diff options
Diffstat (limited to 'src/3rdparty/v8/src/mips/full-codegen-mips.cc')
-rw-r--r-- | src/3rdparty/v8/src/mips/full-codegen-mips.cc | 4377 |
1 files changed, 4377 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/mips/full-codegen-mips.cc b/src/3rdparty/v8/src/mips/full-codegen-mips.cc new file mode 100644 index 0000000..2f989bc --- /dev/null +++ b/src/3rdparty/v8/src/mips/full-codegen-mips.cc @@ -0,0 +1,4377 @@ +// Copyright 2011 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "v8.h" + +#if defined(V8_TARGET_ARCH_MIPS) + +// Note on Mips implementation: +// +// The result_register() for mips is the 'v0' register, which is defined +// by the ABI to contain function return values. However, the first +// parameter to a function is defined to be 'a0'. So there are many +// places where we have to move a previous result in v0 to a0 for the +// next call: mov(a0, v0). This is not needed on the other architectures. + +#include "code-stubs.h" +#include "codegen.h" +#include "compiler.h" +#include "debug.h" +#include "full-codegen.h" +#include "parser.h" +#include "scopes.h" +#include "stub-cache.h" + +#include "mips/code-stubs-mips.h" +#include "mips/macro-assembler-mips.h" + +namespace v8 { +namespace internal { + +#define __ ACCESS_MASM(masm_) + + +static unsigned GetPropertyId(Property* property) { + return property->id(); +} + + +// A patch site is a location in the code which it is possible to patch. This +// class has a number of methods to emit the code which is patchable and the +// method EmitPatchInfo to record a marker back to the patchable code. This +// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy +// (raw 16 bit immediate value is used) is the delta from the pc to the first +// instruction of the patchable code. +// The marker instruction is effectively a NOP (dest is zero_reg) and will +// never be emitted by normal code. +class JumpPatchSite BASE_EMBEDDED { + public: + explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { +#ifdef DEBUG + info_emitted_ = false; +#endif + } + + ~JumpPatchSite() { + ASSERT(patch_site_.is_bound() == info_emitted_); + } + + // When initially emitting this ensure that a jump is always generated to skip + // the inlined smi code. + void EmitJumpIfNotSmi(Register reg, Label* target) { + ASSERT(!patch_site_.is_bound() && !info_emitted_); + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + __ bind(&patch_site_); + __ andi(at, reg, 0); + // Always taken before patched. + __ Branch(target, eq, at, Operand(zero_reg)); + } + + // When initially emitting this ensure that a jump is never generated to skip + // the inlined smi code. + void EmitJumpIfSmi(Register reg, Label* target) { + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + ASSERT(!patch_site_.is_bound() && !info_emitted_); + __ bind(&patch_site_); + __ andi(at, reg, 0); + // Never taken before patched. + __ Branch(target, ne, at, Operand(zero_reg)); + } + + void EmitPatchInfo() { + if (patch_site_.is_bound()) { + int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); + Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); + __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask); +#ifdef DEBUG + info_emitted_ = true; +#endif + } else { + __ nop(); // Signals no inlined code. + } + } + + private: + MacroAssembler* masm_; + Label patch_site_; +#ifdef DEBUG + bool info_emitted_; +#endif +}; + + +// Generate code for a JS function. On entry to the function the receiver +// and arguments have been pushed on the stack left to right. The actual +// argument count matches the formal parameter count expected by the +// function. +// +// The live registers are: +// o a1: the JS function object being called (ie, ourselves) +// o cp: our context +// o fp: our caller's frame pointer +// o sp: stack pointer +// o ra: return address +// +// The function builds a JS frame. Please see JavaScriptFrameConstants in +// frames-mips.h for its layout. +void FullCodeGenerator::Generate(CompilationInfo* info) { + ASSERT(info_ == NULL); + info_ = info; + scope_ = info->scope(); + SetFunctionPosition(function()); + Comment cmnt(masm_, "[ function compiled by full code generator"); + +#ifdef DEBUG + if (strlen(FLAG_stop_at) > 0 && + info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { + __ stop("stop-at"); + } +#endif + + // Strict mode functions and builtins need to replace the receiver + // with undefined when called as functions (without an explicit + // receiver object). t1 is zero for method calls and non-zero for + // function calls. + if (info->is_strict_mode() || info->is_native()) { + Label ok; + __ Branch(&ok, eq, t1, Operand(zero_reg)); + int receiver_offset = info->scope()->num_parameters() * kPointerSize; + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + __ sw(a2, MemOperand(sp, receiver_offset)); + __ bind(&ok); + } + + // Open a frame scope to indicate that there is a frame on the stack. The + // MANUAL indicates that the scope shouldn't actually generate code to set up + // the frame (that is done below). + FrameScope frame_scope(masm_, StackFrame::MANUAL); + + int locals_count = info->scope()->num_stack_slots(); + + __ Push(ra, fp, cp, a1); + if (locals_count > 0) { + // Load undefined value here, so the value is ready for the loop + // below. + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + } + // Adjust fp to point to caller's fp. + __ Addu(fp, sp, Operand(2 * kPointerSize)); + + { Comment cmnt(masm_, "[ Allocate locals"); + for (int i = 0; i < locals_count; i++) { + __ push(at); + } + } + + bool function_in_register = true; + + // Possibly allocate a local context. + int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; + if (heap_slots > 0) { + Comment cmnt(masm_, "[ Allocate local context"); + // Argument to NewContext is the function, which is in a1. + __ push(a1); + if (heap_slots <= FastNewContextStub::kMaximumSlots) { + FastNewContextStub stub(heap_slots); + __ CallStub(&stub); + } else { + __ CallRuntime(Runtime::kNewFunctionContext, 1); + } + function_in_register = false; + // Context is returned in both v0 and cp. It replaces the context + // passed to us. It's saved in the stack and kept live in cp. + __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + // Copy any necessary parameters into the context. + int num_parameters = info->scope()->num_parameters(); + for (int i = 0; i < num_parameters; i++) { + Variable* var = scope()->parameter(i); + if (var->IsContextSlot()) { + int parameter_offset = StandardFrameConstants::kCallerSPOffset + + (num_parameters - 1 - i) * kPointerSize; + // Load parameter from stack. + __ lw(a0, MemOperand(fp, parameter_offset)); + // Store it in the context. + MemOperand target = ContextOperand(cp, var->index()); + __ sw(a0, target); + + // Update the write barrier. + __ RecordWriteContextSlot( + cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs); + } + } + } + + Variable* arguments = scope()->arguments(); + if (arguments != NULL) { + // Function uses arguments object. + Comment cmnt(masm_, "[ Allocate arguments object"); + if (!function_in_register) { + // Load this again, if it's used by the local context below. + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + } else { + __ mov(a3, a1); + } + // Receiver is just before the parameters on the caller's stack. + int num_parameters = info->scope()->num_parameters(); + int offset = num_parameters * kPointerSize; + __ Addu(a2, fp, + Operand(StandardFrameConstants::kCallerSPOffset + offset)); + __ li(a1, Operand(Smi::FromInt(num_parameters))); + __ Push(a3, a2, a1); + + // Arguments to ArgumentsAccessStub: + // function, receiver address, parameter count. + // The stub will rewrite receiever and parameter count if the previous + // stack frame was an arguments adapter frame. + ArgumentsAccessStub::Type type; + if (is_strict_mode()) { + type = ArgumentsAccessStub::NEW_STRICT; + } else if (function()->has_duplicate_parameters()) { + type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW; + } else { + type = ArgumentsAccessStub::NEW_NON_STRICT_FAST; + } + ArgumentsAccessStub stub(type); + __ CallStub(&stub); + + SetVar(arguments, v0, a1, a2); + } + + if (FLAG_trace) { + __ CallRuntime(Runtime::kTraceEnter, 0); + } + + // Visit the declarations and body unless there is an illegal + // redeclaration. + if (scope()->HasIllegalRedeclaration()) { + Comment cmnt(masm_, "[ Declarations"); + scope()->VisitIllegalRedeclaration(this); + + } else { + PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS); + { Comment cmnt(masm_, "[ Declarations"); + // For named function expressions, declare the function name as a + // constant. + if (scope()->is_function_scope() && scope()->function() != NULL) { + int ignored = 0; + VariableProxy* proxy = scope()->function(); + ASSERT(proxy->var()->mode() == CONST || + proxy->var()->mode() == CONST_HARMONY); + EmitDeclaration(proxy, proxy->var()->mode(), NULL, &ignored); + } + VisitDeclarations(scope()->declarations()); + } + + { Comment cmnt(masm_, "[ Stack check"); + PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS); + Label ok; + __ LoadRoot(t0, Heap::kStackLimitRootIndex); + __ Branch(&ok, hs, sp, Operand(t0)); + StackCheckStub stub; + __ CallStub(&stub); + __ bind(&ok); + } + + { Comment cmnt(masm_, "[ Body"); + ASSERT(loop_depth() == 0); + VisitStatements(function()->body()); + ASSERT(loop_depth() == 0); + } + } + + // Always emit a 'return undefined' in case control fell off the end of + // the body. + { Comment cmnt(masm_, "[ return <undefined>;"); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + } + EmitReturnSequence(); +} + + +void FullCodeGenerator::ClearAccumulator() { + ASSERT(Smi::FromInt(0) == 0); + __ mov(v0, zero_reg); +} + + +void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt) { + // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need + // to make sure it is constant. Branch may emit a skip-or-jump sequence + // instead of the normal Branch. It seems that the "skip" part of that + // sequence is about as long as this Branch would be so it is safe to ignore + // that. + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + Comment cmnt(masm_, "[ Stack check"); + Label ok; + __ LoadRoot(t0, Heap::kStackLimitRootIndex); + __ sltu(at, sp, t0); + __ beq(at, zero_reg, &ok); + // CallStub will emit a li t9, ... first, so it is safe to use the delay slot. + StackCheckStub stub; + __ CallStub(&stub); + // Record a mapping of this PC offset to the OSR id. This is used to find + // the AST id from the unoptimized code in order to use it as a key into + // the deoptimization input data found in the optimized code. + RecordStackCheck(stmt->OsrEntryId()); + + __ bind(&ok); + PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); + // Record a mapping of the OSR id to this PC. This is used if the OSR + // entry becomes the target of a bailout. We don't expect it to be, but + // we want it to work if it is. + PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); +} + + +void FullCodeGenerator::EmitReturnSequence() { + Comment cmnt(masm_, "[ Return sequence"); + if (return_label_.is_bound()) { + __ Branch(&return_label_); + } else { + __ bind(&return_label_); + if (FLAG_trace) { + // Push the return value on the stack as the parameter. + // Runtime::TraceExit returns its parameter in v0. + __ push(v0); + __ CallRuntime(Runtime::kTraceExit, 1); + } + +#ifdef DEBUG + // Add a label for checking the size of the code used for returning. + Label check_exit_codesize; + masm_->bind(&check_exit_codesize); +#endif + // Make sure that the constant pool is not emitted inside of the return + // sequence. + { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + // Here we use masm_-> instead of the __ macro to avoid the code coverage + // tool from instrumenting as we rely on the code size here. + int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize; + CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); + __ RecordJSReturn(); + masm_->mov(sp, fp); + masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit())); + masm_->Addu(sp, sp, Operand(sp_delta)); + masm_->Jump(ra); + } + +#ifdef DEBUG + // Check that the size of the code used for returning is large enough + // for the debugger's requirements. + ASSERT(Assembler::kJSReturnSequenceInstructions <= + masm_->InstructionsGeneratedSince(&check_exit_codesize)); +#endif + } +} + + +void FullCodeGenerator::EffectContext::Plug(Variable* var) const { + ASSERT(var->IsStackAllocated() || var->IsContextSlot()); +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { + ASSERT(var->IsStackAllocated() || var->IsContextSlot()); + codegen()->GetVar(result_register(), var); +} + + +void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { + ASSERT(var->IsStackAllocated() || var->IsContextSlot()); + codegen()->GetVar(result_register(), var); + __ push(result_register()); +} + + +void FullCodeGenerator::TestContext::Plug(Variable* var) const { + // For simplicity we always test the accumulator register. + codegen()->GetVar(result_register(), var); + codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); + codegen()->DoTest(this); +} + + +void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Heap::RootListIndex index) const { + __ LoadRoot(result_register(), index); +} + + +void FullCodeGenerator::StackValueContext::Plug( + Heap::RootListIndex index) const { + __ LoadRoot(result_register(), index); + __ push(result_register()); +} + + +void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { + codegen()->PrepareForBailoutBeforeSplit(TOS_REG, + true, + true_label_, + false_label_); + if (index == Heap::kUndefinedValueRootIndex || + index == Heap::kNullValueRootIndex || + index == Heap::kFalseValueRootIndex) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else if (index == Heap::kTrueValueRootIndex) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else { + __ LoadRoot(result_register(), index); + codegen()->DoTest(this); + } +} + + +void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Handle<Object> lit) const { + __ li(result_register(), Operand(lit)); +} + + +void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { + // Immediates cannot be pushed directly. + __ li(result_register(), Operand(lit)); + __ push(result_register()); +} + + +void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { + codegen()->PrepareForBailoutBeforeSplit(TOS_REG, + true, + true_label_, + false_label_); + ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. + if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else if (lit->IsTrue() || lit->IsJSObject()) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else if (lit->IsString()) { + if (String::cast(*lit)->length() == 0) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else { + if (true_label_ != fall_through_) __ Branch(true_label_); + } + } else if (lit->IsSmi()) { + if (Smi::cast(*lit)->value() == 0) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else { + if (true_label_ != fall_through_) __ Branch(true_label_); + } + } else { + // For simplicity we always test the accumulator register. + __ li(result_register(), Operand(lit)); + codegen()->DoTest(this); + } +} + + +void FullCodeGenerator::EffectContext::DropAndPlug(int count, + Register reg) const { + ASSERT(count > 0); + __ Drop(count); +} + + +void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( + int count, + Register reg) const { + ASSERT(count > 0); + __ Drop(count); + __ Move(result_register(), reg); +} + + +void FullCodeGenerator::StackValueContext::DropAndPlug(int count, + Register reg) const { + ASSERT(count > 0); + if (count > 1) __ Drop(count - 1); + __ sw(reg, MemOperand(sp, 0)); +} + + +void FullCodeGenerator::TestContext::DropAndPlug(int count, + Register reg) const { + ASSERT(count > 0); + // For simplicity we always test the accumulator register. + __ Drop(count); + __ Move(result_register(), reg); + codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); + codegen()->DoTest(this); +} + + +void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, + Label* materialize_false) const { + ASSERT(materialize_true == materialize_false); + __ bind(materialize_true); +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Label* materialize_true, + Label* materialize_false) const { + Label done; + __ bind(materialize_true); + __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); + __ Branch(&done); + __ bind(materialize_false); + __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); + __ bind(&done); +} + + +void FullCodeGenerator::StackValueContext::Plug( + Label* materialize_true, + Label* materialize_false) const { + Label done; + __ bind(materialize_true); + __ LoadRoot(at, Heap::kTrueValueRootIndex); + __ push(at); + __ Branch(&done); + __ bind(materialize_false); + __ LoadRoot(at, Heap::kFalseValueRootIndex); + __ push(at); + __ bind(&done); +} + + +void FullCodeGenerator::TestContext::Plug(Label* materialize_true, + Label* materialize_false) const { + ASSERT(materialize_true == true_label_); + ASSERT(materialize_false == false_label_); +} + + +void FullCodeGenerator::EffectContext::Plug(bool flag) const { +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { + Heap::RootListIndex value_root_index = + flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; + __ LoadRoot(result_register(), value_root_index); +} + + +void FullCodeGenerator::StackValueContext::Plug(bool flag) const { + Heap::RootListIndex value_root_index = + flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; + __ LoadRoot(at, value_root_index); + __ push(at); +} + + +void FullCodeGenerator::TestContext::Plug(bool flag) const { + codegen()->PrepareForBailoutBeforeSplit(TOS_REG, + true, + true_label_, + false_label_); + if (flag) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else { + if (false_label_ != fall_through_) __ Branch(false_label_); + } +} + + +void FullCodeGenerator::DoTest(Expression* condition, + Label* if_true, + Label* if_false, + Label* fall_through) { + if (CpuFeatures::IsSupported(FPU)) { + ToBooleanStub stub(result_register()); + __ CallStub(&stub); + __ mov(at, zero_reg); + } else { + // Call the runtime to find the boolean value of the source and then + // translate it into control flow to the pair of labels. + __ push(result_register()); + __ CallRuntime(Runtime::kToBool, 1); + __ LoadRoot(at, Heap::kFalseValueRootIndex); + } + Split(ne, v0, Operand(at), if_true, if_false, fall_through); +} + + +void FullCodeGenerator::Split(Condition cc, + Register lhs, + const Operand& rhs, + Label* if_true, + Label* if_false, + Label* fall_through) { + if (if_false == fall_through) { + __ Branch(if_true, cc, lhs, rhs); + } else if (if_true == fall_through) { + __ Branch(if_false, NegateCondition(cc), lhs, rhs); + } else { + __ Branch(if_true, cc, lhs, rhs); + __ Branch(if_false); + } +} + + +MemOperand FullCodeGenerator::StackOperand(Variable* var) { + ASSERT(var->IsStackAllocated()); + // Offset is negative because higher indexes are at lower addresses. + int offset = -var->index() * kPointerSize; + // Adjust by a (parameter or local) base offset. + if (var->IsParameter()) { + offset += (info_->scope()->num_parameters() + 1) * kPointerSize; + } else { + offset += JavaScriptFrameConstants::kLocal0Offset; + } + return MemOperand(fp, offset); +} + + +MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { + ASSERT(var->IsContextSlot() || var->IsStackAllocated()); + if (var->IsContextSlot()) { + int context_chain_length = scope()->ContextChainLength(var->scope()); + __ LoadContext(scratch, context_chain_length); + return ContextOperand(scratch, var->index()); + } else { + return StackOperand(var); + } +} + + +void FullCodeGenerator::GetVar(Register dest, Variable* var) { + // Use destination as scratch. + MemOperand location = VarOperand(var, dest); + __ lw(dest, location); +} + + +void FullCodeGenerator::SetVar(Variable* var, + Register src, + Register scratch0, + Register scratch1) { + ASSERT(var->IsContextSlot() || var->IsStackAllocated()); + ASSERT(!scratch0.is(src)); + ASSERT(!scratch0.is(scratch1)); + ASSERT(!scratch1.is(src)); + MemOperand location = VarOperand(var, scratch0); + __ sw(src, location); + // Emit the write barrier code if the location is in the heap. + if (var->IsContextSlot()) { + __ RecordWriteContextSlot(scratch0, + location.offset(), + src, + scratch1, + kRAHasBeenSaved, + kDontSaveFPRegs); + } +} + + +void FullCodeGenerator::PrepareForBailoutBeforeSplit(State state, + bool should_normalize, + Label* if_true, + Label* if_false) { + // Only prepare for bailouts before splits if we're in a test + // context. Otherwise, we let the Visit function deal with the + // preparation to avoid preparing with the same AST id twice. + if (!context()->IsTest() || !info_->IsOptimizable()) return; + + Label skip; + if (should_normalize) __ Branch(&skip); + + ForwardBailoutStack* current = forward_bailout_stack_; + while (current != NULL) { + PrepareForBailout(current->expr(), state); + current = current->parent(); + } + + if (should_normalize) { + __ LoadRoot(t0, Heap::kTrueValueRootIndex); + Split(eq, a0, Operand(t0), if_true, if_false, NULL); + __ bind(&skip); + } +} + + +void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy, + VariableMode mode, + FunctionLiteral* function, + int* global_count) { + // If it was not possible to allocate the variable at compile time, we + // need to "declare" it at runtime to make sure it actually exists in the + // local context. + Variable* variable = proxy->var(); + bool binding_needs_init = + mode == CONST || mode == CONST_HARMONY || mode == LET; + switch (variable->location()) { + case Variable::UNALLOCATED: + ++(*global_count); + break; + + case Variable::PARAMETER: + case Variable::LOCAL: + if (function != NULL) { + Comment cmnt(masm_, "[ Declaration"); + VisitForAccumulatorValue(function); + __ sw(result_register(), StackOperand(variable)); + } else if (binding_needs_init) { + Comment cmnt(masm_, "[ Declaration"); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ sw(t0, StackOperand(variable)); + } + break; + + case Variable::CONTEXT: + // The variable in the decl always resides in the current function + // context. + ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); + if (FLAG_debug_code) { + // Check that we're not inside a with or catch context. + __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kWithContextMapRootIndex); + __ Check(ne, "Declaration in with context.", + a1, Operand(t0)); + __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); + __ Check(ne, "Declaration in catch context.", + a1, Operand(t0)); + } + if (function != NULL) { + Comment cmnt(masm_, "[ Declaration"); + VisitForAccumulatorValue(function); + __ sw(result_register(), ContextOperand(cp, variable->index())); + int offset = Context::SlotOffset(variable->index()); + // We know that we have written a function, which is not a smi. + __ RecordWriteContextSlot(cp, + offset, + result_register(), + a2, + kRAHasBeenSaved, + kDontSaveFPRegs, + EMIT_REMEMBERED_SET, + OMIT_SMI_CHECK); + PrepareForBailoutForId(proxy->id(), NO_REGISTERS); + } else if (binding_needs_init) { + Comment cmnt(masm_, "[ Declaration"); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ sw(at, ContextOperand(cp, variable->index())); + // No write barrier since the_hole_value is in old space. + PrepareForBailoutForId(proxy->id(), NO_REGISTERS); + } + break; + + case Variable::LOOKUP: { + Comment cmnt(masm_, "[ Declaration"); + __ li(a2, Operand(variable->name())); + // Declaration nodes are always introduced in one of four modes. + ASSERT(mode == VAR || + mode == CONST || + mode == CONST_HARMONY || + mode == LET); + PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY) + ? READ_ONLY : NONE; + __ li(a1, Operand(Smi::FromInt(attr))); + // Push initial value, if any. + // Note: For variables we must not push an initial value (such as + // 'undefined') because we may have a (legal) redeclaration and we + // must not destroy the current value. + if (function != NULL) { + __ Push(cp, a2, a1); + // Push initial value for function declaration. + VisitForStackValue(function); + } else if (binding_needs_init) { + __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); + __ Push(cp, a2, a1, a0); + } else { + ASSERT(Smi::FromInt(0) == 0); + __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value. + __ Push(cp, a2, a1, a0); + } + __ CallRuntime(Runtime::kDeclareContextSlot, 4); + break; + } + } +} + + +void FullCodeGenerator::VisitDeclaration(Declaration* decl) { } + + +void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { + // Call the runtime to declare the globals. + // The context is the first argument. + __ li(a1, Operand(pairs)); + __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); + __ Push(cp, a1, a0); + __ CallRuntime(Runtime::kDeclareGlobals, 3); + // Return value is ignored. +} + + +void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { + Comment cmnt(masm_, "[ SwitchStatement"); + Breakable nested_statement(this, stmt); + SetStatementPosition(stmt); + + // Keep the switch value on the stack until a case matches. + VisitForStackValue(stmt->tag()); + PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); + + ZoneList<CaseClause*>* clauses = stmt->cases(); + CaseClause* default_clause = NULL; // Can occur anywhere in the list. + + Label next_test; // Recycled for each test. + // Compile all the tests with branches to their bodies. + for (int i = 0; i < clauses->length(); i++) { + CaseClause* clause = clauses->at(i); + clause->body_target()->Unuse(); + + // The default is not a test, but remember it as final fall through. + if (clause->is_default()) { + default_clause = clause; + continue; + } + + Comment cmnt(masm_, "[ Case comparison"); + __ bind(&next_test); + next_test.Unuse(); + + // Compile the label expression. + VisitForAccumulatorValue(clause->label()); + __ mov(a0, result_register()); // CompareStub requires args in a0, a1. + + // Perform the comparison as if via '==='. + __ lw(a1, MemOperand(sp, 0)); // Switch value. + bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); + JumpPatchSite patch_site(masm_); + if (inline_smi_code) { + Label slow_case; + __ or_(a2, a1, a0); + patch_site.EmitJumpIfNotSmi(a2, &slow_case); + + __ Branch(&next_test, ne, a1, Operand(a0)); + __ Drop(1); // Switch value is no longer needed. + __ Branch(clause->body_target()); + + __ bind(&slow_case); + } + + // Record position before stub call for type feedback. + SetSourcePosition(clause->position()); + Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT); + __ Call(ic, RelocInfo::CODE_TARGET, clause->CompareId()); + patch_site.EmitPatchInfo(); + + __ Branch(&next_test, ne, v0, Operand(zero_reg)); + __ Drop(1); // Switch value is no longer needed. + __ Branch(clause->body_target()); + } + + // Discard the test value and jump to the default if present, otherwise to + // the end of the statement. + __ bind(&next_test); + __ Drop(1); // Switch value is no longer needed. + if (default_clause == NULL) { + __ Branch(nested_statement.break_label()); + } else { + __ Branch(default_clause->body_target()); + } + + // Compile all the case bodies. + for (int i = 0; i < clauses->length(); i++) { + Comment cmnt(masm_, "[ Case body"); + CaseClause* clause = clauses->at(i); + __ bind(clause->body_target()); + PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); + VisitStatements(clause->statements()); + } + + __ bind(nested_statement.break_label()); + PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); +} + + +void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { + Comment cmnt(masm_, "[ ForInStatement"); + SetStatementPosition(stmt); + + Label loop, exit; + ForIn loop_statement(this, stmt); + increment_loop_depth(); + + // Get the object to enumerate over. Both SpiderMonkey and JSC + // ignore null and undefined in contrast to the specification; see + // ECMA-262 section 12.6.4. + VisitForAccumulatorValue(stmt->enumerable()); + __ mov(a0, result_register()); // Result as param to InvokeBuiltin below. + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(&exit, eq, a0, Operand(at)); + Register null_value = t1; + __ LoadRoot(null_value, Heap::kNullValueRootIndex); + __ Branch(&exit, eq, a0, Operand(null_value)); + + // Convert the object to a JS object. + Label convert, done_convert; + __ JumpIfSmi(a0, &convert); + __ GetObjectType(a0, a1, a1); + __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + __ bind(&convert); + __ push(a0); + __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); + __ mov(a0, v0); + __ bind(&done_convert); + __ push(a0); + + // Check for proxies. + Label call_runtime; + STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); + __ GetObjectType(a0, a1, a1); + __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE)); + + // Check cache validity in generated code. This is a fast case for + // the JSObject::IsSimpleEnum cache validity checks. If we cannot + // guarantee cache validity, call the runtime system to check cache + // validity or get the property names in a fixed array. + Label next; + // Preload a couple of values used in the loop. + Register empty_fixed_array_value = t2; + __ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); + Register empty_descriptor_array_value = t3; + __ LoadRoot(empty_descriptor_array_value, + Heap::kEmptyDescriptorArrayRootIndex); + __ mov(a1, a0); + __ bind(&next); + + // Check that there are no elements. Register a1 contains the + // current JS object we've reached through the prototype chain. + __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); + __ Branch(&call_runtime, ne, a2, Operand(empty_fixed_array_value)); + + // Check that instance descriptors are not empty so that we can + // check for an enum cache. Leave the map in a2 for the subsequent + // prototype load. + __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); + __ lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset)); + __ JumpIfSmi(a3, &call_runtime); + + // Check that there is an enum cache in the non-empty instance + // descriptors (a3). This is the case if the next enumeration + // index field does not contain a smi. + __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset)); + __ JumpIfSmi(a3, &call_runtime); + + // For all objects but the receiver, check that the cache is empty. + Label check_prototype; + __ Branch(&check_prototype, eq, a1, Operand(a0)); + __ lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset)); + __ Branch(&call_runtime, ne, a3, Operand(empty_fixed_array_value)); + + // Load the prototype from the map and loop if non-null. + __ bind(&check_prototype); + __ lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset)); + __ Branch(&next, ne, a1, Operand(null_value)); + + // The enum cache is valid. Load the map of the object being + // iterated over and use the cache for the iteration. + Label use_cache; + __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); + __ Branch(&use_cache); + + // Get the set of properties to enumerate. + __ bind(&call_runtime); + __ push(a0); // Duplicate the enumerable object on the stack. + __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); + + // If we got a map from the runtime call, we can do a fast + // modification check. Otherwise, we got a fixed array, and we have + // to do a slow check. + Label fixed_array; + __ mov(a2, v0); + __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); + __ LoadRoot(at, Heap::kMetaMapRootIndex); + __ Branch(&fixed_array, ne, a1, Operand(at)); + + // We got a map in register v0. Get the enumeration cache from it. + __ bind(&use_cache); + __ LoadInstanceDescriptors(v0, a1); + __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset)); + __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset)); + + // Setup the four remaining stack slots. + __ push(v0); // Map. + __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset)); + __ li(a0, Operand(Smi::FromInt(0))); + // Push enumeration cache, enumeration cache length (as smi) and zero. + __ Push(a2, a1, a0); + __ jmp(&loop); + + // We got a fixed array in register v0. Iterate through that. + Label non_proxy; + __ bind(&fixed_array); + __ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check + __ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object + STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); + __ GetObjectType(a2, a3, a3); + __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE)); + __ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy + __ bind(&non_proxy); + __ Push(a1, v0); // Smi and array + __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); + __ li(a0, Operand(Smi::FromInt(0))); + __ Push(a1, a0); // Fixed array length (as smi) and initial index. + + // Generate code for doing the condition check. + __ bind(&loop); + // Load the current count to a0, load the length to a1. + __ lw(a0, MemOperand(sp, 0 * kPointerSize)); + __ lw(a1, MemOperand(sp, 1 * kPointerSize)); + __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); + + // Get the current entry of the array into register a3. + __ lw(a2, MemOperand(sp, 2 * kPointerSize)); + __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); + __ addu(t0, a2, t0); // Array base + scaled (smi) index. + __ lw(a3, MemOperand(t0)); // Current entry. + + // Get the expected map from the stack or a smi in the + // permanent slow case into register a2. + __ lw(a2, MemOperand(sp, 3 * kPointerSize)); + + // Check if the expected map still matches that of the enumerable. + // If not, we may have to filter the key. + Label update_each; + __ lw(a1, MemOperand(sp, 4 * kPointerSize)); + __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); + __ Branch(&update_each, eq, t0, Operand(a2)); + + // For proxies, no filtering is done. + // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. + ASSERT_EQ(Smi::FromInt(0), 0); + __ Branch(&update_each, eq, a2, Operand(zero_reg)); + + // Convert the entry to a string or (smi) 0 if it isn't a property + // any more. If the property has been removed while iterating, we + // just skip it. + __ push(a1); // Enumerable. + __ push(a3); // Current entry. + __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); + __ mov(a3, result_register()); + __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg)); + + // Update the 'each' property or variable from the possibly filtered + // entry in register a3. + __ bind(&update_each); + __ mov(result_register(), a3); + // Perform the assignment as if via '='. + { EffectContext context(this); + EmitAssignment(stmt->each(), stmt->AssignmentId()); + } + + // Generate code for the body of the loop. + Visit(stmt->body()); + + // Generate code for the going to the next element by incrementing + // the index (smi) stored on top of the stack. + __ bind(loop_statement.continue_label()); + __ pop(a0); + __ Addu(a0, a0, Operand(Smi::FromInt(1))); + __ push(a0); + + EmitStackCheck(stmt); + __ Branch(&loop); + + // Remove the pointers stored on the stack. + __ bind(loop_statement.break_label()); + __ Drop(5); + + // Exit and decrement the loop depth. + __ bind(&exit); + decrement_loop_depth(); +} + + +void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, + bool pretenure) { + // Use the fast case closure allocation code that allocates in new + // space for nested functions that don't need literals cloning. If + // we're running with the --always-opt or the --prepare-always-opt + // flag, we need to use the runtime function so that the new function + // we are creating here gets a chance to have its code optimized and + // doesn't just get a copy of the existing unoptimized code. + if (!FLAG_always_opt && + !FLAG_prepare_always_opt && + !pretenure && + scope()->is_function_scope() && + info->num_literals() == 0) { + FastNewClosureStub stub(info->strict_mode_flag()); + __ li(a0, Operand(info)); + __ push(a0); + __ CallStub(&stub); + } else { + __ li(a0, Operand(info)); + __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex + : Heap::kFalseValueRootIndex); + __ Push(cp, a0, a1); + __ CallRuntime(Runtime::kNewClosure, 3); + } + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { + Comment cmnt(masm_, "[ VariableProxy"); + EmitVariableLoad(expr); +} + + +void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var, + TypeofState typeof_state, + Label* slow) { + Register current = cp; + Register next = a1; + Register temp = a2; + + Scope* s = scope(); + while (s != NULL) { + if (s->num_heap_slots() > 0) { + if (s->calls_non_strict_eval()) { + // Check that extension is NULL. + __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + } + // Load next context in chain. + __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX)); + // Walk the rest of the chain without clobbering cp. + current = next; + } + // If no outer scope calls eval, we do not need to check more + // context extensions. + if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break; + s = s->outer_scope(); + } + + if (s->is_eval_scope()) { + Label loop, fast; + if (!current.is(next)) { + __ Move(next, current); + } + __ bind(&loop); + // Terminate at global context. + __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex); + __ Branch(&fast, eq, temp, Operand(t0)); + // Check that extension is NULL. + __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + // Load next context in chain. + __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX)); + __ Branch(&loop); + __ bind(&fast); + } + + __ lw(a0, GlobalObjectOperand()); + __ li(a2, Operand(var->name())); + RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) + ? RelocInfo::CODE_TARGET + : RelocInfo::CODE_TARGET_CONTEXT; + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); + __ Call(ic, mode); +} + + +MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, + Label* slow) { + ASSERT(var->IsContextSlot()); + Register context = cp; + Register next = a3; + Register temp = t0; + + for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { + if (s->num_heap_slots() > 0) { + if (s->calls_non_strict_eval()) { + // Check that extension is NULL. + __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + } + __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX)); + // Walk the rest of the chain without clobbering cp. + context = next; + } + } + // Check that last extension is NULL. + __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + + // This function is used only for loads, not stores, so it's safe to + // return an cp-based operand (the write barrier cannot be allowed to + // destroy the cp register). + return ContextOperand(context, var->index()); +} + + +void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var, + TypeofState typeof_state, + Label* slow, + Label* done) { + // Generate fast-case code for variables that might be shadowed by + // eval-introduced variables. Eval is used a lot without + // introducing variables. In those cases, we do not want to + // perform a runtime call for all variables in the scope + // containing the eval. + if (var->mode() == DYNAMIC_GLOBAL) { + EmitLoadGlobalCheckExtensions(var, typeof_state, slow); + __ Branch(done); + } else if (var->mode() == DYNAMIC_LOCAL) { + Variable* local = var->local_if_not_shadowed(); + __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); + if (local->mode() == CONST || + local->mode() == CONST_HARMONY || + local->mode() == LET) { + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ subu(at, v0, at); // Sub as compare: at == 0 on eq. + if (local->mode() == CONST) { + __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); + __ movz(v0, a0, at); // Conditional move: return Undefined if TheHole. + } else { // LET || CONST_HARMONY + __ Branch(done, ne, at, Operand(zero_reg)); + __ li(a0, Operand(var->name())); + __ push(a0); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + } + } + __ Branch(done); + } +} + + +void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { + // Record position before possible IC call. + SetSourcePosition(proxy->position()); + Variable* var = proxy->var(); + + // Three cases: global variables, lookup variables, and all other types of + // variables. + switch (var->location()) { + case Variable::UNALLOCATED: { + Comment cmnt(masm_, "Global variable"); + // Use inline caching. Variable name is passed in a2 and the global + // object (receiver) in a0. + __ lw(a0, GlobalObjectOperand()); + __ li(a2, Operand(var->name())); + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); + context()->Plug(v0); + break; + } + + case Variable::PARAMETER: + case Variable::LOCAL: + case Variable::CONTEXT: { + Comment cmnt(masm_, var->IsContextSlot() + ? "Context variable" + : "Stack variable"); + if (!var->binding_needs_init()) { + context()->Plug(var); + } else { + // Let and const need a read barrier. + GetVar(v0, var); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ subu(at, v0, at); // Sub as compare: at == 0 on eq. + if (var->mode() == LET || var->mode() == CONST_HARMONY) { + // Throw a reference error when using an uninitialized let/const + // binding in harmony mode. + Label done; + __ Branch(&done, ne, at, Operand(zero_reg)); + __ li(a0, Operand(var->name())); + __ push(a0); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + __ bind(&done); + } else { + // Uninitalized const bindings outside of harmony mode are unholed. + ASSERT(var->mode() == CONST); + __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); + __ movz(v0, a0, at); // Conditional move: Undefined if TheHole. + } + context()->Plug(v0); + } + break; + } + + case Variable::LOOKUP: { + Label done, slow; + // Generate code for loading from variables potentially shadowed + // by eval-introduced variables. + EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done); + __ bind(&slow); + Comment cmnt(masm_, "Lookup variable"); + __ li(a1, Operand(var->name())); + __ Push(cp, a1); // Context and name. + __ CallRuntime(Runtime::kLoadContextSlot, 2); + __ bind(&done); + context()->Plug(v0); + } + } +} + + +void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { + Comment cmnt(masm_, "[ RegExpLiteral"); + Label materialized; + // Registers will be used as follows: + // t1 = materialized value (RegExp literal) + // t0 = JS function, literals array + // a3 = literal index + // a2 = RegExp pattern + // a1 = RegExp flags + // a0 = RegExp literal clone + __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset)); + int literal_offset = + FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; + __ lw(t1, FieldMemOperand(t0, literal_offset)); + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(&materialized, ne, t1, Operand(at)); + + // Create regexp literal using runtime function. + // Result will be in v0. + __ li(a3, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a2, Operand(expr->pattern())); + __ li(a1, Operand(expr->flags())); + __ Push(t0, a3, a2, a1); + __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); + __ mov(t1, v0); + + __ bind(&materialized); + int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; + Label allocated, runtime_allocate; + __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); + __ jmp(&allocated); + + __ bind(&runtime_allocate); + __ push(t1); + __ li(a0, Operand(Smi::FromInt(size))); + __ push(a0); + __ CallRuntime(Runtime::kAllocateInNewSpace, 1); + __ pop(t1); + + __ bind(&allocated); + + // After this, registers are used as follows: + // v0: Newly allocated regexp. + // t1: Materialized regexp. + // a2: temp. + __ CopyFields(v0, t1, a2.bit(), size / kPointerSize); + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { + Comment cmnt(masm_, "[ ObjectLiteral"); + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); + __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a1, Operand(expr->constant_properties())); + int flags = expr->fast_elements() + ? ObjectLiteral::kFastElements + : ObjectLiteral::kNoFlags; + flags |= expr->has_function() + ? ObjectLiteral::kHasFunction + : ObjectLiteral::kNoFlags; + __ li(a0, Operand(Smi::FromInt(flags))); + __ Push(a3, a2, a1, a0); + if (expr->depth() > 1) { + __ CallRuntime(Runtime::kCreateObjectLiteral, 4); + } else { + __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); + } + + // If result_saved is true the result is on top of the stack. If + // result_saved is false the result is in v0. + bool result_saved = false; + + // Mark all computed expressions that are bound to a key that + // is shadowed by a later occurrence of the same key. For the + // marked expressions, no store code is emitted. + expr->CalculateEmitStore(); + + for (int i = 0; i < expr->properties()->length(); i++) { + ObjectLiteral::Property* property = expr->properties()->at(i); + if (property->IsCompileTimeValue()) continue; + + Literal* key = property->key(); + Expression* value = property->value(); + if (!result_saved) { + __ push(v0); // Save result on stack. + result_saved = true; + } + switch (property->kind()) { + case ObjectLiteral::Property::CONSTANT: + UNREACHABLE(); + case ObjectLiteral::Property::MATERIALIZED_LITERAL: + ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); + // Fall through. + case ObjectLiteral::Property::COMPUTED: + if (key->handle()->IsSymbol()) { + if (property->emit_store()) { + VisitForAccumulatorValue(value); + __ mov(a0, result_register()); + __ li(a2, Operand(key->handle())); + __ lw(a1, MemOperand(sp)); + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->StoreIC_Initialize_Strict() + : isolate()->builtins()->StoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, key->id()); + PrepareForBailoutForId(key->id(), NO_REGISTERS); + } else { + VisitForEffect(value); + } + break; + } + // Fall through. + case ObjectLiteral::Property::PROTOTYPE: + // Duplicate receiver on stack. + __ lw(a0, MemOperand(sp)); + __ push(a0); + VisitForStackValue(key); + VisitForStackValue(value); + if (property->emit_store()) { + __ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes. + __ push(a0); + __ CallRuntime(Runtime::kSetProperty, 4); + } else { + __ Drop(3); + } + break; + case ObjectLiteral::Property::GETTER: + case ObjectLiteral::Property::SETTER: + // Duplicate receiver on stack. + __ lw(a0, MemOperand(sp)); + __ push(a0); + VisitForStackValue(key); + __ li(a1, Operand(property->kind() == ObjectLiteral::Property::SETTER ? + Smi::FromInt(1) : + Smi::FromInt(0))); + __ push(a1); + VisitForStackValue(value); + __ CallRuntime(Runtime::kDefineAccessor, 4); + break; + } + } + + if (expr->has_function()) { + ASSERT(result_saved); + __ lw(a0, MemOperand(sp)); + __ push(a0); + __ CallRuntime(Runtime::kToFastProperties, 1); + } + + if (result_saved) { + context()->PlugTOS(); + } else { + context()->Plug(v0); + } +} + + +void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { + Comment cmnt(masm_, "[ ArrayLiteral"); + + ZoneList<Expression*>* subexprs = expr->values(); + int length = subexprs->length(); + + Handle<FixedArray> constant_elements = expr->constant_elements(); + ASSERT_EQ(2, constant_elements->length()); + ElementsKind constant_elements_kind = + static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); + Handle<FixedArrayBase> constant_elements_values( + FixedArrayBase::cast(constant_elements->get(1))); + + __ mov(a0, result_register()); + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); + __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a1, Operand(constant_elements)); + __ Push(a3, a2, a1); + if (constant_elements_values->map() == + isolate()->heap()->fixed_cow_array_map()) { + FastCloneShallowArrayStub stub( + FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); + __ CallStub(&stub); + __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), + 1, a1, a2); + } else if (expr->depth() > 1) { + __ CallRuntime(Runtime::kCreateArrayLiteral, 3); + } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { + __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); + } else { + ASSERT(constant_elements_kind == FAST_ELEMENTS || + constant_elements_kind == FAST_SMI_ONLY_ELEMENTS || + FLAG_smi_only_arrays); + FastCloneShallowArrayStub::Mode mode = + constant_elements_kind == FAST_DOUBLE_ELEMENTS + ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS + : FastCloneShallowArrayStub::CLONE_ELEMENTS; + FastCloneShallowArrayStub stub(mode, length); + __ CallStub(&stub); + } + + bool result_saved = false; // Is the result saved to the stack? + + // Emit code to evaluate all the non-constant subexpressions and to store + // them into the newly cloned array. + for (int i = 0; i < length; i++) { + Expression* subexpr = subexprs->at(i); + // If the subexpression is a literal or a simple materialized literal it + // is already set in the cloned array. + if (subexpr->AsLiteral() != NULL || + CompileTimeValue::IsCompileTimeValue(subexpr)) { + continue; + } + + if (!result_saved) { + __ push(v0); + result_saved = true; + } + VisitForAccumulatorValue(subexpr); + + __ lw(t6, MemOperand(sp)); // Copy of array literal. + __ lw(a1, FieldMemOperand(t6, JSObject::kElementsOffset)); + __ lw(a2, FieldMemOperand(t6, JSObject::kMapOffset)); + int offset = FixedArray::kHeaderSize + (i * kPointerSize); + + Label element_done; + Label double_elements; + Label smi_element; + Label slow_elements; + Label fast_elements; + __ CheckFastElements(a2, a3, &double_elements); + + // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS + __ JumpIfSmi(result_register(), &smi_element); + __ CheckFastSmiOnlyElements(a2, a3, &fast_elements); + + // Store into the array literal requires a elements transition. Call into + // the runtime. + __ bind(&slow_elements); + __ push(t6); // Copy of array literal. + __ li(a1, Operand(Smi::FromInt(i))); + __ li(a2, Operand(Smi::FromInt(NONE))); // PropertyAttributes + __ li(a3, Operand(Smi::FromInt(strict_mode_flag()))); // Strict mode. + __ Push(a1, result_register(), a2, a3); + __ CallRuntime(Runtime::kSetProperty, 5); + __ Branch(&element_done); + + // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. + __ bind(&double_elements); + __ li(a3, Operand(Smi::FromInt(i))); + __ StoreNumberToDoubleElements(result_register(), a3, t6, a1, t0, t1, t5, + t3, &slow_elements); + __ Branch(&element_done); + + // Array literal has ElementsKind of FAST_ELEMENTS and value is an object. + __ bind(&fast_elements); + __ sw(result_register(), FieldMemOperand(a1, offset)); + // Update the write barrier for the array store. + + __ RecordWriteField( + a1, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs, + EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); + __ Branch(&element_done); + + // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or + // FAST_ELEMENTS, and value is Smi. + __ bind(&smi_element); + __ sw(result_register(), FieldMemOperand(a1, offset)); + // Fall through + + __ bind(&element_done); + + PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); + } + + if (result_saved) { + context()->PlugTOS(); + } else { + context()->Plug(v0); + } +} + + +void FullCodeGenerator::VisitAssignment(Assignment* expr) { + Comment cmnt(masm_, "[ Assignment"); + // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' + // on the left-hand side. + if (!expr->target()->IsValidLeftHandSide()) { + VisitForEffect(expr->target()); + return; + } + + // Left-hand side can only be a property, a global or a (parameter or local) + // slot. + enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; + LhsKind assign_type = VARIABLE; + Property* property = expr->target()->AsProperty(); + if (property != NULL) { + assign_type = (property->key()->IsPropertyName()) + ? NAMED_PROPERTY + : KEYED_PROPERTY; + } + + // Evaluate LHS expression. + switch (assign_type) { + case VARIABLE: + // Nothing to do here. + break; + case NAMED_PROPERTY: + if (expr->is_compound()) { + // We need the receiver both on the stack and in the accumulator. + VisitForAccumulatorValue(property->obj()); + __ push(result_register()); + } else { + VisitForStackValue(property->obj()); + } + break; + case KEYED_PROPERTY: + // We need the key and receiver on both the stack and in v0 and a1. + if (expr->is_compound()) { + VisitForStackValue(property->obj()); + VisitForAccumulatorValue(property->key()); + __ lw(a1, MemOperand(sp, 0)); + __ push(v0); + } else { + VisitForStackValue(property->obj()); + VisitForStackValue(property->key()); + } + break; + } + + // For compound assignments we need another deoptimization point after the + // variable/property load. + if (expr->is_compound()) { + { AccumulatorValueContext context(this); + switch (assign_type) { + case VARIABLE: + EmitVariableLoad(expr->target()->AsVariableProxy()); + PrepareForBailout(expr->target(), TOS_REG); + break; + case NAMED_PROPERTY: + EmitNamedPropertyLoad(property); + PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); + break; + case KEYED_PROPERTY: + EmitKeyedPropertyLoad(property); + PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); + break; + } + } + + Token::Value op = expr->binary_op(); + __ push(v0); // Left operand goes on the stack. + VisitForAccumulatorValue(expr->value()); + + OverwriteMode mode = expr->value()->ResultOverwriteAllowed() + ? OVERWRITE_RIGHT + : NO_OVERWRITE; + SetSourcePosition(expr->position() + 1); + AccumulatorValueContext context(this); + if (ShouldInlineSmiCase(op)) { + EmitInlineSmiBinaryOp(expr->binary_operation(), + op, + mode, + expr->target(), + expr->value()); + } else { + EmitBinaryOp(expr->binary_operation(), op, mode); + } + + // Deoptimization point in case the binary operation may have side effects. + PrepareForBailout(expr->binary_operation(), TOS_REG); + } else { + VisitForAccumulatorValue(expr->value()); + } + + // Record source position before possible IC call. + SetSourcePosition(expr->position()); + + // Store the value. + switch (assign_type) { + case VARIABLE: + EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), + expr->op()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); + break; + case NAMED_PROPERTY: + EmitNamedPropertyAssignment(expr); + break; + case KEYED_PROPERTY: + EmitKeyedPropertyAssignment(expr); + break; + } +} + + +void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { + SetSourcePosition(prop->position()); + Literal* key = prop->key()->AsLiteral(); + __ mov(a0, result_register()); + __ li(a2, Operand(key->handle())); + // Call load IC. It has arguments receiver and property name a0 and a2. + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop)); +} + + +void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { + SetSourcePosition(prop->position()); + __ mov(a0, result_register()); + // Call keyed load IC. It has arguments key and receiver in a0 and a1. + Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, GetPropertyId(prop)); +} + + +void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, + Token::Value op, + OverwriteMode mode, + Expression* left_expr, + Expression* right_expr) { + Label done, smi_case, stub_call; + + Register scratch1 = a2; + Register scratch2 = a3; + + // Get the arguments. + Register left = a1; + Register right = a0; + __ pop(left); + __ mov(a0, result_register()); + + // Perform combined smi check on both operands. + __ Or(scratch1, left, Operand(right)); + STATIC_ASSERT(kSmiTag == 0); + JumpPatchSite patch_site(masm_); + patch_site.EmitJumpIfSmi(scratch1, &smi_case); + + __ bind(&stub_call); + BinaryOpStub stub(op, mode); + __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); + patch_site.EmitPatchInfo(); + __ jmp(&done); + + __ bind(&smi_case); + // Smi case. This code works the same way as the smi-smi case in the type + // recording binary operation stub, see + // BinaryOpStub::GenerateSmiSmiOperation for comments. + switch (op) { + case Token::SAR: + __ Branch(&stub_call); + __ GetLeastBitsFromSmi(scratch1, right, 5); + __ srav(right, left, scratch1); + __ And(v0, right, Operand(~kSmiTagMask)); + break; + case Token::SHL: { + __ Branch(&stub_call); + __ SmiUntag(scratch1, left); + __ GetLeastBitsFromSmi(scratch2, right, 5); + __ sllv(scratch1, scratch1, scratch2); + __ Addu(scratch2, scratch1, Operand(0x40000000)); + __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); + __ SmiTag(v0, scratch1); + break; + } + case Token::SHR: { + __ Branch(&stub_call); + __ SmiUntag(scratch1, left); + __ GetLeastBitsFromSmi(scratch2, right, 5); + __ srlv(scratch1, scratch1, scratch2); + __ And(scratch2, scratch1, 0xc0000000); + __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); + __ SmiTag(v0, scratch1); + break; + } + case Token::ADD: + __ AdduAndCheckForOverflow(v0, left, right, scratch1); + __ BranchOnOverflow(&stub_call, scratch1); + break; + case Token::SUB: + __ SubuAndCheckForOverflow(v0, left, right, scratch1); + __ BranchOnOverflow(&stub_call, scratch1); + break; + case Token::MUL: { + __ SmiUntag(scratch1, right); + __ Mult(left, scratch1); + __ mflo(scratch1); + __ mfhi(scratch2); + __ sra(scratch1, scratch1, 31); + __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); + __ mflo(v0); + __ Branch(&done, ne, v0, Operand(zero_reg)); + __ Addu(scratch2, right, left); + __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); + ASSERT(Smi::FromInt(0) == 0); + __ mov(v0, zero_reg); + break; + } + case Token::BIT_OR: + __ Or(v0, left, Operand(right)); + break; + case Token::BIT_AND: + __ And(v0, left, Operand(right)); + break; + case Token::BIT_XOR: + __ Xor(v0, left, Operand(right)); + break; + default: + UNREACHABLE(); + } + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, + Token::Value op, + OverwriteMode mode) { + __ mov(a0, result_register()); + __ pop(a1); + BinaryOpStub stub(op, mode); + JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. + __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); + patch_site.EmitPatchInfo(); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitAssignment(Expression* expr, int bailout_ast_id) { + // Invalid left-hand sides are rewritten to have a 'throw + // ReferenceError' on the left-hand side. + if (!expr->IsValidLeftHandSide()) { + VisitForEffect(expr); + return; + } + + // Left-hand side can only be a property, a global or a (parameter or local) + // slot. + enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; + LhsKind assign_type = VARIABLE; + Property* prop = expr->AsProperty(); + if (prop != NULL) { + assign_type = (prop->key()->IsPropertyName()) + ? NAMED_PROPERTY + : KEYED_PROPERTY; + } + + switch (assign_type) { + case VARIABLE: { + Variable* var = expr->AsVariableProxy()->var(); + EffectContext context(this); + EmitVariableAssignment(var, Token::ASSIGN); + break; + } + case NAMED_PROPERTY: { + __ push(result_register()); // Preserve value. + VisitForAccumulatorValue(prop->obj()); + __ mov(a1, result_register()); + __ pop(a0); // Restore value. + __ li(a2, Operand(prop->key()->AsLiteral()->handle())); + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->StoreIC_Initialize_Strict() + : isolate()->builtins()->StoreIC_Initialize(); + __ Call(ic); + break; + } + case KEYED_PROPERTY: { + __ push(result_register()); // Preserve value. + VisitForStackValue(prop->obj()); + VisitForAccumulatorValue(prop->key()); + __ mov(a1, result_register()); + __ pop(a2); + __ pop(a0); // Restore value. + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() + : isolate()->builtins()->KeyedStoreIC_Initialize(); + __ Call(ic); + break; + } + } + PrepareForBailoutForId(bailout_ast_id, TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitVariableAssignment(Variable* var, + Token::Value op) { + if (var->IsUnallocated()) { + // Global var, const, or let. + __ mov(a0, result_register()); + __ li(a2, Operand(var->name())); + __ lw(a1, GlobalObjectOperand()); + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->StoreIC_Initialize_Strict() + : isolate()->builtins()->StoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); + + } else if (op == Token::INIT_CONST) { + // Const initializers need a write barrier. + ASSERT(!var->IsParameter()); // No const parameters. + if (var->IsStackLocal()) { + Label skip; + __ lw(a1, StackOperand(var)); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ Branch(&skip, ne, a1, Operand(t0)); + __ sw(result_register(), StackOperand(var)); + __ bind(&skip); + } else { + ASSERT(var->IsContextSlot() || var->IsLookupSlot()); + // Like var declarations, const declarations are hoisted to function + // scope. However, unlike var initializers, const initializers are + // able to drill a hole to that function context, even from inside a + // 'with' context. We thus bypass the normal static scope lookup for + // var->IsContextSlot(). + __ push(v0); + __ li(a0, Operand(var->name())); + __ Push(cp, a0); // Context and name. + __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); + } + + } else if (var->mode() == LET && op != Token::INIT_LET) { + // Non-initializing assignment to let variable needs a write barrier. + if (var->IsLookupSlot()) { + __ push(v0); // Value. + __ li(a1, Operand(var->name())); + __ li(a0, Operand(Smi::FromInt(strict_mode_flag()))); + __ Push(cp, a1, a0); // Context, name, strict mode. + __ CallRuntime(Runtime::kStoreContextSlot, 4); + } else { + ASSERT(var->IsStackAllocated() || var->IsContextSlot()); + Label assign; + MemOperand location = VarOperand(var, a1); + __ lw(a3, location); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ Branch(&assign, ne, a3, Operand(t0)); + __ li(a3, Operand(var->name())); + __ push(a3); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + // Perform the assignment. + __ bind(&assign); + __ sw(result_register(), location); + if (var->IsContextSlot()) { + // RecordWrite may destroy all its register arguments. + __ mov(a3, result_register()); + int offset = Context::SlotOffset(var->index()); + __ RecordWriteContextSlot( + a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); + } + } + + } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) { + // Assignment to var or initializing assignment to let/const + // in harmony mode. + if (var->IsStackAllocated() || var->IsContextSlot()) { + MemOperand location = VarOperand(var, a1); + if (FLAG_debug_code && op == Token::INIT_LET) { + // Check for an uninitialized let binding. + __ lw(a2, location); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ Check(eq, "Let binding re-initialization.", a2, Operand(t0)); + } + // Perform the assignment. + __ sw(v0, location); + if (var->IsContextSlot()) { + __ mov(a3, v0); + int offset = Context::SlotOffset(var->index()); + __ RecordWriteContextSlot( + a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); + } + } else { + ASSERT(var->IsLookupSlot()); + __ push(v0); // Value. + __ li(a1, Operand(var->name())); + __ li(a0, Operand(Smi::FromInt(strict_mode_flag()))); + __ Push(cp, a1, a0); // Context, name, strict mode. + __ CallRuntime(Runtime::kStoreContextSlot, 4); + } + } + // Non-initializing assignments to consts are ignored. +} + + +void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { + // Assignment to a property, using a named store IC. + Property* prop = expr->target()->AsProperty(); + ASSERT(prop != NULL); + ASSERT(prop->key()->AsLiteral() != NULL); + + // If the assignment starts a block of assignments to the same object, + // change to slow case to avoid the quadratic behavior of repeatedly + // adding fast properties. + if (expr->starts_initialization_block()) { + __ push(result_register()); + __ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value. + __ push(t0); + __ CallRuntime(Runtime::kToSlowProperties, 1); + __ pop(result_register()); + } + + // Record source code position before IC call. + SetSourcePosition(expr->position()); + __ mov(a0, result_register()); // Load the value. + __ li(a2, Operand(prop->key()->AsLiteral()->handle())); + // Load receiver to a1. Leave a copy in the stack if needed for turning the + // receiver into fast case. + if (expr->ends_initialization_block()) { + __ lw(a1, MemOperand(sp)); + } else { + __ pop(a1); + } + + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->StoreIC_Initialize_Strict() + : isolate()->builtins()->StoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + + // If the assignment ends an initialization block, revert to fast case. + if (expr->ends_initialization_block()) { + __ push(v0); // Result of assignment, saved even if not needed. + // Receiver is under the result value. + __ lw(t0, MemOperand(sp, kPointerSize)); + __ push(t0); + __ CallRuntime(Runtime::kToFastProperties, 1); + __ pop(v0); + __ Drop(1); + } + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { + // Assignment to a property, using a keyed store IC. + + // If the assignment starts a block of assignments to the same object, + // change to slow case to avoid the quadratic behavior of repeatedly + // adding fast properties. + if (expr->starts_initialization_block()) { + __ push(result_register()); + // Receiver is now under the key and value. + __ lw(t0, MemOperand(sp, 2 * kPointerSize)); + __ push(t0); + __ CallRuntime(Runtime::kToSlowProperties, 1); + __ pop(result_register()); + } + + // Record source code position before IC call. + SetSourcePosition(expr->position()); + // Call keyed store IC. + // The arguments are: + // - a0 is the value, + // - a1 is the key, + // - a2 is the receiver. + __ mov(a0, result_register()); + __ pop(a1); // Key. + // Load receiver to a2. Leave a copy in the stack if needed for turning the + // receiver into fast case. + if (expr->ends_initialization_block()) { + __ lw(a2, MemOperand(sp)); + } else { + __ pop(a2); + } + + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() + : isolate()->builtins()->KeyedStoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + + // If the assignment ends an initialization block, revert to fast case. + if (expr->ends_initialization_block()) { + __ push(v0); // Result of assignment, saved even if not needed. + // Receiver is under the result value. + __ lw(t0, MemOperand(sp, kPointerSize)); + __ push(t0); + __ CallRuntime(Runtime::kToFastProperties, 1); + __ pop(v0); + __ Drop(1); + } + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitProperty(Property* expr) { + Comment cmnt(masm_, "[ Property"); + Expression* key = expr->key(); + + if (key->IsPropertyName()) { + VisitForAccumulatorValue(expr->obj()); + EmitNamedPropertyLoad(expr); + context()->Plug(v0); + } else { + VisitForStackValue(expr->obj()); + VisitForAccumulatorValue(expr->key()); + __ pop(a1); + EmitKeyedPropertyLoad(expr); + context()->Plug(v0); + } +} + + +void FullCodeGenerator::EmitCallWithIC(Call* expr, + Handle<Object> name, + RelocInfo::Mode mode) { + // Code common for calls using the IC. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + { PreservePositionScope scope(masm()->positions_recorder()); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + __ li(a2, Operand(name)); + } + // Record source position for debugger. + SetSourcePosition(expr->position()); + // Call the IC initialization code. + Handle<Code> ic = + isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); + __ Call(ic, mode, expr->id()); + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, + Expression* key) { + // Load the key. + VisitForAccumulatorValue(key); + + // Swap the name of the function and the receiver on the stack to follow + // the calling convention for call ICs. + __ pop(a1); + __ push(v0); + __ push(a1); + + // Code common for calls using the IC. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + { PreservePositionScope scope(masm()->positions_recorder()); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + } + // Record source position for debugger. + SetSourcePosition(expr->position()); + // Call the IC initialization code. + Handle<Code> ic = + isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count); + __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key. + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->DropAndPlug(1, v0); // Drop the key still on the stack. +} + + +void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) { + // Code common for calls using the call stub. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + { PreservePositionScope scope(masm()->positions_recorder()); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + } + // Record source position for debugger. + SetSourcePosition(expr->position()); + CallFunctionStub stub(arg_count, flags); + __ CallStub(&stub); + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->DropAndPlug(1, v0); +} + + +void FullCodeGenerator::EmitResolvePossiblyDirectEval(ResolveEvalFlag flag, + int arg_count) { + // Push copy of the first argument or undefined if it doesn't exist. + if (arg_count > 0) { + __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); + } else { + __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); + } + __ push(a1); + + // Push the receiver of the enclosing function and do runtime call. + int receiver_offset = 2 + info_->scope()->num_parameters(); + __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize)); + __ push(a1); + // Push the strict mode flag. In harmony mode every eval call + // is a strict mode eval call. + StrictModeFlag strict_mode = + FLAG_harmony_scoping ? kStrictMode : strict_mode_flag(); + __ li(a1, Operand(Smi::FromInt(strict_mode))); + __ push(a1); + + __ CallRuntime(flag == SKIP_CONTEXT_LOOKUP + ? Runtime::kResolvePossiblyDirectEvalNoLookup + : Runtime::kResolvePossiblyDirectEval, 4); +} + + +void FullCodeGenerator::VisitCall(Call* expr) { +#ifdef DEBUG + // We want to verify that RecordJSReturnSite gets called on all paths + // through this function. Avoid early returns. + expr->return_is_recorded_ = false; +#endif + + Comment cmnt(masm_, "[ Call"); + Expression* callee = expr->expression(); + VariableProxy* proxy = callee->AsVariableProxy(); + Property* property = callee->AsProperty(); + + if (proxy != NULL && proxy->var()->is_possibly_eval()) { + // In a call to eval, we first call %ResolvePossiblyDirectEval to + // resolve the function we need to call and the receiver of the + // call. Then we call the resolved function using the given + // arguments. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + + { PreservePositionScope pos_scope(masm()->positions_recorder()); + VisitForStackValue(callee); + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + __ push(a2); // Reserved receiver slot. + + // Push the arguments. + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // If we know that eval can only be shadowed by eval-introduced + // variables we attempt to load the global eval function directly + // in generated code. If we succeed, there is no need to perform a + // context lookup in the runtime system. + Label done; + Variable* var = proxy->var(); + if (!var->IsUnallocated() && var->mode() == DYNAMIC_GLOBAL) { + Label slow; + EmitLoadGlobalCheckExtensions(var, NOT_INSIDE_TYPEOF, &slow); + // Push the function and resolve eval. + __ push(v0); + EmitResolvePossiblyDirectEval(SKIP_CONTEXT_LOOKUP, arg_count); + __ jmp(&done); + __ bind(&slow); + } + + // Push a copy of the function (found below the arguments) and + // resolve eval. + __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); + __ push(a1); + EmitResolvePossiblyDirectEval(PERFORM_CONTEXT_LOOKUP, arg_count); + __ bind(&done); + + // The runtime call returns a pair of values in v0 (function) and + // v1 (receiver). Touch up the stack with the right values. + __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); + __ sw(v1, MemOperand(sp, arg_count * kPointerSize)); + } + // Record source position for debugger. + SetSourcePosition(expr->position()); + CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT); + __ CallStub(&stub); + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->DropAndPlug(1, v0); + } else if (proxy != NULL && proxy->var()->IsUnallocated()) { + // Push global object as receiver for the call IC. + __ lw(a0, GlobalObjectOperand()); + __ push(a0); + EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT); + } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { + // Call to a lookup slot (dynamically introduced variable). + Label slow, done; + + { PreservePositionScope scope(masm()->positions_recorder()); + // Generate code for loading from variables potentially shadowed + // by eval-introduced variables. + EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done); + } + + __ bind(&slow); + // Call the runtime to find the function to call (returned in v0) + // and the object holding it (returned in v1). + __ push(context_register()); + __ li(a2, Operand(proxy->name())); + __ push(a2); + __ CallRuntime(Runtime::kLoadContextSlot, 2); + __ Push(v0, v1); // Function, receiver. + + // If fast case code has been generated, emit code to push the + // function and receiver and have the slow path jump around this + // code. + if (done.is_linked()) { + Label call; + __ Branch(&call); + __ bind(&done); + // Push function. + __ push(v0); + // The receiver is implicitly the global receiver. Indicate this + // by passing the hole to the call function stub. + __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); + __ push(a1); + __ bind(&call); + } + + // The receiver is either the global receiver or an object found + // by LoadContextSlot. That object could be the hole if the + // receiver is implicitly the global object. + EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT); + } else if (property != NULL) { + { PreservePositionScope scope(masm()->positions_recorder()); + VisitForStackValue(property->obj()); + } + if (property->key()->IsPropertyName()) { + EmitCallWithIC(expr, + property->key()->AsLiteral()->handle(), + RelocInfo::CODE_TARGET); + } else { + EmitKeyedCallWithIC(expr, property->key()); + } + } else { + // Call to an arbitrary expression not handled specially above. + { PreservePositionScope scope(masm()->positions_recorder()); + VisitForStackValue(callee); + } + // Load global receiver object. + __ lw(a1, GlobalObjectOperand()); + __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset)); + __ push(a1); + // Emit function call. + EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS); + } + +#ifdef DEBUG + // RecordJSReturnSite should have been called. + ASSERT(expr->return_is_recorded_); +#endif +} + + +void FullCodeGenerator::VisitCallNew(CallNew* expr) { + Comment cmnt(masm_, "[ CallNew"); + // According to ECMA-262, section 11.2.2, page 44, the function + // expression in new calls must be evaluated before the + // arguments. + + // Push constructor on the stack. If it's not a function it's used as + // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is + // ignored. + VisitForStackValue(expr->expression()); + + // Push the arguments ("left-to-right") on the stack. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Call the construct call builtin that handles allocation and + // constructor invocation. + SetSourcePosition(expr->position()); + + // Load function and argument count into a1 and a0. + __ li(a0, Operand(arg_count)); + __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); + + Handle<Code> construct_builtin = + isolate()->builtins()->JSConstructCall(); + __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + __ And(t0, v0, Operand(kSmiTagMask)); + Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + __ And(at, v0, Operand(kSmiTagMask | 0x80000000)); + Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ LoadRoot(at, Heap::kNullValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); + // Undetectable objects behave like undefined when tested with typeof. + __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset)); + __ And(at, a1, Operand(1 << Map::kIsUndetectable)); + __ Branch(if_false, ne, at, Operand(zero_reg)); + __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset)); + __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); + __ And(at, a1, Operand(1 << Map::kIsUndetectable)); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( + ZoneList<Expression*>* args) { + + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + if (FLAG_debug_code) __ AbortIfSmi(v0); + + __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset)); + __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf); + __ Branch(if_true, ne, t0, Operand(zero_reg)); + + // Check for fast case object. Generate false result for slow case object. + __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset)); + __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kHashTableMapRootIndex); + __ Branch(if_false, eq, a2, Operand(t0)); + + // Look for valueOf symbol in the descriptor array, and indicate false if + // found. The type is not checked, so if it is a transition it is a false + // negative. + __ LoadInstanceDescriptors(a1, t0); + __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset)); + // t0: descriptor array + // a3: length of descriptor array + // Calculate the end of the descriptor array. + STATIC_ASSERT(kSmiTag == 0); + STATIC_ASSERT(kSmiTagSize == 1); + STATIC_ASSERT(kPointerSize == 4); + __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize); + __ Addu(a2, a2, t1); + + // Calculate location of the first key name. + __ Addu(t0, + t0, + Operand(FixedArray::kHeaderSize - kHeapObjectTag + + DescriptorArray::kFirstIndex * kPointerSize)); + // Loop through all the keys in the descriptor array. If one of these is the + // symbol valueOf the result is false. + Label entry, loop; + // The use of t2 to store the valueOf symbol asumes that it is not otherwise + // used in the loop below. + __ li(t2, Operand(FACTORY->value_of_symbol())); + __ jmp(&entry); + __ bind(&loop); + __ lw(a3, MemOperand(t0, 0)); + __ Branch(if_false, eq, a3, Operand(t2)); + __ Addu(t0, t0, Operand(kPointerSize)); + __ bind(&entry); + __ Branch(&loop, ne, t0, Operand(a2)); + + // If a valueOf property is not found on the object check that it's + // prototype is the un-modified String prototype. If not result is false. + __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); + __ JumpIfSmi(a2, if_false); + __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); + __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX)); + __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset)); + __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); + __ Branch(if_false, ne, a2, Operand(a3)); + + // Set the bit in the map to indicate that it has been checked safe for + // default valueOf and set true result. + __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset)); + __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); + __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset)); + __ jmp(if_true); + + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a2); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE)); + __ Branch(if_false); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(eq, a1, Operand(JS_ARRAY_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) { + ASSERT(args->length() == 0); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + // Get the frame pointer for the calling frame. + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + + // Skip the arguments adaptor frame if it exists. + Label check_frame_marker; + __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&check_frame_marker, ne, + a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset)); + + // Check the marker in the calling frame. + __ bind(&check_frame_marker); + __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset)); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) { + ASSERT(args->length() == 2); + + // Load the two objects into registers and perform the comparison. + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ pop(a1); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(eq, v0, Operand(a1), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + // ArgumentsAccessStub expects the key in a1 and the formal + // parameter count in a0. + VisitForAccumulatorValue(args->at(0)); + __ mov(a1, v0); + __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); + ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) { + ASSERT(args->length() == 0); + + Label exit; + // Get the number of formal parameters. + __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); + + // Check if the calling frame is an arguments adaptor frame. + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&exit, ne, a3, + Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + + // Arguments adaptor case: Read the arguments length from the + // adaptor frame. + __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); + + __ bind(&exit); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + Label done, null, function, non_function_constructor; + + VisitForAccumulatorValue(args->at(0)); + + // If the object is a smi, we return null. + __ JumpIfSmi(v0, &null); + + // Check that the object is a JS object but take special care of JS + // functions to make sure they have 'Function' as their class. + // Assume that there are only two callable types, and one of them is at + // either end of the type range for JS object types. Saves extra comparisons. + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); + __ GetObjectType(v0, v0, a1); // Map is now in v0. + __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + + STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == + FIRST_SPEC_OBJECT_TYPE + 1); + __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == + LAST_SPEC_OBJECT_TYPE - 1); + __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE)); + // Assume that there is no larger type. + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); + + // Check if the constructor in the map is a JS function. + __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset)); + __ GetObjectType(v0, a1, a1); + __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE)); + + // v0 now contains the constructor function. Grab the + // instance class name from there. + __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); + __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); + __ Branch(&done); + + // Functions have class 'Function'. + __ bind(&function); + __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex); + __ jmp(&done); + + // Objects with a non-function constructor have class 'Object'. + __ bind(&non_function_constructor); + __ LoadRoot(v0, Heap::kObject_symbolRootIndex); + __ jmp(&done); + + // Non-JS objects have class null. + __ bind(&null); + __ LoadRoot(v0, Heap::kNullValueRootIndex); + + // All done. + __ bind(&done); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) { + // Conditionally generate a log call. + // Args: + // 0 (literal string): The type of logging (corresponds to the flags). + // This is used to determine whether or not to generate the log call. + // 1 (string): Format string. Access the string at argument index 2 + // with '%2s' (see Logger::LogRuntime for all the formats). + // 2 (array): Arguments to the format string. + ASSERT_EQ(args->length(), 3); + if (CodeGenerator::ShouldGenerateLog(args->at(0))) { + VisitForStackValue(args->at(1)); + VisitForStackValue(args->at(2)); + __ CallRuntime(Runtime::kLog, 2); + } + + // Finally, we're expected to leave a value on the top of the stack. + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) { + ASSERT(args->length() == 0); + + Label slow_allocate_heapnumber; + Label heapnumber_allocated; + + // Save the new heap number in callee-saved register s0, since + // we call out to external C code below. + __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); + __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber); + __ jmp(&heapnumber_allocated); + + __ bind(&slow_allocate_heapnumber); + + // Allocate a heap number. + __ CallRuntime(Runtime::kNumberAlloc, 0); + __ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call. + + __ bind(&heapnumber_allocated); + + // Convert 32 random bits in v0 to 0.(32 random bits) in a double + // by computing: + // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). + if (CpuFeatures::IsSupported(FPU)) { + __ PrepareCallCFunction(1, a0); + __ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX)); + __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); + __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); + + CpuFeatures::Scope scope(FPU); + // 0x41300000 is the top half of 1.0 x 2^20 as a double. + __ li(a1, Operand(0x41300000)); + // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. + __ Move(f12, v0, a1); + // Move 0x4130000000000000 to FPU. + __ Move(f14, zero_reg, a1); + // Subtract and store the result in the heap number. + __ sub_d(f0, f12, f14); + __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag)); + __ mov(v0, s0); + } else { + __ PrepareCallCFunction(2, a0); + __ mov(a0, s0); + __ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX)); + __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset)); + __ CallCFunction( + ExternalReference::fill_heap_number_with_random_function(isolate()), 2); + } + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) { + // Load the arguments on the stack and call the stub. + SubStringStub stub; + ASSERT(args->length() == 3); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + VisitForStackValue(args->at(2)); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) { + // Load the arguments on the stack and call the stub. + RegExpExecStub stub; + ASSERT(args->length() == 4); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + VisitForStackValue(args->at(2)); + VisitForStackValue(args->at(3)); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); // Load the object. + + Label done; + // If the object is a smi return the object. + __ JumpIfSmi(v0, &done); + // If the object is not a value type, return the object. + __ GetObjectType(v0, a1, a1); + __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE)); + + __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset)); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) { + // Load the arguments on the stack and call the runtime function. + ASSERT(args->length() == 2); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + MathPowStub stub; + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) { + ASSERT(args->length() == 2); + + VisitForStackValue(args->at(0)); // Load the object. + VisitForAccumulatorValue(args->at(1)); // Load the value. + __ pop(a1); // v0 = value. a1 = object. + + Label done; + // If the object is a smi, return the value. + __ JumpIfSmi(a1, &done); + + // If the object is not a value type, return the value. + __ GetObjectType(a1, a2, a2); + __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE)); + + // Store the value. + __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset)); + // Update the write barrier. Save the value as it will be + // overwritten by the write barrier code and is needed afterward. + __ mov(a2, v0); + __ RecordWriteField( + a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) { + ASSERT_EQ(args->length(), 1); + + // Load the argument on the stack and call the stub. + VisitForStackValue(args->at(0)); + + NumberToStringStub stub; + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label done; + StringCharFromCodeGenerator generator(v0, a1); + generator.GenerateFast(masm_); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, call_helper); + + __ bind(&done); + context()->Plug(a1); +} + + +void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) { + ASSERT(args->length() == 2); + + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + __ mov(a0, result_register()); + + Register object = a1; + Register index = a0; + Register scratch = a2; + Register result = v0; + + __ pop(object); + + Label need_conversion; + Label index_out_of_range; + Label done; + StringCharCodeAtGenerator generator(object, + index, + scratch, + result, + &need_conversion, + &need_conversion, + &index_out_of_range, + STRING_INDEX_IS_NUMBER); + generator.GenerateFast(masm_); + __ jmp(&done); + + __ bind(&index_out_of_range); + // When the index is out of range, the spec requires us to return + // NaN. + __ LoadRoot(result, Heap::kNanValueRootIndex); + __ jmp(&done); + + __ bind(&need_conversion); + // Load the undefined value into the result register, which will + // trigger conversion. + __ LoadRoot(result, Heap::kUndefinedValueRootIndex); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, call_helper); + + __ bind(&done); + context()->Plug(result); +} + + +void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) { + ASSERT(args->length() == 2); + + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + __ mov(a0, result_register()); + + Register object = a1; + Register index = a0; + Register scratch1 = a2; + Register scratch2 = a3; + Register result = v0; + + __ pop(object); + + Label need_conversion; + Label index_out_of_range; + Label done; + StringCharAtGenerator generator(object, + index, + scratch1, + scratch2, + result, + &need_conversion, + &need_conversion, + &index_out_of_range, + STRING_INDEX_IS_NUMBER); + generator.GenerateFast(masm_); + __ jmp(&done); + + __ bind(&index_out_of_range); + // When the index is out of range, the spec requires us to return + // the empty string. + __ LoadRoot(result, Heap::kEmptyStringRootIndex); + __ jmp(&done); + + __ bind(&need_conversion); + // Move smi zero into the result register, which will trigger + // conversion. + __ li(result, Operand(Smi::FromInt(0))); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, call_helper); + + __ bind(&done); + context()->Plug(result); +} + + +void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) { + ASSERT_EQ(2, args->length()); + + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + + StringAddStub stub(NO_STRING_ADD_FLAGS); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) { + ASSERT_EQ(2, args->length()); + + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + + StringCompareStub stub; + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) { + // Load the argument on the stack and call the stub. + TranscendentalCacheStub stub(TranscendentalCache::SIN, + TranscendentalCacheStub::TAGGED); + ASSERT(args->length() == 1); + VisitForStackValue(args->at(0)); + __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) { + // Load the argument on the stack and call the stub. + TranscendentalCacheStub stub(TranscendentalCache::COS, + TranscendentalCacheStub::TAGGED); + ASSERT(args->length() == 1); + VisitForStackValue(args->at(0)); + __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) { + // Load the argument on the stack and call the stub. + TranscendentalCacheStub stub(TranscendentalCache::LOG, + TranscendentalCacheStub::TAGGED); + ASSERT(args->length() == 1); + VisitForStackValue(args->at(0)); + __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) { + // Load the argument on the stack and call the runtime function. + ASSERT(args->length() == 1); + VisitForStackValue(args->at(0)); + __ CallRuntime(Runtime::kMath_sqrt, 1); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) { + ASSERT(args->length() >= 2); + + int arg_count = args->length() - 2; // 2 ~ receiver and function. + for (int i = 0; i < arg_count + 1; i++) { + VisitForStackValue(args->at(i)); + } + VisitForAccumulatorValue(args->last()); // Function. + + // InvokeFunction requires the function in a1. Move it in there. + __ mov(a1, result_register()); + ParameterCount count(arg_count); + __ InvokeFunction(a1, count, CALL_FUNCTION, + NullCallWrapper(), CALL_AS_METHOD); + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) { + RegExpConstructResultStub stub; + ASSERT(args->length() == 3); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + VisitForStackValue(args->at(2)); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) { + ASSERT(args->length() == 3); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + VisitForStackValue(args->at(2)); + Label done; + Label slow_case; + Register object = a0; + Register index1 = a1; + Register index2 = a2; + Register elements = a3; + Register scratch1 = t0; + Register scratch2 = t1; + + __ lw(object, MemOperand(sp, 2 * kPointerSize)); + // Fetch the map and check if array is in fast case. + // Check that object doesn't require security checks and + // has no indexed interceptor. + __ GetObjectType(object, scratch1, scratch2); + __ Branch(&slow_case, ne, scratch2, Operand(JS_ARRAY_TYPE)); + // Map is now in scratch1. + + __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset)); + __ And(scratch2, scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); + __ Branch(&slow_case, ne, scratch2, Operand(zero_reg)); + + // Check the object's elements are in fast case and writable. + __ lw(elements, FieldMemOperand(object, JSObject::kElementsOffset)); + __ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); + __ LoadRoot(scratch2, Heap::kFixedArrayMapRootIndex); + __ Branch(&slow_case, ne, scratch1, Operand(scratch2)); + + // Check that both indices are smis. + __ lw(index1, MemOperand(sp, 1 * kPointerSize)); + __ lw(index2, MemOperand(sp, 0)); + __ JumpIfNotBothSmi(index1, index2, &slow_case); + + // Check that both indices are valid. + Label not_hi; + __ lw(scratch1, FieldMemOperand(object, JSArray::kLengthOffset)); + __ Branch(&slow_case, ls, scratch1, Operand(index1)); + __ Branch(¬_hi, NegateCondition(hi), scratch1, Operand(index1)); + __ Branch(&slow_case, ls, scratch1, Operand(index2)); + __ bind(¬_hi); + + // Bring the address of the elements into index1 and index2. + __ Addu(scratch1, elements, + Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(index1, index1, kPointerSizeLog2 - kSmiTagSize); + __ Addu(index1, scratch1, index1); + __ sll(index2, index2, kPointerSizeLog2 - kSmiTagSize); + __ Addu(index2, scratch1, index2); + + // Swap elements. + __ lw(scratch1, MemOperand(index1, 0)); + __ lw(scratch2, MemOperand(index2, 0)); + __ sw(scratch1, MemOperand(index2, 0)); + __ sw(scratch2, MemOperand(index1, 0)); + + Label no_remembered_set; + __ CheckPageFlag(elements, + scratch1, + 1 << MemoryChunk::SCAN_ON_SCAVENGE, + ne, + &no_remembered_set); + // Possible optimization: do a check that both values are Smis + // (or them and test against Smi mask). + + // We are swapping two objects in an array and the incremental marker never + // pauses in the middle of scanning a single object. Therefore the + // incremental marker is not disturbed, so we don't need to call the + // RecordWrite stub that notifies the incremental marker. + __ RememberedSetHelper(elements, + index1, + scratch2, + kDontSaveFPRegs, + MacroAssembler::kFallThroughAtEnd); + __ RememberedSetHelper(elements, + index2, + scratch2, + kDontSaveFPRegs, + MacroAssembler::kFallThroughAtEnd); + + __ bind(&no_remembered_set); + // We are done. Drop elements from the stack, and return undefined. + __ Drop(3); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + __ jmp(&done); + + __ bind(&slow_case); + __ CallRuntime(Runtime::kSwapElements, 3); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) { + ASSERT_EQ(2, args->length()); + + ASSERT_NE(NULL, args->at(0)->AsLiteral()); + int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); + + Handle<FixedArray> jsfunction_result_caches( + isolate()->global_context()->jsfunction_result_caches()); + if (jsfunction_result_caches->length() <= cache_id) { + __ Abort("Attempt to use undefined cache."); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + context()->Plug(v0); + return; + } + + VisitForAccumulatorValue(args->at(1)); + + Register key = v0; + Register cache = a1; + __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX)); + __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset)); + __ lw(cache, + ContextOperand( + cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); + __ lw(cache, + FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); + + + Label done, not_found; + STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); + __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); + // a2 now holds finger offset as a smi. + __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + // a3 now points to the start of fixed array elements. + __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize); + __ addu(a3, a3, at); + // a3 now points to key of indexed element of cache. + __ lw(a2, MemOperand(a3)); + __ Branch(¬_found, ne, key, Operand(a2)); + + __ lw(v0, MemOperand(a3, kPointerSize)); + __ Branch(&done); + + __ bind(¬_found); + // Call runtime to perform the lookup. + __ Push(cache, key); + __ CallRuntime(Runtime::kGetFromCache, 2); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) { + ASSERT_EQ(2, args->length()); + + Register right = v0; + Register left = a1; + Register tmp = a2; + Register tmp2 = a3; + + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); // Result (right) in v0. + __ pop(left); + + Label done, fail, ok; + __ Branch(&ok, eq, left, Operand(right)); + // Fail if either is a non-HeapObject. + __ And(tmp, left, Operand(right)); + __ And(at, tmp, Operand(kSmiTagMask)); + __ Branch(&fail, eq, at, Operand(zero_reg)); + __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); + __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); + __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE)); + __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); + __ Branch(&fail, ne, tmp, Operand(tmp2)); + __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); + __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); + __ Branch(&ok, eq, tmp, Operand(tmp2)); + __ bind(&fail); + __ LoadRoot(v0, Heap::kFalseValueRootIndex); + __ jmp(&done); + __ bind(&ok); + __ LoadRoot(v0, Heap::kTrueValueRootIndex); + __ bind(&done); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) { + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset)); + __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask)); + + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) { + ASSERT(args->length() == 1); + VisitForAccumulatorValue(args->at(0)); + + if (FLAG_debug_code) { + __ AbortIfNotString(v0); + } + + __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset)); + __ IndexFromHash(v0, v0); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitFastAsciiArrayJoin(ZoneList<Expression*>* args) { + Label bailout, done, one_char_separator, long_separator, + non_trivial_array, not_size_one_array, loop, + empty_separator_loop, one_char_separator_loop, + one_char_separator_loop_entry, long_separator_loop; + + ASSERT(args->length() == 2); + VisitForStackValue(args->at(1)); + VisitForAccumulatorValue(args->at(0)); + + // All aliases of the same register have disjoint lifetimes. + Register array = v0; + Register elements = no_reg; // Will be v0. + Register result = no_reg; // Will be v0. + Register separator = a1; + Register array_length = a2; + Register result_pos = no_reg; // Will be a2. + Register string_length = a3; + Register string = t0; + Register element = t1; + Register elements_end = t2; + Register scratch1 = t3; + Register scratch2 = t5; + Register scratch3 = t4; + Register scratch4 = v1; + + // Separator operand is on the stack. + __ pop(separator); + + // Check that the array is a JSArray. + __ JumpIfSmi(array, &bailout); + __ GetObjectType(array, scratch1, scratch2); + __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE)); + + // Check that the array has fast elements. + __ CheckFastElements(scratch1, scratch2, &bailout); + + // If the array has length zero, return the empty string. + __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); + __ SmiUntag(array_length); + __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg)); + __ LoadRoot(v0, Heap::kEmptyStringRootIndex); + __ Branch(&done); + + __ bind(&non_trivial_array); + + // Get the FixedArray containing array's elements. + elements = array; + __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset)); + array = no_reg; // End of array's live range. + + // Check that all array elements are sequential ASCII strings, and + // accumulate the sum of their lengths, as a smi-encoded value. + __ mov(string_length, zero_reg); + __ Addu(element, + elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(elements_end, array_length, kPointerSizeLog2); + __ Addu(elements_end, element, elements_end); + // Loop condition: while (element < elements_end). + // Live values in registers: + // elements: Fixed array of strings. + // array_length: Length of the fixed array of strings (not smi) + // separator: Separator string + // string_length: Accumulated sum of string lengths (smi). + // element: Current array element. + // elements_end: Array end. + if (FLAG_debug_code) { + __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin", + array_length, Operand(zero_reg)); + } + __ bind(&loop); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ JumpIfSmi(string, &bailout); + __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); + __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); + __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); + __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset)); + __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3); + __ BranchOnOverflow(&bailout, scratch3); + __ Branch(&loop, lt, element, Operand(elements_end)); + + // If array_length is 1, return elements[0], a string. + __ Branch(¬_size_one_array, ne, array_length, Operand(1)); + __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize)); + __ Branch(&done); + + __ bind(¬_size_one_array); + + // Live values in registers: + // separator: Separator string + // array_length: Length of the array. + // string_length: Sum of string lengths (smi). + // elements: FixedArray of strings. + + // Check that the separator is a flat ASCII string. + __ JumpIfSmi(separator, &bailout); + __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); + __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); + __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); + + // Add (separator length times array_length) - separator length to the + // string_length to get the length of the result string. array_length is not + // smi but the other values are, so the result is a smi. + __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); + __ Subu(string_length, string_length, Operand(scratch1)); + __ Mult(array_length, scratch1); + // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are + // zero. + __ mfhi(scratch2); + __ Branch(&bailout, ne, scratch2, Operand(zero_reg)); + __ mflo(scratch2); + __ And(scratch3, scratch2, Operand(0x80000000)); + __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); + __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3); + __ BranchOnOverflow(&bailout, scratch3); + __ SmiUntag(string_length); + + // Get first element in the array to free up the elements register to be used + // for the result. + __ Addu(element, + elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + result = elements; // End of live range for elements. + elements = no_reg; + // Live values in registers: + // element: First array element + // separator: Separator string + // string_length: Length of result string (not smi) + // array_length: Length of the array. + __ AllocateAsciiString(result, + string_length, + scratch1, + scratch2, + elements_end, + &bailout); + // Prepare for looping. Set up elements_end to end of the array. Set + // result_pos to the position of the result where to write the first + // character. + __ sll(elements_end, array_length, kPointerSizeLog2); + __ Addu(elements_end, element, elements_end); + result_pos = array_length; // End of live range for array_length. + array_length = no_reg; + __ Addu(result_pos, + result, + Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); + + // Check the length of the separator. + __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); + __ li(at, Operand(Smi::FromInt(1))); + __ Branch(&one_char_separator, eq, scratch1, Operand(at)); + __ Branch(&long_separator, gt, scratch1, Operand(at)); + + // Empty separator case. + __ bind(&empty_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + + // Copy next array element to the result. + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&empty_separator_loop, lt, element, Operand(elements_end)); + ASSERT(result.is(v0)); + __ Branch(&done); + + // One-character separator case. + __ bind(&one_char_separator); + // Replace separator with its ascii character value. + __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize)); + // Jump into the loop after the code that copies the separator, so the first + // element is not preceded by a separator. + __ jmp(&one_char_separator_loop_entry); + + __ bind(&one_char_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + // separator: Single separator ascii char (in lower byte). + + // Copy the separator character to the result. + __ sb(separator, MemOperand(result_pos)); + __ Addu(result_pos, result_pos, 1); + + // Copy next array element to the result. + __ bind(&one_char_separator_loop_entry); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end)); + ASSERT(result.is(v0)); + __ Branch(&done); + + // Long separator case (separator is more than one character). Entry is at the + // label long_separator below. + __ bind(&long_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + // separator: Separator string. + + // Copy the separator to the result. + __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, + separator, + Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); + __ CopyBytes(string, result_pos, string_length, scratch1); + + __ bind(&long_separator); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&long_separator_loop, lt, element, Operand(elements_end)); + ASSERT(result.is(v0)); + __ Branch(&done); + + __ bind(&bailout); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { + Handle<String> name = expr->name(); + if (name->length() > 0 && name->Get(0) == '_') { + Comment cmnt(masm_, "[ InlineRuntimeCall"); + EmitInlineRuntimeCall(expr); + return; + } + + Comment cmnt(masm_, "[ CallRuntime"); + ZoneList<Expression*>* args = expr->arguments(); + + if (expr->is_jsruntime()) { + // Prepare for calling JS runtime function. + __ lw(a0, GlobalObjectOperand()); + __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset)); + __ push(a0); + } + + // Push the arguments ("left-to-right"). + int arg_count = args->length(); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + if (expr->is_jsruntime()) { + // Call the JS runtime function. + __ li(a2, Operand(expr->name())); + RelocInfo::Mode mode = RelocInfo::CODE_TARGET; + Handle<Code> ic = + isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); + __ Call(ic, mode, expr->id()); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + } else { + // Call the C runtime function. + __ CallRuntime(expr->function(), arg_count); + } + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { + switch (expr->op()) { + case Token::DELETE: { + Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); + Property* property = expr->expression()->AsProperty(); + VariableProxy* proxy = expr->expression()->AsVariableProxy(); + + if (property != NULL) { + VisitForStackValue(property->obj()); + VisitForStackValue(property->key()); + __ li(a1, Operand(Smi::FromInt(strict_mode_flag()))); + __ push(a1); + __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); + context()->Plug(v0); + } else if (proxy != NULL) { + Variable* var = proxy->var(); + // Delete of an unqualified identifier is disallowed in strict mode + // but "delete this" is allowed. + ASSERT(strict_mode_flag() == kNonStrictMode || var->is_this()); + if (var->IsUnallocated()) { + __ lw(a2, GlobalObjectOperand()); + __ li(a1, Operand(var->name())); + __ li(a0, Operand(Smi::FromInt(kNonStrictMode))); + __ Push(a2, a1, a0); + __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); + context()->Plug(v0); + } else if (var->IsStackAllocated() || var->IsContextSlot()) { + // Result of deleting non-global, non-dynamic variables is false. + // The subexpression does not have side effects. + context()->Plug(var->is_this()); + } else { + // Non-global variable. Call the runtime to try to delete from the + // context where the variable was introduced. + __ push(context_register()); + __ li(a2, Operand(var->name())); + __ push(a2); + __ CallRuntime(Runtime::kDeleteContextSlot, 2); + context()->Plug(v0); + } + } else { + // Result of deleting non-property, non-variable reference is true. + // The subexpression may have side effects. + VisitForEffect(expr->expression()); + context()->Plug(true); + } + break; + } + + case Token::VOID: { + Comment cmnt(masm_, "[ UnaryOperation (VOID)"); + VisitForEffect(expr->expression()); + context()->Plug(Heap::kUndefinedValueRootIndex); + break; + } + + case Token::NOT: { + Comment cmnt(masm_, "[ UnaryOperation (NOT)"); + if (context()->IsEffect()) { + // Unary NOT has no side effects so it's only necessary to visit the + // subexpression. Match the optimizing compiler by not branching. + VisitForEffect(expr->expression()); + } else { + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + + // Notice that the labels are swapped. + context()->PrepareTest(&materialize_true, &materialize_false, + &if_false, &if_true, &fall_through); + if (context()->IsTest()) ForwardBailoutToChild(expr); + VisitForControl(expr->expression(), if_true, if_false, fall_through); + context()->Plug(if_false, if_true); // Labels swapped. + } + break; + } + + case Token::TYPEOF: { + Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); + { StackValueContext context(this); + VisitForTypeofValue(expr->expression()); + } + __ CallRuntime(Runtime::kTypeof, 1); + context()->Plug(v0); + break; + } + + case Token::ADD: { + Comment cmt(masm_, "[ UnaryOperation (ADD)"); + VisitForAccumulatorValue(expr->expression()); + Label no_conversion; + __ JumpIfSmi(result_register(), &no_conversion); + __ mov(a0, result_register()); + ToNumberStub convert_stub; + __ CallStub(&convert_stub); + __ bind(&no_conversion); + context()->Plug(result_register()); + break; + } + + case Token::SUB: + EmitUnaryOperation(expr, "[ UnaryOperation (SUB)"); + break; + + case Token::BIT_NOT: + EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)"); + break; + + default: + UNREACHABLE(); + } +} + + +void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr, + const char* comment) { + // TODO(svenpanne): Allowing format strings in Comment would be nice here... + Comment cmt(masm_, comment); + bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); + UnaryOverwriteMode overwrite = + can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; + UnaryOpStub stub(expr->op(), overwrite); + // GenericUnaryOpStub expects the argument to be in a0. + VisitForAccumulatorValue(expr->expression()); + SetSourcePosition(expr->position()); + __ mov(a0, result_register()); + __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { + Comment cmnt(masm_, "[ CountOperation"); + SetSourcePosition(expr->position()); + + // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' + // as the left-hand side. + if (!expr->expression()->IsValidLeftHandSide()) { + VisitForEffect(expr->expression()); + return; + } + + // Expression can only be a property, a global or a (parameter or local) + // slot. + enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; + LhsKind assign_type = VARIABLE; + Property* prop = expr->expression()->AsProperty(); + // In case of a property we use the uninitialized expression context + // of the key to detect a named property. + if (prop != NULL) { + assign_type = + (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; + } + + // Evaluate expression and get value. + if (assign_type == VARIABLE) { + ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); + AccumulatorValueContext context(this); + EmitVariableLoad(expr->expression()->AsVariableProxy()); + } else { + // Reserve space for result of postfix operation. + if (expr->is_postfix() && !context()->IsEffect()) { + __ li(at, Operand(Smi::FromInt(0))); + __ push(at); + } + if (assign_type == NAMED_PROPERTY) { + // Put the object both on the stack and in the accumulator. + VisitForAccumulatorValue(prop->obj()); + __ push(v0); + EmitNamedPropertyLoad(prop); + } else { + VisitForStackValue(prop->obj()); + VisitForAccumulatorValue(prop->key()); + __ lw(a1, MemOperand(sp, 0)); + __ push(v0); + EmitKeyedPropertyLoad(prop); + } + } + + // We need a second deoptimization point after loading the value + // in case evaluating the property load my have a side effect. + if (assign_type == VARIABLE) { + PrepareForBailout(expr->expression(), TOS_REG); + } else { + PrepareForBailoutForId(expr->CountId(), TOS_REG); + } + + // Call ToNumber only if operand is not a smi. + Label no_conversion; + __ JumpIfSmi(v0, &no_conversion); + __ mov(a0, v0); + ToNumberStub convert_stub; + __ CallStub(&convert_stub); + __ bind(&no_conversion); + + // Save result for postfix expressions. + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + // Save the result on the stack. If we have a named or keyed property + // we store the result under the receiver that is currently on top + // of the stack. + switch (assign_type) { + case VARIABLE: + __ push(v0); + break; + case NAMED_PROPERTY: + __ sw(v0, MemOperand(sp, kPointerSize)); + break; + case KEYED_PROPERTY: + __ sw(v0, MemOperand(sp, 2 * kPointerSize)); + break; + } + } + } + __ mov(a0, result_register()); + + // Inline smi case if we are in a loop. + Label stub_call, done; + JumpPatchSite patch_site(masm_); + + int count_value = expr->op() == Token::INC ? 1 : -1; + __ li(a1, Operand(Smi::FromInt(count_value))); + + if (ShouldInlineSmiCase(expr->op())) { + __ AdduAndCheckForOverflow(v0, a0, a1, t0); + __ BranchOnOverflow(&stub_call, t0); // Do stub on overflow. + + // We could eliminate this smi check if we split the code at + // the first smi check before calling ToNumber. + patch_site.EmitJumpIfSmi(v0, &done); + __ bind(&stub_call); + } + + // Record position before stub call. + SetSourcePosition(expr->position()); + + BinaryOpStub stub(Token::ADD, NO_OVERWRITE); + __ Call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId()); + patch_site.EmitPatchInfo(); + __ bind(&done); + + // Store the value returned in v0. + switch (assign_type) { + case VARIABLE: + if (expr->is_postfix()) { + { EffectContext context(this); + EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), + Token::ASSIGN); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context.Plug(v0); + } + // For all contexts except EffectConstant we have the result on + // top of the stack. + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), + Token::ASSIGN); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); + } + break; + case NAMED_PROPERTY: { + __ mov(a0, result_register()); // Value. + __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name. + __ pop(a1); // Receiver. + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->StoreIC_Initialize_Strict() + : isolate()->builtins()->StoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + case KEYED_PROPERTY: { + __ mov(a0, result_register()); // Value. + __ pop(a1); // Key. + __ pop(a2); // