+ bool should_normalize,
+ Label* if_true,
+ Label* if_false) {
+ // Only prepare for bailouts before splits if we're in a test
+ // context. Otherwise, we let the Visit function deal with the
+ // preparation to avoid preparing with the same AST id twice.
+ if (!context()->IsTest() || !info_->IsOptimizable()) return;
+
+ Label skip;
+ if (should_normalize) __ Branch(&skip);
+
+ ForwardBailoutStack* current = forward_bailout_stack_;
+ while (current != NULL) {
+ PrepareForBailout(current->expr(), state);
+ current = current->parent();
+ }
+
+ if (should_normalize) {
+ __ LoadRoot(t0, Heap::kTrueValueRootIndex);
+ Split(eq, a0, Operand(t0), if_true, if_false, NULL);
+ __ bind(&skip);
+ }
+}
+
+
+void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy,
+ VariableMode mode,
+ FunctionLiteral* function,
+ int* global_count) {
+ // If it was not possible to allocate the variable at compile time, we
+ // need to "declare" it at runtime to make sure it actually exists in the
+ // local context.
+ Variable* variable = proxy->var();
+ bool binding_needs_init =
+ mode == CONST || mode == CONST_HARMONY || mode == LET;
+ switch (variable->location()) {
+ case Variable::UNALLOCATED:
+ ++(*global_count);
+ break;
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL:
+ if (function != NULL) {
+ Comment cmnt(masm_, "[ Declaration");
+ VisitForAccumulatorValue(function);
+ __ sw(result_register(), StackOperand(variable));
+ } else if (binding_needs_init) {
+ Comment cmnt(masm_, "[ Declaration");
+ __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+ __ sw(t0, StackOperand(variable));
+ }
+ break;
+
+ case Variable::CONTEXT:
+ // The variable in the decl always resides in the current function
+ // context.
+ ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
+ if (FLAG_debug_code) {
+ // Check that we're not inside a with or catch context.
+ __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
+ __ LoadRoot(t0, Heap::kWithContextMapRootIndex);
+ __ Check(ne, "Declaration in with context.",
+ a1, Operand(t0));
+ __ LoadRoot(t0, Heap::kCatchContextMapRootIndex);
+ __ Check(ne, "Declaration in catch context.",
+ a1, Operand(t0));
+ }
+ if (function != NULL) {
+ Comment cmnt(masm_, "[ Declaration");
+ VisitForAccumulatorValue(function);
+ __ sw(result_register(), ContextOperand(cp, variable->index()));
+ int offset = Context::SlotOffset(variable->index());
+ // We know that we have written a function, which is not a smi.
+ __ RecordWriteContextSlot(cp,
+ offset,
+ result_register(),
+ a2,
+ kRAHasBeenSaved,
+ kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ OMIT_SMI_CHECK);
+ PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+ } else if (binding_needs_init) {
+ Comment cmnt(masm_, "[ Declaration");
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ __ sw(at, ContextOperand(cp, variable->index()));
+ // No write barrier since the_hole_value is in old space.
+ PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
+ }
+ break;
+
+ case Variable::LOOKUP: {
+ Comment cmnt(masm_, "[ Declaration");
+ __ li(a2, Operand(variable->name()));
+ // Declaration nodes are always introduced in one of four modes.
+ ASSERT(mode == VAR ||
+ mode == CONST ||
+ mode == CONST_HARMONY ||
+ mode == LET);
+ PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY)
+ ? READ_ONLY : NONE;
+ __ li(a1, Operand(Smi::FromInt(attr)));
+ // Push initial value, if any.
+ // Note: For variables we must not push an initial value (such as
+ // 'undefined') because we may have a (legal) redeclaration and we
+ // must not destroy the current value.
+ if (function != NULL) {
+ __ Push(cp, a2, a1);
+ // Push initial value for function declaration.
+ VisitForStackValue(function);
+ } else if (binding_needs_init) {
+ __ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
+ __ Push(cp, a2, a1, a0);
+ } else {
+ ASSERT(Smi::FromInt(0) == 0);
+ __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value.
+ __ Push(cp, a2, a1, a0);
+ }
+ __ CallRuntime(Runtime::kDeclareContextSlot, 4);
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitDeclaration(Declaration* decl) { }
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ // Call the runtime to declare the globals.
+ // The context is the first argument.
+ __ li(a1, Operand(pairs));
+ __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
+ __ Push(cp, a1, a0);
+ __ CallRuntime(Runtime::kDeclareGlobals, 3);
+ // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+ Comment cmnt(masm_, "[ SwitchStatement");
+ Breakable nested_statement(this, stmt);
+ SetStatementPosition(stmt);
+
+ // Keep the switch value on the stack until a case matches.
+ VisitForStackValue(stmt->tag());
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+ ZoneList<CaseClause*>* clauses = stmt->cases();
+ CaseClause* default_clause = NULL; // Can occur anywhere in the list.
+
+ Label next_test; // Recycled for each test.
+ // Compile all the tests with branches to their bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ CaseClause* clause = clauses->at(i);
+ clause->body_target()->Unuse();
+
+ // The default is not a test, but remember it as final fall through.
+ if (clause->is_default()) {
+ default_clause = clause;
+ continue;
+ }
+
+ Comment cmnt(masm_, "[ Case comparison");
+ __ bind(&next_test);
+ next_test.Unuse();
+
+ // Compile the label expression.
+ VisitForAccumulatorValue(clause->label());
+ __ mov(a0, result_register()); // CompareStub requires args in a0, a1.
+
+ // Perform the comparison as if via '==='.
+ __ lw(a1, MemOperand(sp, 0)); // Switch value.
+ bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ or_(a2, a1, a0);
+ patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+
+ __ Branch(&next_test, ne, a1, Operand(a0));
+ __ Drop(1); // Switch value is no longer needed.
+ __ Branch(clause->body_target());
+
+ __ bind(&slow_case);
+ }
+
+ // Record position before stub call for type feedback.
+ SetSourcePosition(clause->position());
+ Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
+ __ Call(ic, RelocInfo::CODE_TARGET, clause->CompareId());
+ patch_site.EmitPatchInfo();
+
+ __ Branch(&next_test, ne, v0, Operand(zero_reg));
+ __ Drop(1); // Switch value is no longer needed.
+ __ Branch(clause->body_target());
+ }
+
+ // Discard the test value and jump to the default if present, otherwise to
+ // the end of the statement.
+ __ bind(&next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ if (default_clause == NULL) {
+ __ Branch(nested_statement.break_label());
+ } else {
+ __ Branch(default_clause->body_target());
+ }
+
+ // Compile all the case bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ Comment cmnt(masm_, "[ Case body");
+ CaseClause* clause = clauses->at(i);
+ __ bind(clause->body_target());
+ PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+ VisitStatements(clause->statements());
+ }
+
+ __ bind(nested_statement.break_label());
+ PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+ Comment cmnt(masm_, "[ ForInStatement");
+ SetStatementPosition(stmt);
+
+ Label loop, exit;
+ ForIn loop_statement(this, stmt);
+ increment_loop_depth();
+
+ // Get the object to enumerate over. Both SpiderMonkey and JSC
+ // ignore null and undefined in contrast to the specification; see
+ // ECMA-262 section 12.6.4.
+ VisitForAccumulatorValue(stmt->enumerable());
+ __ mov(a0, result_register()); // Result as param to InvokeBuiltin below.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&exit, eq, a0, Operand(at));
+ Register null_value = t1;
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+ __ Branch(&exit, eq, a0, Operand(null_value));
+
+ // Convert the object to a JS object.
+ Label convert, done_convert;
+ __ JumpIfSmi(a0, &convert);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ bind(&convert);
+ __ push(a0);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ mov(a0, v0);
+ __ bind(&done_convert);
+ __ push(a0);
+
+ // Check for proxies.
+ Label call_runtime;
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE));
+
+ // Check cache validity in generated code. This is a fast case for
+ // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+ // guarantee cache validity, call the runtime system to check cache
+ // validity or get the property names in a fixed array.
+ Label next;
+ // Preload a couple of values used in the loop.
+ Register empty_fixed_array_value = t2;
+ __ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+ Register empty_descriptor_array_value = t3;
+ __ LoadRoot(empty_descriptor_array_value,
+ Heap::kEmptyDescriptorArrayRootIndex);
+ __ mov(a1, a0);
+ __ bind(&next);
+
+ // Check that there are no elements. Register a1 contains the
+ // current JS object we've reached through the prototype chain.
+ __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
+ __ Branch(&call_runtime, ne, a2, Operand(empty_fixed_array_value));
+
+ // Check that instance descriptors are not empty so that we can
+ // check for an enum cache. Leave the map in a2 for the subsequent
+ // prototype load.
+ __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset));
+ __ JumpIfSmi(a3, &call_runtime);
+
+ // Check that there is an enum cache in the non-empty instance
+ // descriptors (a3). This is the case if the next enumeration
+ // index field does not contain a smi.
+ __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset));
+ __ JumpIfSmi(a3, &call_runtime);
+
+ // For all objects but the receiver, check that the cache is empty.
+ Label check_prototype;
+ __ Branch(&check_prototype, eq, a1, Operand(a0));
+ __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset));
+ __ Branch(&call_runtime, ne, a3, Operand(empty_fixed_array_value));
+
+ // Load the prototype from the map and loop if non-null.
+ __ bind(&check_prototype);
+ __ lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset));
+ __ Branch(&next, ne, a1, Operand(null_value));
+
+ // The enum cache is valid. Load the map of the object being
+ // iterated over and use the cache for the iteration.
+ Label use_cache;
+ __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ Branch(&use_cache);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(a0); // Duplicate the enumerable object on the stack.
+ __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+
+ // If we got a map from the runtime call, we can do a fast
+ // modification check. Otherwise, we got a fixed array, and we have
+ // to do a slow check.
+ Label fixed_array;
+ __ mov(a2, v0);
+ __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kMetaMapRootIndex);
+ __ Branch(&fixed_array, ne, a1, Operand(at));
+
+ // We got a map in register v0. Get the enumeration cache from it.
+ __ bind(&use_cache);
+ __ LoadInstanceDescriptors(v0, a1);
+ __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset));
+ __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+ // Setup the four remaining stack slots.
+ __ push(v0); // Map.
+ __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset));
+ __ li(a0, Operand(Smi::FromInt(0)));
+ // Push enumeration cache, enumeration cache length (as smi) and zero.
+ __ Push(a2, a1, a0);
+ __ jmp(&loop);
+
+ // We got a fixed array in register v0. Iterate through that.
+ Label non_proxy;
+ __ bind(&fixed_array);
+ __ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check
+ __ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ GetObjectType(a2, a3, a3);
+ __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE));
+ __ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy
+ __ bind(&non_proxy);
+ __ Push(a1, v0); // Smi and array
+ __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
+ __ li(a0, Operand(Smi::FromInt(0)));
+ __ Push(a1, a0); // Fixed array length (as smi) and initial index.
+
+ // Generate code for doing the condition check.
+ __ bind(&loop);
+ // Load the current count to a0, load the length to a1.
+ __ lw(a0, MemOperand(sp, 0 * kPointerSize));
+ __ lw(a1, MemOperand(sp, 1 * kPointerSize));
+ __ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
+
+ // Get the current entry of the array into register a3.
+ __ lw(a2, MemOperand(sp, 2 * kPointerSize));
+ __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
+ __ addu(t0, a2, t0); // Array base + scaled (smi) index.
+ __ lw(a3, MemOperand(t0)); // Current entry.
+
+ // Get the expected map from the stack or a smi in the
+ // permanent slow case into register a2.
+ __ lw(a2, MemOperand(sp, 3 * kPointerSize));
+
+ // Check if the expected map still matches that of the enumerable.
+ // If not, we may have to filter the key.
+ Label update_each;
+ __ lw(a1, MemOperand(sp, 4 * kPointerSize));
+ __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ Branch(&update_each, eq, t0, Operand(a2));
+
+ // For proxies, no filtering is done.
+ // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
+ ASSERT_EQ(Smi::FromInt(0), 0);
+ __ Branch(&update_each, eq, a2, Operand(zero_reg));
+
+ // Convert the entry to a string or (smi) 0 if it isn't a property
+ // any more. If the property has been removed while iterating, we
+ // just skip it.
+ __ push(a1); // Enumerable.
+ __ push(a3); // Current entry.
+ __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
+ __ mov(a3, result_register());
+ __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg));
+
+ // Update the 'each' property or variable from the possibly filtered
+ // entry in register a3.
+ __ bind(&update_each);
+ __ mov(result_register(), a3);
+ // Perform the assignment as if via '='.
+ { EffectContext context(this);
+ EmitAssignment(stmt->each(), stmt->AssignmentId());
+ }
+
+ // Generate code for the body of the loop.
+ Visit(stmt->body());
+
+ // Generate code for the going to the next element by incrementing
+ // the index (smi) stored on top of the stack.
+ __ bind(loop_statement.continue_label());
+ __ pop(a0);
+ __ Addu(a0, a0, Operand(Smi::FromInt(1)));
+ __ push(a0);
+
+ EmitStackCheck(stmt);
+ __ Branch(&loop);
+
+ // Remove the pointers stored on the stack.
+ __ bind(loop_statement.break_label());
+ __ Drop(5);
+
+ // Exit and decrement the loop depth.
+ __ bind(&exit);
+ decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
+ bool pretenure) {
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning. If
+ // we're running with the --always-opt or the --prepare-always-opt
+ // flag, we need to use the runtime function so that the new function
+ // we are creating here gets a chance to have its code optimized and
+ // doesn't just get a copy of the existing unoptimized code.
+ if (!FLAG_always_opt &&
+ !FLAG_prepare_always_opt &&
+ !pretenure &&
+ scope()->is_function_scope() &&
+ info->num_literals() == 0) {
+ FastNewClosureStub stub(info->strict_mode_flag());
+ __ li(a0, Operand(info));
+ __ push(a0);
+ __ CallStub(&stub);
+ } else {
+ __ li(a0, Operand(info));
+ __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
+ : Heap::kFalseValueRootIndex);
+ __ Push(cp, a0, a1);
+ __ CallRuntime(Runtime::kNewClosure, 3);
+ }
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
+ Comment cmnt(masm_, "[ VariableProxy");
+ EmitVariableLoad(expr);
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
+ TypeofState typeof_state,
+ Label* slow) {
+ Register current = cp;
+ Register next = a1;
+ Register temp = a2;
+
+ Scope* s = scope();
+ while (s != NULL) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_non_strict_eval()) {
+ // Check that extension is NULL.
+ __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
+ __ Branch(slow, ne, temp, Operand(zero_reg));
+ }
+ // Load next context in chain.
+ __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX));
+ // Walk the rest of the chain without clobbering cp.
+ current = next;
+ }
+ // If no outer scope calls eval, we do not need to check more
+ // context extensions.
+ if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
+ s = s->outer_scope();
+ }
+
+ if (s->is_eval_scope()) {
+ Label loop, fast;
+ if (!current.is(next)) {
+ __ Move(next, current);
+ }
+ __ bind(&loop);
+ // Terminate at global context.
+ __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+ __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex);
+ __ Branch(&fast, eq, temp, Operand(t0));
+ // Check that extension is NULL.
+ __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
+ __ Branch(slow, ne, temp, Operand(zero_reg));
+ // Load next context in chain.
+ __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX));
+ __ Branch(&loop);
+ __ bind(&fast);
+ }
+
+ __ lw(a0, GlobalObjectOperand());
+ __ li(a2, Operand(var->name()));
+ RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
+ ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ __ Call(ic, mode);
+}
+
+
+MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
+ Label* slow) {
+ ASSERT(var->IsContextSlot());
+ Register context = cp;
+ Register next = a3;
+ Register temp = t0;
+
+ for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_non_strict_eval()) {
+ // Check that extension is NULL.
+ __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ Branch(slow, ne, temp, Operand(zero_reg));
+ }
+ __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX));
+ // Walk the rest of the chain without clobbering cp.
+ context = next;
+ }
+ }
+ // Check that last extension is NULL.
+ __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ Branch(slow, ne, temp, Operand(zero_reg));
+
+ // This function is used only for loads, not stores, so it's safe to
+ // return an cp-based operand (the write barrier cannot be allowed to
+ // destroy the cp register).
+ return ContextOperand(context, var->index());
+}
+
+
+void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
+ TypeofState typeof_state,
+ Label* slow,
+ Label* done) {
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ if (var->mode() == DYNAMIC_GLOBAL) {
+ EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
+ __ Branch(done);
+ } else if (var->mode() == DYNAMIC_LOCAL) {
+ Variable* local = var->local_if_not_shadowed();
+ __ lw(v0, ContextSlotOperandCheckExtensions(local, slow));
+ if (local->mode() == CONST ||
+ local->mode() == CONST_HARMONY ||
+ local->mode() == LET) {
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ __ subu(at, v0, at); // Sub as compare: at == 0 on eq.
+ if (local->mode() == CONST) {
+ __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+ __ movz(v0, a0, at); // Conditional move: return Undefined if TheHole.
+ } else { // LET || CONST_HARMONY
+ __ Branch(done, ne, at, Operand(zero_reg));
+ __ li(a0, Operand(var->name()));
+ __ push(a0);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ }
+ }
+ __ Branch(done);
+ }
+}
+
+
+void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
+ // Record position before possible IC call.
+ SetSourcePosition(proxy->position());
+ Variable* var = proxy->var();
+
+ // Three cases: global variables, lookup variables, and all other types of
+ // variables.
+ switch (var->location()) {
+ case Variable::UNALLOCATED: {
+ Comment cmnt(masm_, "Global variable");
+ // Use inline caching. Variable name is passed in a2 and the global
+ // object (receiver) in a0.
+ __ lw(a0, GlobalObjectOperand());
+ __ li(a2, Operand(var->name()));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
+ context()->Plug(v0);
+ break;
+ }
+
+ case Variable::PARAMETER:
+ case Variable::LOCAL:
+ case Variable::CONTEXT: {
+ Comment cmnt(masm_, var->IsContextSlot()
+ ? "Context variable"
+ : "Stack variable");
+ if (!var->binding_needs_init()) {
+ context()->Plug(var);
+ } else {
+ // Let and const need a read barrier.
+ GetVar(v0, var);
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ __ subu(at, v0, at); // Sub as compare: at == 0 on eq.
+ if (var->mode() == LET || var->mode() == CONST_HARMONY) {
+ // Throw a reference error when using an uninitialized let/const
+ // binding in harmony mode.
+ Label done;
+ __ Branch(&done, ne, at, Operand(zero_reg));
+ __ li(a0, Operand(var->name()));
+ __ push(a0);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ __ bind(&done);
+ } else {
+ // Uninitalized const bindings outside of harmony mode are unholed.
+ ASSERT(var->mode() == CONST);
+ __ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
+ __ movz(v0, a0, at); // Conditional move: Undefined if TheHole.
+ }
+ context()->Plug(v0);
+ }
+ break;
+ }
+
+ case Variable::LOOKUP: {
+ Label done, slow;
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
+ __ bind(&slow);
+ Comment cmnt(masm_, "Lookup variable");
+ __ li(a1, Operand(var->name()));
+ __ Push(cp, a1); // Context and name.
+ __ CallRuntime(Runtime::kLoadContextSlot, 2);
+ __ bind(&done);
+ context()->Plug(v0);
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
+ Comment cmnt(masm_, "[ RegExpLiteral");
+ Label materialized;
+ // Registers will be used as follows:
+ // t1 = materialized value (RegExp literal)
+ // t0 = JS function, literals array
+ // a3 = literal index
+ // a2 = RegExp pattern
+ // a1 = RegExp flags
+ // a0 = RegExp literal clone
+ __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
+ int literal_offset =
+ FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
+ __ lw(t1, FieldMemOperand(t0, literal_offset));
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&materialized, ne, t1, Operand(at));
+
+ // Create regexp literal using runtime function.
+ // Result will be in v0.
+ __ li(a3, Operand(Smi::FromInt(expr->literal_index())));
+ __ li(a2, Operand(expr->pattern()));
+ __ li(a1, Operand(expr->flags()));
+ __ Push(t0, a3, a2, a1);
+ __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+ __ mov(t1, v0);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+ __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ push(t1);
+ __ li(a0, Operand(Smi::FromInt(size)));
+ __ push(a0);
+ __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
+ __ pop(t1);
+
+ __ bind(&allocated);
+
+ // After this, registers are used as follows:
+ // v0: Newly allocated regexp.
+ // t1: Materialized regexp.
+ // a2: temp.
+ __ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+ Comment cmnt(masm_, "[ ObjectLiteral");
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+ __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+ __ li(a1, Operand(expr->constant_properties()));
+ int flags = expr->fast_elements()
+ ? ObjectLiteral::kFastElements
+ : ObjectLiteral::kNoFlags;
+ flags |= expr->has_function()
+ ? ObjectLiteral::kHasFunction
+ : ObjectLiteral::kNoFlags;
+ __ li(a0, Operand(Smi::FromInt(flags)));
+ __ Push(a3, a2, a1, a0);
+ if (expr->depth() > 1) {
+ __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
+ } else {
+ __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
+ }
+
+ // If result_saved is true the result is on top of the stack. If
+ // result_saved is false the result is in v0.
+ bool result_saved = false;
+
+ // Mark all computed expressions that are bound to a key that
+ // is shadowed by a later occurrence of the same key. For the
+ // marked expressions, no store code is emitted.
+ expr->CalculateEmitStore();
+
+ for (int i = 0; i < expr->properties()->length(); i++) {
+ ObjectLiteral::Property* property = expr->properties()->at(i);
+ if (property->IsCompileTimeValue()) continue;
+
+ Literal* key = property->key();
+ Expression* value = property->value();
+ if (!result_saved) {
+ __ push(v0); // Save result on stack.
+ result_saved = true;
+ }
+ switch (property->kind()) {
+ case ObjectLiteral::Property::CONSTANT:
+ UNREACHABLE();
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
+ // Fall through.
+ case ObjectLiteral::Property::COMPUTED:
+ if (key->handle()->IsSymbol()) {
+ if (property->emit_store()) {
+ VisitForAccumulatorValue(value);
+ __ mov(a0, result_register());
+ __ li(a2, Operand(key->handle()));
+ __ lw(a1, MemOperand(sp));
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, key->id());
+ PrepareForBailoutForId(key->id(), NO_REGISTERS);
+ } else {
+ VisitForEffect(value);
+ }
+ break;
+ }
+ // Fall through.
+ case ObjectLiteral::Property::PROTOTYPE:
+ // Duplicate receiver on stack.
+ __ lw(a0, MemOperand(sp));
+ __ push(a0);
+ VisitForStackValue(key);
+ VisitForStackValue(value);
+ if (property->emit_store()) {
+ __ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes.
+ __ push(a0);
+ __ CallRuntime(Runtime::kSetProperty, 4);
+ } else {
+ __ Drop(3);
+ }
+ break;
+ case ObjectLiteral::Property::GETTER:
+ case ObjectLiteral::Property::SETTER:
+ // Duplicate receiver on stack.
+ __ lw(a0, MemOperand(sp));
+ __ push(a0);
+ VisitForStackValue(key);
+ __ li(a1, Operand(property->kind() == ObjectLiteral::Property::SETTER ?
+ Smi::FromInt(1) :
+ Smi::FromInt(0)));
+ __ push(a1);
+ VisitForStackValue(value);
+ __ CallRuntime(Runtime::kDefineAccessor, 4);
+ break;
+ }
+ }
+
+ if (expr->has_function()) {
+ ASSERT(result_saved);
+ __ lw(a0, MemOperand(sp));
+ __ push(a0);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(v0);
+ }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+ Comment cmnt(masm_, "[ ArrayLiteral");
+
+ ZoneList<Expression*>* subexprs = expr->values();
+ int length = subexprs->length();
+
+ Handle<FixedArray> constant_elements = expr->constant_elements();
+ ASSERT_EQ(2, constant_elements->length());
+ ElementsKind constant_elements_kind =
+ static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
+ Handle<FixedArrayBase> constant_elements_values(
+ FixedArrayBase::cast(constant_elements->get(1)));
+
+ __ mov(a0, result_register());
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+ __ li(a2, Operand(Smi::FromInt(expr->literal_index())));
+ __ li(a1, Operand(constant_elements));
+ __ Push(a3, a2, a1);
+ if (constant_elements_values->map() ==
+ isolate()->heap()->fixed_cow_array_map()) {
+ FastCloneShallowArrayStub stub(
+ FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
+ __ CallStub(&stub);
+ __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
+ 1, a1, a2);
+ } else if (expr->depth() > 1) {
+ __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
+ } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
+ __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
+ } else {
+ ASSERT(constant_elements_kind == FAST_ELEMENTS ||
+ constant_elements_kind == FAST_SMI_ONLY_ELEMENTS ||
+ FLAG_smi_only_arrays);
+ FastCloneShallowArrayStub::Mode mode =
+ constant_elements_kind == FAST_DOUBLE_ELEMENTS
+ ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
+ : FastCloneShallowArrayStub::CLONE_ELEMENTS;
+ FastCloneShallowArrayStub stub(mode, length);
+ __ CallStub(&stub);
+ }
+
+ bool result_saved = false; // Is the result saved to the stack?
+
+ // Emit code to evaluate all the non-constant subexpressions and to store
+ // them into the newly cloned array.
+ for (int i = 0; i < length; i++) {
+ Expression* subexpr = subexprs->at(i);
+ // If the subexpression is a literal or a simple materialized literal it
+ // is already set in the cloned array.
+ if (subexpr->AsLiteral() != NULL ||
+ CompileTimeValue::IsCompileTimeValue(subexpr)) {
+ continue;
+ }
+
+ if (!result_saved) {
+ __ push(v0);
+ result_saved = true;
+ }
+ VisitForAccumulatorValue(subexpr);
+
+ __ lw(t6, MemOperand(sp)); // Copy of array literal.
+ __ lw(a1, FieldMemOperand(t6, JSObject::kElementsOffset));
+ __ lw(a2, FieldMemOperand(t6, JSObject::kMapOffset));
+ int offset = FixedArray::kHeaderSize + (i * kPointerSize);
+
+ Label element_done;
+ Label double_elements;
+ Label smi_element;
+ Label slow_elements;
+ Label fast_elements;
+ __ CheckFastElements(a2, a3, &double_elements);
+
+ // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
+ __ JumpIfSmi(result_register(), &smi_element);
+ __ CheckFastSmiOnlyElements(a2, a3, &fast_elements);
+
+ // Store into the array literal requires a elements transition. Call into
+ // the runtime.
+ __ bind(&slow_elements);
+ __ push(t6); // Copy of array literal.
+ __ li(a1, Operand(Smi::FromInt(i)));
+ __ li(a2, Operand(Smi::FromInt(NONE))); // PropertyAttributes
+ __ li(a3, Operand(Smi::FromInt(strict_mode_flag()))); // Strict mode.
+ __ Push(a1, result_register(), a2, a3);
+ __ CallRuntime(Runtime::kSetProperty, 5);
+ __ Branch(&element_done);
+
+ // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
+ __ bind(&double_elements);
+ __ li(a3, Operand(Smi::FromInt(i)));
+ __ StoreNumberToDoubleElements(result_register(), a3, t6, a1, t0, t1, t5,
+ t3, &slow_elements);
+ __ Branch(&element_done);
+
+ // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
+ __ bind(&fast_elements);
+ __ sw(result_register(), FieldMemOperand(a1, offset));
+ // Update the write barrier for the array store.
+
+ __ RecordWriteField(
+ a1, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
+ __ Branch(&element_done);
+
+ // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
+ // FAST_ELEMENTS, and value is Smi.
+ __ bind(&smi_element);
+ __ sw(result_register(), FieldMemOperand(a1, offset));
+ // Fall through
+
+ __ bind(&element_done);
+
+ PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(v0);
+ }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+ Comment cmnt(masm_, "[ Assignment");
+ // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+ // on the left-hand side.
+ if (!expr->target()->IsValidLeftHandSide()) {
+ VisitForEffect(expr->target());
+ return;
+ }
+
+ // Left-hand side can only be a property, a global or a (parameter or local)
+ // slot.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* property = expr->target()->AsProperty();
+ if (property != NULL) {
+ assign_type = (property->key()->IsPropertyName())
+ ? NAMED_PROPERTY
+ : KEYED_PROPERTY;
+ }
+
+ // Evaluate LHS expression.
+ switch (assign_type) {
+ case VARIABLE:
+ // Nothing to do here.
+ break;
+ case NAMED_PROPERTY:
+ if (expr->is_compound()) {
+ // We need the receiver both on the stack and in the accumulator.
+ VisitForAccumulatorValue(property->obj());
+ __ push(result_register());
+ } else {
+ VisitForStackValue(property->obj());
+ }
+ break;
+ case KEYED_PROPERTY:
+ // We need the key and receiver on both the stack and in v0 and a1.
+ if (expr->is_compound()) {
+ VisitForStackValue(property->obj());
+ VisitForAccumulatorValue(property->key());
+ __ lw(a1, MemOperand(sp, 0));
+ __ push(v0);
+ } else {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ }
+ break;
+ }
+
+ // For compound assignments we need another deoptimization point after the
+ // variable/property load.
+ if (expr->is_compound()) {
+ { AccumulatorValueContext context(this);
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableLoad(expr->target()->AsVariableProxy());
+ PrepareForBailout(expr->target(), TOS_REG);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyLoad(property);
+ PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyLoad(property);
+ PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+ break;
+ }
+ }
+
+ Token::Value op = expr->binary_op();
+ __ push(v0); // Left operand goes on the stack.
+ VisitForAccumulatorValue(expr->value());
+
+ OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
+ ? OVERWRITE_RIGHT
+ : NO_OVERWRITE;
+ SetSourcePosition(expr->position() + 1);
+ AccumulatorValueContext context(this);
+ if (ShouldInlineSmiCase(op)) {
+ EmitInlineSmiBinaryOp(expr->binary_operation(),
+ op,
+ mode,
+ expr->target(),
+ expr->value());
+ } else {
+ EmitBinaryOp(expr->binary_operation(), op, mode);
+ }
+
+ // Deoptimization point in case the binary operation may have side effects.
+ PrepareForBailout(expr->binary_operation(), TOS_REG);
+ } else {
+ VisitForAccumulatorValue(expr->value());
+ }
+
+ // Record source position before possible IC call.
+ SetSourcePosition(expr->position());
+
+ // Store the value.
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+ expr->op());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(v0);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyAssignment(expr);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyAssignment(expr);
+ break;
+ }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ Literal* key = prop->key()->AsLiteral();
+ __ mov(a0, result_register());
+ __ li(a2, Operand(key->handle()));
+ // Call load IC. It has arguments receiver and property name a0 and a2.
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop));
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ __ mov(a0, result_register());
+ // Call keyed load IC. It has arguments key and receiver in a0 and a1.
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop));
+}
+
+
+void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
+ Token::Value op,
+ OverwriteMode mode,
+ Expression* left_expr,
+ Expression* right_expr) {
+ Label done, smi_case, stub_call;
+
+ Register scratch1 = a2;
+ Register scratch2 = a3;
+
+ // Get the arguments.
+ Register left = a1;
+ Register right = a0;
+ __ pop(left);
+ __ mov(a0, result_register());
+
+ // Perform combined smi check on both operands.
+ __ Or(scratch1, left, Operand(right));
+ STATIC_ASSERT(kSmiTag == 0);
+ JumpPatchSite patch_site(masm_);
+ patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+ __ bind(&stub_call);
+ BinaryOpStub stub(op, mode);
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
+ patch_site.EmitPatchInfo();
+ __ jmp(&done);
+
+ __ bind(&smi_case);
+ // Smi case. This code works the same way as the smi-smi case in the type
+ // recording binary operation stub, see
+ // BinaryOpStub::GenerateSmiSmiOperation for comments.
+ switch (op) {
+ case Token::SAR:
+ __ Branch(&stub_call);
+ __ GetLeastBitsFromSmi(scratch1, right, 5);
+ __ srav(right, left, scratch1);
+ __ And(v0, right, Operand(~kSmiTagMask));
+ break;
+ case Token::SHL: {
+ __ Branch(&stub_call);
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ sllv(scratch1, scratch1, scratch2);
+ __ Addu(scratch2, scratch1, Operand(0x40000000));
+ __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
+ __ SmiTag(v0, scratch1);
+ break;
+ }
+ case Token::SHR: {
+ __ Branch(&stub_call);
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ srlv(scratch1, scratch1, scratch2);
+ __ And(scratch2, scratch1, 0xc0000000);
+ __ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
+ __ SmiTag(v0, scratch1);
+ break;
+ }
+ case Token::ADD:
+ __ AdduAndCheckForOverflow(v0, left, right, scratch1);
+ __ BranchOnOverflow(&stub_call, scratch1);
+ break;
+ case Token::SUB:
+ __ SubuAndCheckForOverflow(v0, left, right, scratch1);
+ __ BranchOnOverflow(&stub_call, scratch1);
+ break;
+ case Token::MUL: {
+ __ SmiUntag(scratch1, right);
+ __ Mult(left, scratch1);
+ __ mflo(scratch1);
+ __ mfhi(scratch2);
+ __ sra(scratch1, scratch1, 31);
+ __ Branch(&stub_call, ne, scratch1, Operand(scratch2));
+ __ mflo(v0);
+ __ Branch(&done, ne, v0, Operand(zero_reg));
+ __ Addu(scratch2, right, left);
+ __ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
+ ASSERT(Smi::FromInt(0) == 0);
+ __ mov(v0, zero_reg);
+ break;
+ }
+ case Token::BIT_OR:
+ __ Or(v0, left, Operand(right));
+ break;
+ case Token::BIT_AND:
+ __ And(v0, left, Operand(right));
+ break;
+ case Token::BIT_XOR:
+ __ Xor(v0, left, Operand(right));
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
+ Token::Value op,
+ OverwriteMode mode) {
+ __ mov(a0, result_register());
+ __ pop(a1);
+ BinaryOpStub stub(op, mode);
+ JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
+ patch_site.EmitPatchInfo();
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitAssignment(Expression* expr, int bailout_ast_id) {
+ // Invalid left-hand sides are rewritten to have a 'throw
+ // ReferenceError' on the left-hand side.
+ if (!expr->IsValidLeftHandSide()) {
+ VisitForEffect(expr);
+ return;
+ }
+
+ // Left-hand side can only be a property, a global or a (parameter or local)
+ // slot.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* prop = expr->AsProperty();
+ if (prop != NULL) {
+ assign_type = (prop->key()->IsPropertyName())
+ ? NAMED_PROPERTY
+ : KEYED_PROPERTY;
+ }
+
+ switch (assign_type) {
+ case VARIABLE: {
+ Variable* var = expr->AsVariableProxy()->var();
+ EffectContext context(this);
+ EmitVariableAssignment(var, Token::ASSIGN);
+ break;
+ }
+ case NAMED_PROPERTY: {
+ __ push(result_register()); // Preserve value.
+ VisitForAccumulatorValue(prop->obj());
+ __ mov(a1, result_register());
+ __ pop(a0); // Restore value.
+ __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ __ Call(ic);
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ push(result_register()); // Preserve value.
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ __ mov(a1, result_register());
+ __ pop(a2);
+ __ pop(a0); // Restore value.
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ __ Call(ic);
+ break;
+ }
+ }
+ PrepareForBailoutForId(bailout_ast_id, TOS_REG);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var,
+ Token::Value op) {
+ if (var->IsUnallocated()) {
+ // Global var, const, or let.
+ __ mov(a0, result_register());
+ __ li(a2, Operand(var->name()));
+ __ lw(a1, GlobalObjectOperand());
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
+
+ } else if (op == Token::INIT_CONST) {
+ // Const initializers need a write barrier.
+ ASSERT(!var->IsParameter()); // No const parameters.
+ if (var->IsStackLocal()) {
+ Label skip;
+ __ lw(a1, StackOperand(var));
+ __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+ __ Branch(&skip, ne, a1, Operand(t0));
+ __ sw(result_register(), StackOperand(var));
+ __ bind(&skip);
+ } else {
+ ASSERT(var->IsContextSlot() || var->IsLookupSlot());
+ // Like var declarations, const declarations are hoisted to function
+ // scope. However, unlike var initializers, const initializers are
+ // able to drill a hole to that function context, even from inside a
+ // 'with' context. We thus bypass the normal static scope lookup for
+ // var->IsContextSlot().
+ __ push(v0);
+ __ li(a0, Operand(var->name()));
+ __ Push(cp, a0); // Context and name.
+ __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+ }
+
+ } else if (var->mode() == LET && op != Token::INIT_LET) {
+ // Non-initializing assignment to let variable needs a write barrier.
+ if (var->IsLookupSlot()) {
+ __ push(v0); // Value.
+ __ li(a1, Operand(var->name()));
+ __ li(a0, Operand(Smi::FromInt(strict_mode_flag())));
+ __ Push(cp, a1, a0); // Context, name, strict mode.
+ __ CallRuntime(Runtime::kStoreContextSlot, 4);
+ } else {
+ ASSERT(var->IsStackAllocated() || var->IsContextSlot());
+ Label assign;
+ MemOperand location = VarOperand(var, a1);
+ __ lw(a3, location);
+ __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+ __ Branch(&assign, ne, a3, Operand(t0));
+ __ li(a3, Operand(var->name()));
+ __ push(a3);
+ __ CallRuntime(Runtime::kThrowReferenceError, 1);
+ // Perform the assignment.
+ __ bind(&assign);
+ __ sw(result_register(), location);
+ if (var->IsContextSlot()) {
+ // RecordWrite may destroy all its register arguments.
+ __ mov(a3, result_register());
+ int offset = Context::SlotOffset(var->index());
+ __ RecordWriteContextSlot(
+ a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
+ }
+ }
+
+ } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
+ // Assignment to var or initializing assignment to let/const
+ // in harmony mode.
+ if (var->IsStackAllocated() || var->IsContextSlot()) {
+ MemOperand location = VarOperand(var, a1);
+ if (FLAG_debug_code && op == Token::INIT_LET) {
+ // Check for an uninitialized let binding.
+ __ lw(a2, location);
+ __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
+ __ Check(eq, "Let binding re-initialization.", a2, Operand(t0));
+ }
+ // Perform the assignment.
+ __ sw(v0, location);
+ if (var->IsContextSlot()) {
+ __ mov(a3, v0);
+ int offset = Context::SlotOffset(var->index());
+ __ RecordWriteContextSlot(
+ a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
+ }
+ } else {
+ ASSERT(var->IsLookupSlot());
+ __ push(v0); // Value.
+ __ li(a1, Operand(var->name()));
+ __ li(a0, Operand(Smi::FromInt(strict_mode_flag())));
+ __ Push(cp, a1, a0); // Context, name, strict mode.
+ __ CallRuntime(Runtime::kStoreContextSlot, 4);
+ }
+ }
+ // Non-initializing assignments to consts are ignored.
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a named store IC.
+ Property* prop = expr->target()->AsProperty();
+ ASSERT(prop != NULL);
+ ASSERT(prop->key()->AsLiteral() != NULL);
+
+ // If the assignment starts a block of assignments to the same object,
+ // change to slow case to avoid the quadratic behavior of repeatedly
+ // adding fast properties.
+ if (expr->starts_initialization_block()) {
+ __ push(result_register());
+ __ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value.
+ __ push(t0);
+ __ CallRuntime(Runtime::kToSlowProperties, 1);
+ __ pop(result_register());
+ }
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ __ mov(a0, result_register()); // Load the value.
+ __ li(a2, Operand(prop->key()->AsLiteral()->handle()));
+ // Load receiver to a1. Leave a copy in the stack if needed for turning the
+ // receiver into fast case.
+ if (expr->ends_initialization_block()) {
+ __ lw(a1, MemOperand(sp));
+ } else {
+ __ pop(a1);
+ }
+
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+
+ // If the assignment ends an initialization block, revert to fast case.
+ if (expr->ends_initialization_block()) {
+ __ push(v0); // Result of assignment, saved even if not needed.
+ // Receiver is under the result value.
+ __ lw(t0, MemOperand(sp, kPointerSize));
+ __ push(t0);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ __ pop(v0);
+ __ Drop(1);
+ }
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a keyed store IC.
+
+ // If the assignment starts a block of assignments to the same object,
+ // change to slow case to avoid the quadratic behavior of repeatedly
+ // adding fast properties.
+ if (expr->starts_initialization_block()) {
+ __ push(result_register());
+ // Receiver is now under the key and value.
+ __ lw(t0, MemOperand(sp, 2 * kPointerSize));
+ __ push(t0);
+ __ CallRuntime(Runtime::kToSlowProperties, 1);
+ __ pop(result_register());
+ }
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ // Call keyed store IC.
+ // The arguments are:
+ // - a0 is the value,
+ // - a1 is the key,
+ // - a2 is the receiver.
+ __ mov(a0, result_register());
+ __ pop(a1); // Key.
+ // Load receiver to a2. Leave a copy in the stack if needed for turning the
+ // receiver into fast case.
+ if (expr->ends_initialization_block()) {
+ __ lw(a2, MemOperand(sp));
+ } else {
+ __ pop(a2);
+ }
+
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+
+ // If the assignment ends an initialization block, revert to fast case.
+ if (expr->ends_initialization_block()) {
+ __ push(v0); // Result of assignment, saved even if not needed.
+ // Receiver is under the result value.
+ __ lw(t0, MemOperand(sp, kPointerSize));
+ __ push(t0);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ __ pop(v0);
+ __ Drop(1);
+ }
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitProperty(Property* expr) {
+ Comment cmnt(masm_, "[ Property");
+ Expression* key = expr->key();
+
+ if (key->IsPropertyName()) {
+ VisitForAccumulatorValue(expr->obj());
+ EmitNamedPropertyLoad(expr);
+ context()->Plug(v0);
+ } else {
+ VisitForStackValue(expr->obj());
+ VisitForAccumulatorValue(expr->key());
+ __ pop(a1);
+ EmitKeyedPropertyLoad(expr);
+ context()->Plug(v0);
+ }
+}
+
+
+void FullCodeGenerator::EmitCallWithIC(Call* expr,
+ Handle<Object> name,
+ RelocInfo::Mode mode) {
+ // Code common for calls using the IC.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ __ li(a2, Operand(name));
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ // Call the IC initialization code.
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
+ __ Call(ic, mode, expr->id());
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
+ Expression* key) {
+ // Load the key.
+ VisitForAccumulatorValue(key);
+
+ // Swap the name of the function and the receiver on the stack to follow
+ // the calling convention for call ICs.
+ __ pop(a1);
+ __ push(v0);
+ __ push(a1);
+
+ // Code common for calls using the IC.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ // Call the IC initialization code.
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
+ __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key.
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, v0); // Drop the key still on the stack.
+}
+
+
+void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
+ // Code common for calls using the call stub.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ CallFunctionStub stub(arg_count, flags);
+ __ CallStub(&stub);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, v0);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(ResolveEvalFlag flag,
+ int arg_count) {
+ // Push copy of the first argument or undefined if it doesn't exist.
+ if (arg_count > 0) {
+ __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
+ } else {
+ __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
+ }
+ __ push(a1);
+
+ // Push the receiver of the enclosing function and do runtime call.
+ int receiver_offset = 2 + info_->scope()->num_parameters();
+ __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize));
+ __ push(a1);
+ // Push the strict mode flag. In harmony mode every eval call
+ // is a strict mode eval call.
+ StrictModeFlag strict_mode =
+ FLAG_harmony_scoping ? kStrictMode : strict_mode_flag();
+ __ li(a1, Operand(Smi::FromInt(strict_mode)));
+ __ push(a1);
+
+ __ CallRuntime(flag == SKIP_CONTEXT_LOOKUP
+ ? Runtime::kResolvePossiblyDirectEvalNoLookup
+ : Runtime::kResolvePossiblyDirectEval, 4);
+}
+
+
+void FullCodeGenerator::VisitCall(Call* expr) {
+#ifdef DEBUG
+ // We want to verify that RecordJSReturnSite gets called on all paths
+ // through this function. Avoid early returns.
+ expr->return_is_recorded_ = false;
+#endif
+
+ Comment cmnt(masm_, "[ Call");
+ Expression* callee = expr->expression();
+ VariableProxy* proxy = callee->AsVariableProxy();
+ Property* property = callee->AsProperty();
+
+ if (proxy != NULL && proxy->var()->is_possibly_eval()) {
+ // In a call to eval, we first call %ResolvePossiblyDirectEval to
+ // resolve the function we need to call and the receiver of the
+ // call. Then we call the resolved function using the given
+ // arguments.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+
+ { PreservePositionScope pos_scope(masm()->positions_recorder());
+ VisitForStackValue(callee);
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ __ push(a2); // Reserved receiver slot.
+
+ // Push the arguments.
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // If we know that eval can only be shadowed by eval-introduced
+ // variables we attempt to load the global eval function directly
+ // in generated code. If we succeed, there is no need to perform a
+ // context lookup in the runtime system.
+ Label done;
+ Variable* var = proxy->var();
+ if (!var->IsUnallocated() && var->mode() == DYNAMIC_GLOBAL) {
+ Label slow;
+ EmitLoadGlobalCheckExtensions(var, NOT_INSIDE_TYPEOF, &slow);
+ // Push the function and resolve eval.
+ __ push(v0);
+ EmitResolvePossiblyDirectEval(SKIP_CONTEXT_LOOKUP, arg_count);
+ __ jmp(&done);
+ __ bind(&slow);
+ }
+
+ // Push a copy of the function (found below the arguments) and
+ // resolve eval.
+ __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+ __ push(a1);
+ EmitResolvePossiblyDirectEval(PERFORM_CONTEXT_LOOKUP, arg_count);
+ __ bind(&done);
+
+ // The runtime call returns a pair of values in v0 (function) and
+ // v1 (receiver). Touch up the stack with the right values.
+ __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
+ __ sw(v1, MemOperand(sp, arg_count * kPointerSize));
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
+ __ CallStub(&stub);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, v0);
+ } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
+ // Push global object as receiver for the call IC.
+ __ lw(a0, GlobalObjectOperand());
+ __ push(a0);
+ EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
+ } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
+ // Call to a lookup slot (dynamically introduced variable).
+ Label slow, done;
+
+ { PreservePositionScope scope(masm()->positions_recorder());
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
+ }
+
+ __ bind(&slow);
+ // Call the runtime to find the function to call (returned in v0)
+ // and the object holding it (returned in v1).
+ __ push(context_register());
+ __ li(a2, Operand(proxy->name()));
+ __ push(a2);
+ __ CallRuntime(Runtime::kLoadContextSlot, 2);
+ __ Push(v0, v1); // Function, receiver.
+
+ // If fast case code has been generated, emit code to push the
+ // function and receiver and have the slow path jump around this
+ // code.
+ if (done.is_linked()) {
+ Label call;
+ __ Branch(&call);
+ __ bind(&done);
+ // Push function.
+ __ push(v0);
+ // The receiver is implicitly the global receiver. Indicate this
+ // by passing the hole to the call function stub.
+ __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
+ __ push(a1);
+ __ bind(&call);
+ }
+
+ // The receiver is either the global receiver or an object found
+ // by LoadContextSlot. That object could be the hole if the
+ // receiver is implicitly the global object.
+ EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
+ } else if (property != NULL) {
+ { PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(property->obj());
+ }
+ if (property->key()->IsPropertyName()) {
+ EmitCallWithIC(expr,
+ property->key()->AsLiteral()->handle(),
+ RelocInfo::CODE_TARGET);
+ } else {
+ EmitKeyedCallWithIC(expr, property->key());
+ }
+ } else {
+ // Call to an arbitrary expression not handled specially above.
+ { PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(callee);
+ }
+ // Load global receiver object.
+ __ lw(a1, GlobalObjectOperand());
+ __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
+ __ push(a1);
+ // Emit function call.
+ EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
+ }
+
+#ifdef DEBUG
+ // RecordJSReturnSite should have been called.
+ ASSERT(expr->return_is_recorded_);
+#endif
+}
+
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+ Comment cmnt(masm_, "[ CallNew");
+ // According to ECMA-262, section 11.2.2, page 44, the function
+ // expression in new calls must be evaluated before the
+ // arguments.
+
+ // Push constructor on the stack. If it's not a function it's used as
+ // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+ // ignored.
+ VisitForStackValue(expr->expression());
+
+ // Push the arguments ("left-to-right") on the stack.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Call the construct call builtin that handles allocation and
+ // constructor invocation.
+ SetSourcePosition(expr->position());
+
+ // Load function and argument count into a1 and a0.
+ __ li(a0, Operand(arg_count));
+ __ lw(a1, MemOperand(sp, arg_count * kPointerSize));
+
+ Handle<Code> construct_builtin =
+ isolate()->builtins()->JSConstructCall();
+ __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ And(t0, v0, Operand(kSmiTagMask));
+ Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ And(at, v0, Operand(kSmiTagMask | 0x80000000));
+ Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(if_true, eq, v0, Operand(at));
+ __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined when tested with typeof.
+ __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
+ __ And(at, a1, Operand(1 << Map::kIsUndetectable));
+ __ Branch(if_false, ne, at, Operand(zero_reg));
+ __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
+ __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE),
+ if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ GetObjectType(v0, a1, a1);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE),
+ if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
+ __ And(at, a1, Operand(1 << Map::kIsUndetectable));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
+ ZoneList<Expression*>* args) {
+
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ if (FLAG_debug_code) __ AbortIfSmi(v0);
+
+ __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
+ __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
+ __ Branch(if_true, ne, t0, Operand(zero_reg));
+
+ // Check for fast case object. Generate false result for slow case object.
+ __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
+ __ LoadRoot(t0, Heap::kHashTableMapRootIndex);
+ __ Branch(if_false, eq, a2, Operand(t0));
+
+ // Look for valueOf symbol in the descriptor array, and indicate false if
+ // found. The type is not checked, so if it is a transition it is a false
+ // negative.
+ __ LoadInstanceDescriptors(a1, t0);
+ __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset));
+ // t0: descriptor array
+ // a3: length of descriptor array
+ // Calculate the end of the descriptor array.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kPointerSize == 4);
+ __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a2, a2, t1);
+
+ // Calculate location of the first key name.
+ __ Addu(t0,
+ t0,
+ Operand(FixedArray::kHeaderSize - kHeapObjectTag +
+ DescriptorArray::kFirstIndex * kPointerSize));
+ // Loop through all the keys in the descriptor array. If one of these is the
+ // symbol valueOf the result is false.
+ Label entry, loop;
+ // The use of t2 to store the valueOf symbol asumes that it is not otherwise
+ // used in the loop below.
+ __ li(t2, Operand(FACTORY->value_of_symbol()));
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ lw(a3, MemOperand(t0, 0));
+ __ Branch(if_false, eq, a3, Operand(t2));
+ __ Addu(t0, t0, Operand(kPointerSize));
+ __ bind(&entry);
+ __ Branch(&loop, ne, t0, Operand(a2));
+
+ // If a valueOf property is not found on the object check that it's
+ // prototype is the un-modified String prototype. If not result is false.
+ __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
+ __ JumpIfSmi(a2, if_false);
+ __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
+ __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
+ __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
+ __ Branch(if_false, ne, a2, Operand(a3));
+
+ // Set the bit in the map to indicate that it has been checked safe for
+ // default valueOf and set true result.
+ __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
+ __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
+ __ jmp(if_true);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ GetObjectType(v0, a1, a2);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
+ __ Branch(if_false);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ GetObjectType(v0, a1, a1);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, a1, Operand(JS_ARRAY_TYPE),
+ if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(v0, if_false);
+ __ GetObjectType(v0, a1, a1);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ // Get the frame pointer for the calling frame.
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&check_frame_marker, ne,
+ a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
+ if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ // Load the two objects into registers and perform the comparison.
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ pop(a1);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ // ArgumentsAccessStub expects the key in a1 and the formal
+ // parameter count in a0.
+ VisitForAccumulatorValue(args->at(0));
+ __ mov(a1, v0);
+ __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label exit;
+ // Get the number of formal parameters.
+ __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
+
+ // Check if the calling frame is an arguments adaptor frame.
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&exit, ne, a3,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Arguments adaptor case: Read the arguments length from the
+ // adaptor frame.
+ __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ __ bind(&exit);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+ Label done, null, function, non_function_constructor;
+
+ VisitForAccumulatorValue(args->at(0));
+
+ // If the object is a smi, we return null.
+ __ JumpIfSmi(v0, &null);
+
+ // Check that the object is a JS object but take special care of JS
+ // functions to make sure they have 'Function' as their class.
+ // Assume that there are only two callable types, and one of them is at
+ // either end of the type range for JS object types. Saves extra comparisons.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ GetObjectType(v0, v0, a1); // Map is now in v0.
+ __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ LAST_SPEC_OBJECT_TYPE - 1);
+ __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE));
+ // Assume that there is no larger type.
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
+
+ // Check if the constructor in the map is a JS function.
+ __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
+ __ GetObjectType(v0, a1, a1);
+ __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));
+
+ // v0 now contains the constructor function. Grab the
+ // instance class name from there.
+ __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
+ __ Branch(&done);
+
+ // Functions have class 'Function'.
+ __ bind(&function);
+ __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
+ __ jmp(&done);
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ bind(&non_function_constructor);
+ __ LoadRoot(v0, Heap::kObject_symbolRootIndex);
+ __ jmp(&done);
+
+ // Non-JS objects have class null.
+ __ bind(&null);
+ __ LoadRoot(v0, Heap::kNullValueRootIndex);
+
+ // All done.
+ __ bind(&done);
+
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) {
+ // Conditionally generate a log call.
+ // Args:
+ // 0 (literal string): The type of logging (corresponds to the flags).
+ // This is used to determine whether or not to generate the log call.
+ // 1 (string): Format string. Access the string at argument index 2
+ // with '%2s' (see Logger::LogRuntime for all the formats).
+ // 2 (array): Arguments to the format string.
+ ASSERT_EQ(args->length(), 3);
+ if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallRuntime(Runtime::kLog, 2);
+ }
+
+ // Finally, we're expected to leave a value on the top of the stack.
+ __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label slow_allocate_heapnumber;
+ Label heapnumber_allocated;
+
+ // Save the new heap number in callee-saved register s0, since
+ // we call out to external C code below.
+ __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
+ __ jmp(&heapnumber_allocated);
+
+ __ bind(&slow_allocate_heapnumber);
+
+ // Allocate a heap number.
+ __ CallRuntime(Runtime::kNumberAlloc, 0);
+ __ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call.
+
+ __ bind(&heapnumber_allocated);
+
+ // Convert 32 random bits in v0 to 0.(32 random bits) in a double
+ // by computing:
+ // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
+ if (CpuFeatures::IsSupported(FPU)) {
+ __ PrepareCallCFunction(1, a0);
+ __ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
+ __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
+
+ CpuFeatures::Scope scope(FPU);
+ // 0x41300000 is the top half of 1.0 x 2^20 as a double.
+ __ li(a1, Operand(0x41300000));
+ // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
+ __ Move(f12, v0, a1);
+ // Move 0x4130000000000000 to FPU.
+ __ Move(f14, zero_reg, a1);
+ // Subtract and store the result in the heap number.
+ __ sub_d(f0, f12, f14);
+ __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag));
+ __ mov(v0, s0);
+ } else {
+ __ PrepareCallCFunction(2, a0);
+ __ mov(a0, s0);
+ __ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset));
+ __ CallCFunction(
+ ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
+ }
+
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the stub.
+ SubStringStub stub;
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the stub.
+ RegExpExecStub stub;
+ ASSERT(args->length() == 4);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ VisitForStackValue(args->at(3));
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0)); // Load the object.
+
+ Label done;
+ // If the object is a smi return the object.
+ __ JumpIfSmi(v0, &done);
+ // If the object is not a value type, return the object.
+ __ GetObjectType(v0, a1, a1);
+ __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
+
+ __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));
+
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the runtime function.
+ ASSERT(args->length() == 2);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ MathPowStub stub;
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0)); // Load the object.
+ VisitForAccumulatorValue(args->at(1)); // Load the value.
+ __ pop(a1); // v0 = value. a1 = object.
+
+ Label done;
+ // If the object is a smi, return the value.
+ __ JumpIfSmi(a1, &done);
+
+ // If the object is not a value type, return the value.
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
+
+ // Store the value.
+ __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
+ // Update the write barrier. Save the value as it will be
+ // overwritten by the write barrier code and is needed afterward.
+ __ mov(a2, v0);
+ __ RecordWriteField(
+ a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
+
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) {
+ ASSERT_EQ(args->length(), 1);
+
+ // Load the argument on the stack and call the stub.
+ VisitForStackValue(args->at(0));
+
+ NumberToStringStub stub;
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label done;
+ StringCharFromCodeGenerator generator(v0, a1);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(a1);
+}
+
+
+void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+ __ mov(a0, result_register());
+
+ Register object = a1;
+ Register index = a0;
+ Register scratch = a2;
+ Register result = v0;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharCodeAtGenerator generator(object,
+ index,
+ scratch,
+ result,
+ &need_conversion,
+ &need_conversion,
+ &index_out_of_range,
+ STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // NaN.
+ __ LoadRoot(result, Heap::kNanValueRootIndex);
+ __ jmp(&done);
+
+ __ bind(&need_conversion);
+ // Load the undefined value into the result register, which will
+ // trigger conversion.
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+ __ mov(a0, result_register());
+
+ Register object = a1;
+ Register index = a0;
+ Register scratch1 = a2;
+ Register scratch2 = a3;
+ Register result = v0;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharAtGenerator generator(object,
+ index,
+ scratch1,
+ scratch2,
+ result,
+ &need_conversion,
+ &need_conversion,
+ &index_out_of_range,
+ STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // the empty string.
+ __ LoadRoot(result, Heap::kEmptyStringRootIndex);
+ __ jmp(&done);
+
+ __ bind(&need_conversion);
+ // Move smi zero into the result register, which will trigger
+ // conversion.
+ __ li(result, Operand(Smi::FromInt(0)));
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+
+ StringAddStub stub(NO_STRING_ADD_FLAGS);
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+
+ StringCompareStub stub;
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::SIN,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::COS,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::LOG,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the runtime function.
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ CallRuntime(Runtime::kMath_sqrt, 1);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) {
+ ASSERT(args->length() >= 2);
+
+ int arg_count = args->length() - 2; // 2 ~ receiver and function.
+ for (int i = 0; i < arg_count + 1; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ VisitForAccumulatorValue(args->last()); // Function.
+
+ // InvokeFunction requires the function in a1. Move it in there.
+ __ mov(a1, result_register());
+ ParameterCount count(arg_count);
+ __ InvokeFunction(a1, count, CALL_FUNCTION,
+ NullCallWrapper(), CALL_AS_METHOD);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) {
+ RegExpConstructResultStub stub;
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallStub(&stub);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ Label done;
+ Label slow_case;
+ Register object = a0;
+ Register index1 = a1;
+ Register index2 = a2;
+ Register elements = a3;
+ Register scratch1 = t0;
+ Register scratch2 = t1;
+
+ __ lw(object, MemOperand(sp, 2 * kPointerSize));
+ // Fetch the map and check if array is in fast case.
+ // Check that object doesn't require security checks and
+ // has no indexed interceptor.
+ __ GetObjectType(object, scratch1, scratch2);
+ __ Branch(&slow_case, ne, scratch2, Operand(JS_ARRAY_TYPE));
+ // Map is now in scratch1.
+
+ __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset));
+ __ And(scratch2, scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
+ __ Branch(&slow_case, ne, scratch2, Operand(zero_reg));
+
+ // Check the object's elements are in fast case and writable.
+ __ lw(elements, FieldMemOperand(object, JSObject::kElementsOffset));
+ __ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
+ __ LoadRoot(scratch2, Heap::kFixedArrayMapRootIndex);
+ __ Branch(&slow_case, ne, scratch1, Operand(scratch2));
+
+ // Check that both indices are smis.
+ __ lw(index1, MemOperand(sp, 1 * kPointerSize));
+ __ lw(index2, MemOperand(sp, 0));
+ __ JumpIfNotBothSmi(index1, index2, &slow_case);
+
+ // Check that both indices are valid.
+ Label not_hi;
+ __ lw(scratch1, FieldMemOperand(object, JSArray::kLengthOffset));
+ __ Branch(&slow_case, ls, scratch1, Operand(index1));
+ __ Branch(&not_hi, NegateCondition(hi), scratch1, Operand(index1));
+ __ Branch(&slow_case, ls, scratch1, Operand(index2));
+ __ bind(&not_hi);
+
+ // Bring the address of the elements into index1 and index2.
+ __ Addu(scratch1, elements,
+ Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(index1, index1, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(index1, scratch1, index1);
+ __ sll(index2, index2, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(index2, scratch1, index2);
+
+ // Swap elements.
+ __ lw(scratch1, MemOperand(index1, 0));
+ __ lw(scratch2, MemOperand(index2, 0));
+ __ sw(scratch1, MemOperand(index2, 0));
+ __ sw(scratch2, MemOperand(index1, 0));
+
+ Label no_remembered_set;
+ __ CheckPageFlag(elements,
+ scratch1,
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE,
+ ne,
+ &no_remembered_set);
+ // Possible optimization: do a check that both values are Smis
+ // (or them and test against Smi mask).
+
+ // We are swapping two objects in an array and the incremental marker never
+ // pauses in the middle of scanning a single object. Therefore the
+ // incremental marker is not disturbed, so we don't need to call the
+ // RecordWrite stub that notifies the incremental marker.
+ __ RememberedSetHelper(elements,
+ index1,
+ scratch2,
+ kDontSaveFPRegs,
+ MacroAssembler::kFallThroughAtEnd);
+ __ RememberedSetHelper(elements,
+ index2,
+ scratch2,
+ kDontSaveFPRegs,
+ MacroAssembler::kFallThroughAtEnd);
+
+ __ bind(&no_remembered_set);
+ // We are done. Drop elements from the stack, and return undefined.
+ __ Drop(3);
+ __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+ __ jmp(&done);
+
+ __ bind(&slow_case);
+ __ CallRuntime(Runtime::kSwapElements, 3);
+
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ ASSERT_NE(NULL, args->at(0)->AsLiteral());
+ int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
+
+ Handle<FixedArray> jsfunction_result_caches(
+ isolate()->global_context()->jsfunction_result_caches());
+ if (jsfunction_result_caches->length() <= cache_id) {
+ __ Abort("Attempt to use undefined cache.");
+ __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+ context()->Plug(v0);
+ return;
+ }
+
+ VisitForAccumulatorValue(args->at(1));
+
+ Register key = v0;
+ Register cache = a1;
+ __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
+ __ lw(cache,
+ ContextOperand(
+ cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
+ __ lw(cache,
+ FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
+
+
+ Label done, not_found;
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
+ // a2 now holds finger offset as a smi.
+ __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // a3 now points to the start of fixed array elements.
+ __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
+ __ addu(a3, a3, at);
+ // a3 now points to key of indexed element of cache.
+ __ lw(a2, MemOperand(a3));
+ __ Branch(&not_found, ne, key, Operand(a2));
+
+ __ lw(v0, MemOperand(a3, kPointerSize));
+ __ Branch(&done);
+
+ __ bind(&not_found);
+ // Call runtime to perform the lookup.
+ __ Push(cache, key);
+ __ CallRuntime(Runtime::kGetFromCache, 2);
+
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ Register right = v0;
+ Register left = a1;
+ Register tmp = a2;
+ Register tmp2 = a3;
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1)); // Result (right) in v0.
+ __ pop(left);
+
+ Label done, fail, ok;
+ __ Branch(&ok, eq, left, Operand(right));
+ // Fail if either is a non-HeapObject.
+ __ And(tmp, left, Operand(right));
+ __ And(at, tmp, Operand(kSmiTagMask));
+ __ Branch(&fail, eq, at, Operand(zero_reg));
+ __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
+ __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
+ __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ Branch(&fail, ne, tmp, Operand(tmp2));
+ __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
+ __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
+ __ Branch(&ok, eq, tmp, Operand(tmp2));
+ __ bind(&fail);
+ __ LoadRoot(v0, Heap::kFalseValueRootIndex);
+ __ jmp(&done);
+ __ bind(&ok);
+ __ LoadRoot(v0, Heap::kTrueValueRootIndex);
+ __ bind(&done);
+
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) {
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
+ __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+ VisitForAccumulatorValue(args->at(0));
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotString(v0);
+ }
+
+ __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
+ __ IndexFromHash(v0, v0);
+
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::EmitFastAsciiArrayJoin(ZoneList<Expression*>* args) {
+ Label bailout, done, one_char_separator, long_separator,
+ non_trivial_array, not_size_one_array, loop,
+ empty_separator_loop, one_char_separator_loop,
+ one_char_separator_loop_entry, long_separator_loop;
+
+ ASSERT(args->length() == 2);
+ VisitForStackValue(args->at(1));
+ VisitForAccumulatorValue(args->at(0));
+
+ // All aliases of the same register have disjoint lifetimes.
+ Register array = v0;
+ Register elements = no_reg; // Will be v0.
+ Register result = no_reg; // Will be v0.
+ Register separator = a1;
+ Register array_length = a2;
+ Register result_pos = no_reg; // Will be a2.
+ Register string_length = a3;
+ Register string = t0;
+ Register element = t1;
+ Register elements_end = t2;
+ Register scratch1 = t3;
+ Register scratch2 = t5;
+ Register scratch3 = t4;
+ Register scratch4 = v1;
+
+ // Separator operand is on the stack.
+ __ pop(separator);
+
+ // Check that the array is a JSArray.
+ __ JumpIfSmi(array, &bailout);
+ __ GetObjectType(array, scratch1, scratch2);
+ __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
+
+ // Check that the array has fast elements.
+ __ CheckFastElements(scratch1, scratch2, &bailout);
+
+ // If the array has length zero, return the empty string.
+ __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+ __ SmiUntag(array_length);
+ __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
+ __ LoadRoot(v0, Heap::kEmptyStringRootIndex);
+ __ Branch(&done);
+
+ __ bind(&non_trivial_array);
+
+ // Get the FixedArray containing array's elements.
+ elements = array;
+ __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+ array = no_reg; // End of array's live range.
+
+ // Check that all array elements are sequential ASCII strings, and
+ // accumulate the sum of their lengths, as a smi-encoded value.
+ __ mov(string_length, zero_reg);
+ __ Addu(element,
+ elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(elements_end, array_length, kPointerSizeLog2);
+ __ Addu(elements_end, element, elements_end);
+ // Loop condition: while (element < elements_end).
+ // Live values in registers:
+ // elements: Fixed array of strings.
+ // array_length: Length of the fixed array of strings (not smi)
+ // separator: Separator string
+ // string_length: Accumulated sum of string lengths (smi).
+ // element: Current array element.
+ // elements_end: Array end.
+ if (FLAG_debug_code) {
+ __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin",
+ array_length, Operand(zero_reg));
+ }
+ __ bind(&loop);
+ __ lw(string, MemOperand(element));
+ __ Addu(element, element, kPointerSize);
+ __ JumpIfSmi(string, &bailout);
+ __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+ __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
+ __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
+ __ BranchOnOverflow(&bailout, scratch3);
+ __ Branch(&loop, lt, element, Operand(elements_end));
+
+ // If array_length is 1, return elements[0], a string.
+ __ Branch(&not_size_one_array, ne, array_length, Operand(1));
+ __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
+ __ Branch(&done);
+
+ __ bind(&not_size_one_array);
+
+ // Live values in registers:
+ // separator: Separator string
+ // array_length: Length of the array.
+ // string_length: Sum of string lengths (smi).
+ // elements: FixedArray of strings.
+
+ // Check that the separator is a flat ASCII string.
+ __ JumpIfSmi(separator, &bailout);
+ __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+ __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+
+ // Add (separator length times array_length) - separator length to the
+ // string_length to get the length of the result string. array_length is not
+ // smi but the other values are, so the result is a smi.
+ __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+ __ Subu(string_length, string_length, Operand(scratch1));
+ __ Mult(array_length, scratch1);
+ // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+ // zero.
+ __ mfhi(scratch2);
+ __ Branch(&bailout, ne, scratch2, Operand(zero_reg));
+ __ mflo(scratch2);
+ __ And(scratch3, scratch2, Operand(0x80000000));
+ __ Branch(&bailout, ne, scratch3, Operand(zero_reg));
+ __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
+ __ BranchOnOverflow(&bailout, scratch3);
+ __ SmiUntag(string_length);
+
+ // Get first element in the array to free up the elements register to be used
+ // for the result.
+ __ Addu(element,
+ elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ result = elements; // End of live range for elements.
+ elements = no_reg;
+ // Live values in registers:
+ // element: First array element
+ // separator: Separator string
+ // string_length: Length of result string (not smi)
+ // array_length: Length of the array.
+ __ AllocateAsciiString(result,
+ string_length,
+ scratch1,
+ scratch2,
+ elements_end,
+ &bailout);
+ // Prepare for looping. Set up elements_end to end of the array. Set
+ // result_pos to the position of the result where to write the first
+ // character.
+ __ sll(elements_end, array_length, kPointerSizeLog2);
+ __ Addu(elements_end, element, elements_end);
+ result_pos = array_length; // End of live range for array_length.
+ array_length = no_reg;
+ __ Addu(result_pos,
+ result,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+
+ // Check the length of the separator.
+ __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+ __ li(at, Operand(Smi::FromInt(1)));
+ __ Branch(&one_char_separator, eq, scratch1, Operand(at));
+ __ Branch(&long_separator, gt, scratch1, Operand(at));
+
+ // Empty separator case.
+ __ bind(&empty_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+
+ // Copy next array element to the result.
+ __ lw(string, MemOperand(element));
+ __ Addu(element, element, kPointerSize);
+ __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ // End while (element < elements_end).
+ __ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
+ ASSERT(result.is(v0));
+ __ Branch(&done);
+
+ // One-character separator case.
+ __ bind(&one_char_separator);
+ // Replace separator with its ascii character value.
+ __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
+ // Jump into the loop after the code that copies the separator, so the first
+ // element is not preceded by a separator.
+ __ jmp(&one_char_separator_loop_entry);
+
+ __ bind(&one_char_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Single separator ascii char (in lower byte).
+
+ // Copy the separator character to the result.
+ __ sb(separator, MemOperand(result_pos));
+ __ Addu(result_pos, result_pos, 1);
+
+ // Copy next array element to the result.
+ __ bind(&one_char_separator_loop_entry);
+ __ lw(string, MemOperand(element));
+ __ Addu(element, element, kPointerSize);
+ __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ // End while (element < elements_end).
+ __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
+ ASSERT(result.is(v0));
+ __ Branch(&done);
+
+ // Long separator case (separator is more than one character). Entry is at the
+ // label long_separator below.
+ __ bind(&long_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Separator string.
+
+ // Copy the separator to the result.
+ __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ Addu(string,
+ separator,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+
+ __ bind(&long_separator);
+ __ lw(string, MemOperand(element));
+ __ Addu(element, element, kPointerSize);
+ __ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ // End while (element < elements_end).
+ __ Branch(&long_separator_loop, lt, element, Operand(elements_end));
+ ASSERT(result.is(v0));
+ __ Branch(&done);
+
+ __ bind(&bailout);
+ __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
+ __ bind(&done);
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
+ Handle<String> name = expr->name();
+ if (name->length() > 0 && name->Get(0) == '_') {
+ Comment cmnt(masm_, "[ InlineRuntimeCall");
+ EmitInlineRuntimeCall(expr);
+ return;
+ }
+
+ Comment cmnt(masm_, "[ CallRuntime");
+ ZoneList<Expression*>* args = expr->arguments();
+
+ if (expr->is_jsruntime()) {
+ // Prepare for calling JS runtime function.
+ __ lw(a0, GlobalObjectOperand());
+ __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
+ __ push(a0);
+ }
+
+ // Push the arguments ("left-to-right").
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ if (expr->is_jsruntime()) {
+ // Call the JS runtime function.
+ __ li(a2, Operand(expr->name()));
+ RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
+ __ Call(ic, mode, expr->id());
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ } else {
+ // Call the C runtime function.
+ __ CallRuntime(expr->function(), arg_count);
+ }
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+ switch (expr->op()) {
+ case Token::DELETE: {
+ Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+ Property* property = expr->expression()->AsProperty();
+ VariableProxy* proxy = expr->expression()->AsVariableProxy();
+
+ if (property != NULL) {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ __ li(a1, Operand(Smi::FromInt(strict_mode_flag())));
+ __ push(a1);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+ context()->Plug(v0);
+ } else if (proxy != NULL) {
+ Variable* var = proxy->var();
+ // Delete of an unqualified identifier is disallowed in strict mode
+ // but "delete this" is allowed.
+ ASSERT(strict_mode_flag() == kNonStrictMode || var->is_this());
+ if (var->IsUnallocated()) {
+ __ lw(a2, GlobalObjectOperand());
+ __ li(a1, Operand(var->name()));
+ __ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
+ __ Push(a2, a1, a0);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
+ context()->Plug(v0);
+ } else if (var->IsStackAllocated() || var->IsContextSlot()) {
+ // Result of deleting non-global, non-dynamic variables is false.
+ // The subexpression does not have side effects.
+ context()->Plug(var->is_this());
+ } else {
+ // Non-global variable. Call the runtime to try to delete from the
+ // context where the variable was introduced.
+ __ push(context_register());
+ __ li(a2, Operand(var->name()));
+ __ push(a2);
+ __ CallRuntime(Runtime::kDeleteContextSlot, 2);
+ context()->Plug(v0);
+ }
+ } else {
+ // Result of deleting non-property, non-variable reference is true.
+ // The subexpression may have side effects.
+ VisitForEffect(expr->expression());
+ context()->Plug(true);
+ }
+ break;
+ }
+
+ case Token::VOID: {
+ Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+ VisitForEffect(expr->expression());
+ context()->Plug(Heap::kUndefinedValueRootIndex);
+ break;
+ }
+
+ case Token::NOT: {
+ Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+ if (context()->IsEffect()) {
+ // Unary NOT has no side effects so it's only necessary to visit the
+ // subexpression. Match the optimizing compiler by not branching.
+ VisitForEffect(expr->expression());
+ } else {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+
+ // Notice that the labels are swapped.
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_false, &if_true, &fall_through);
+ if (context()->IsTest()) ForwardBailoutToChild(expr);
+ VisitForControl(expr->expression(), if_true, if_false, fall_through);
+ context()->Plug(if_false, if_true); // Labels swapped.
+ }
+ break;
+ }
+
+ case Token::TYPEOF: {
+ Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+ { StackValueContext context(this);
+ VisitForTypeofValue(expr->expression());
+ }
+ __ CallRuntime(Runtime::kTypeof, 1);
+ context()->Plug(v0);
+ break;
+ }
+
+ case Token::ADD: {
+ Comment cmt(masm_, "[ UnaryOperation (ADD)");
+ VisitForAccumulatorValue(expr->expression());
+ Label no_conversion;
+ __ JumpIfSmi(result_register(), &no_conversion);
+ __ mov(a0, result_register());
+ ToNumberStub convert_stub;
+ __ CallStub(&convert_stub);
+ __ bind(&no_conversion);
+ context()->Plug(result_register());
+ break;
+ }
+
+ case Token::SUB:
+ EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
+ break;
+
+ case Token::BIT_NOT:
+ EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
+ const char* comment) {
+ // TODO(svenpanne): Allowing format strings in Comment would be nice here...
+ Comment cmt(masm_, comment);
+ bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
+ UnaryOverwriteMode overwrite =
+ can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
+ UnaryOpStub stub(expr->op(), overwrite);
+ // GenericUnaryOpStub expects the argument to be in a0.
+ VisitForAccumulatorValue(expr->expression());
+ SetSourcePosition(expr->position());
+ __ mov(a0, result_register());
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
+ context()->Plug(v0);
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+ Comment cmnt(masm_, "[ CountOperation");
+ SetSourcePosition(expr->position());
+
+ // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+ // as the left-hand side.
+ if (!expr->expression()->IsValidLeftHandSide()) {
+ VisitForEffect(expr->expression());
+ return;
+ }
+
+ // Expression can only be a property, a global or a (parameter or local)
+ // slot.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* prop = expr->expression()->AsProperty();
+ // In case of a property we use the uninitialized expression context
+ // of the key to detect a named property.
+ if (prop != NULL) {
+ assign_type =
+ (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
+ }
+
+ // Evaluate expression and get value.
+ if (assign_type == VARIABLE) {
+ ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
+ AccumulatorValueContext context(this);
+ EmitVariableLoad(expr->expression()->AsVariableProxy());
+ } else {
+ // Reserve space for result of postfix operation.
+ if (expr->is_postfix() && !context()->IsEffect()) {
+ __ li(at, Operand(Smi::FromInt(0)));
+ __ push(at);
+ }
+ if (assign_type == NAMED_PROPERTY) {
+ // Put the object both on the stack and in the accumulator.
+ VisitForAccumulatorValue(prop->obj());
+ __ push(v0);
+ EmitNamedPropertyLoad(prop);
+ } else {
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ __ lw(a1, MemOperand(sp, 0));
+ __ push(v0);
+ EmitKeyedPropertyLoad(prop);
+ }
+ }
+
+ // We need a second deoptimization point after loading the value
+ // in case evaluating the property load my have a side effect.
+ if (assign_type == VARIABLE) {
+ PrepareForBailout(expr->expression(), TOS_REG);
+ } else {
+ PrepareForBailoutForId(expr->CountId(), TOS_REG);
+ }
+
+ // Call ToNumber only if operand is not a smi.
+ Label no_conversion;
+ __ JumpIfSmi(v0, &no_conversion);
+ __ mov(a0, v0);
+ ToNumberStub convert_stub;
+ __ CallStub(&convert_stub);
+ __ bind(&no_conversion);
+
+ // Save result for postfix expressions.
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ // Save the result on the stack. If we have a named or keyed property
+ // we store the result under the receiver that is currently on top
+ // of the stack.
+ switch (assign_type) {
+ case VARIABLE:
+ __ push(v0);
+ break;
+ case NAMED_PROPERTY:
+ __ sw(v0, MemOperand(sp, kPointerSize));
+ break;
+ case KEYED_PROPERTY:
+ __ sw(v0, MemOperand(sp, 2 * kPointerSize));
+ break;
+ }
+ }
+ }
+ __ mov(a0, result_register());
+
+ // Inline smi case if we are in a loop.
+ Label stub_call, done;
+ JumpPatchSite patch_site(masm_);
+
+ int count_value = expr->op() == Token::INC ? 1 : -1;
+ __ li(a1, Operand(Smi::FromInt(count_value)));
+
+ if (ShouldInlineSmiCase(expr->op())) {
+ __ AdduAndCheckForOverflow(v0, a0, a1, t0);
+ __ BranchOnOverflow(&stub_call, t0); // Do stub on overflow.
+
+ // We could eliminate this smi check if we split the code at
+ // the first smi check before calling ToNumber.
+ patch_site.EmitJumpIfSmi(v0, &done);
+ __ bind(&stub_call);
+ }
+
+ // Record position before stub call.
+ SetSourcePosition(expr->position());
+
+ BinaryOpStub stub(Token::ADD, NO_OVERWRITE);
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId());
+ patch_site.EmitPatchInfo();
+ __ bind(&done);
+
+ // Store the value returned in v0.
+ switch (assign_type) {
+ case VARIABLE:
+ if (expr->is_postfix()) {
+ { EffectContext context(this);
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context.Plug(v0);
+ }
+ // For all contexts except EffectConstant we have the result on
+ // top of the stack.
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(v0);
+ }
+ break;
+ case NAMED_PROPERTY: {
+ __ mov(a0, result_register()); // Value.
+ __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name.
+ __ pop(a1); // Receiver.
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(v0);
+ }
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ mov(a0, result_register()); // Value.
+ __ pop(a1); // Key.
+ __ pop(a2); // Receiver.
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(v0);
+ }
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
+ ASSERT(!context()->IsEffect());
+ ASSERT(!context()->IsTest());
+ VariableProxy* proxy = expr->AsVariableProxy();
+ if (proxy != NULL && proxy->var()->IsUnallocated()) {
+ Comment cmnt(masm_, "Global variable");
+ __ lw(a0, GlobalObjectOperand());
+ __ li(a2, Operand(proxy->name()));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ // Use a regular load, not a contextual load, to avoid a reference
+ // error.
+ __ Call(ic);
+ PrepareForBailout(expr, TOS_REG);
+ context()->Plug(v0);
+ } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
+ Label done, slow;
+
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
+
+ __ bind(&slow);
+ __ li(a0, Operand(proxy->name()));
+ __ Push(cp, a0);
+ __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+ PrepareForBailout(expr, TOS_REG);
+ __ bind(&done);
+
+ context()->Plug(v0);
+ } else {
+ // This expression cannot throw a reference error at the top level.
+ VisitInCurrentContext(expr);
+ }
+}
+
+void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
+ Handle<String> check) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ { AccumulatorValueContext context(this);
+ VisitForTypeofValue(expr);
+ }
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+
+ if (check->Equals(isolate()->heap()->number_symbol())) {
+ __ JumpIfSmi(v0, if_true);
+ __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->string_symbol())) {
+ __ JumpIfSmi(v0, if_false);
+ // Check for undetectable objects => false.
+ __ GetObjectType(v0, v0, a1);
+ __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
+ __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+ __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+ Split(eq, a1, Operand(zero_reg),
+ if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(if_true, eq, v0, Operand(at));
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+ } else if (FLAG_harmony_typeof &&
+ check->Equals(isolate()->heap()->null_symbol())) {
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ Split(eq, v0, Operand(at), if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(if_true, eq, v0, Operand(at));
+ __ JumpIfSmi(v0, if_false);
+ // Check for undetectable objects => true.
+ __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+ __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+ Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->function_symbol())) {
+ __ JumpIfSmi(v0, if_false);
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ GetObjectType(v0, v0, a1);
+ __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE));
+ Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE),
+ if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->object_symbol())) {
+ __ JumpIfSmi(v0, if_false);
+ if (!FLAG_harmony_typeof) {
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(if_true, eq, v0, Operand(at));
+ }
+ // Check for JS objects => true.
+ __ GetObjectType(v0, v0, a1);
+ __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
+ __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ // Check for undetectable objects => false.
+ __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
+ __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+ Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
+ } else {
+ if (if_false != fall_through) __ jmp(if_false);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+ Comment cmnt(masm_, "[ CompareOperation");
+ SetSourcePosition(expr->position());
+
+ // First we try a fast inlined version of the compare when one of
+ // the operands is a literal.
+ if (TryLiteralCompare(expr)) return;
+
+ // Always perform the comparison for its control flow. Pack the result
+ // into the expression's context after the comparison is performed.
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ Token::Value op = expr->op();
+ VisitForStackValue(expr->left());
+ switch (op) {
+ case Token::IN:
+ VisitForStackValue(expr->right());
+ __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
+ PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ __ LoadRoot(t0, Heap::kTrueValueRootIndex);
+ Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
+ break;
+
+ case Token::INSTANCEOF: {
+ VisitForStackValue(expr->right());
+ InstanceofStub stub(InstanceofStub::kNoFlags);
+ __ CallStub(&stub);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ // The stub returns 0 for true.
+ Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
+ break;
+ }
+
+ default: {
+ VisitForAccumulatorValue(expr->right());
+ Condition cc = eq;
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ cc = eq;
+ break;
+ case Token::LT:
+ cc = lt;
+ break;
+ case Token::GT:
+ cc = gt;
+ break;
+ case Token::LTE:
+ cc = le;
+ break;
+ case Token::GTE:
+ cc = ge;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ __ mov(a0, result_register());
+ __ pop(a1);
+
+ bool inline_smi_code = ShouldInlineSmiCase(op);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ Or(a2, a0, Operand(a1));
+ patch_site.EmitJumpIfNotSmi(a2, &slow_case);
+ Split(cc, a1, Operand(a0), if_true, if_false, NULL);
+ __ bind(&slow_case);
+ }
+ // Record position and call the compare IC.
+ SetSourcePosition(expr->position());
+ Handle<Code> ic = CompareIC::GetUninitialized(op);
+ __ Call(ic, RelocInfo::CODE_TARGET, expr->id());
+ patch_site.EmitPatchInfo();
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
+ }
+ }
+
+ // Convert the result of the comparison into one expected for this
+ // expression's context.
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
+ Expression* sub_expr,
+ NilValue nil) {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ VisitForAccumulatorValue(sub_expr);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Heap::RootListIndex nil_value = nil == kNullValue ?
+ Heap::kNullValueRootIndex :
+ Heap::kUndefinedValueRootIndex;
+ __ mov(a0, result_register());
+ __ LoadRoot(a1, nil_value);
+ if (expr->op() == Token::EQ_STRICT) {
+ Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
+ } else {
+ Heap::RootListIndex other_nil_value = nil == kNullValue ?
+ Heap::kUndefinedValueRootIndex :
+ Heap::kNullValueRootIndex;
+ __ Branch(if_true, eq, a0, Operand(a1));
+ __ LoadRoot(a1, other_nil_value);
+ __ Branch(if_true, eq, a0, Operand(a1));
+ __ And(at, a0, Operand(kSmiTagMask));
+ __ Branch(if_false, eq, at, Operand(zero_reg));
+ // It can be an undetectable object.
+ __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
+ __ And(a1, a1, Operand(1 << Map::kIsUndetectable));
+ Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
+ __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ context()->Plug(v0);
+}
+
+
+Register FullCodeGenerator::result_register() {
+ return v0;
+}
+
+
+Register FullCodeGenerator::context_register() {
+ return cp;
+}
+
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+ ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+ __ sw(value, MemOperand(fp, frame_offset));
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+ __ lw(dst, ContextOperand(cp, context_index));
+}
+
+
+void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
+ Scope* declaration_scope = scope()->DeclarationScope();
+ if (declaration_scope->is_global_scope()) {
+ // Contexts nested in the global context have a canonical empty function
+ // as their closure, not the anonymous closure containing the global
+ // code. Pass a smi sentinel and let the runtime look up the empty
+ // function.
+ __ li(at, Operand(Smi::FromInt(0)));
+ } else if (declaration_scope->is_eval_scope()) {
+ // Contexts created by a call to eval have the same closure as the
+ // context calling eval, not the anonymous closure containing the eval
+ // code. Fetch it from the context.
+ __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX));
+ } else {
+ ASSERT(declaration_scope->is_function_scope());
+ __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ }
+ __ push(at);
+}
+
+
+// ----------------------------------------------------------------------------
+// Non-local control flow support.
+
+void FullCodeGenerator::EnterFinallyBlock() {
+ ASSERT(!result_register().is(a1));
+ // Store result register while executing finally block.
+ __ push(result_register());
+ // Cook return address in link register to stack (smi encoded Code* delta).
+ __ Subu(a1, ra, Operand(masm_->CodeObject()));
+ ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+ STATIC_ASSERT(0 == kSmiTag);
+ __ Addu(a1, a1, Operand(a1)); // Convert to smi.
+ __ push(a1);
+}
+
+
+void FullCodeGenerator::ExitFinallyBlock() {
+ ASSERT(!result_register().is(a1));
+ // Restore result register from stack.
+ __ pop(a1);
+ // Uncook return address and return.
+ __ pop(result_register());
+ ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+ __ sra(a1, a1, 1); // Un-smi-tag value.
+ __ Addu(at, a1, Operand(masm_->CodeObject()));
+ __ Jump(at);
+}
+
+
+#undef __
+
+#define __ ACCESS_MASM(masm())
+
+FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
+ int* stack_depth,
+ int* context_length) {
+ // The macros used here must preserve the result register.
+
+ // Because the handler block contains the context of the finally
+ // code, we can restore it directly from there for the finally code
+ // rather than iteratively unwinding contexts via their previous
+ // links.
+ __ Drop(*stack_depth); // Down to the handler block.
+ if (*context_length > 0) {
+ // Restore the context to its dedicated register and the stack.
+ __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
+ __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ }
+ __ PopTryHandler();
+ __ Call(finally_entry_);
+
+ *stack_depth = 0;
+ *context_length = 0;
+ return previous_;
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_MIPS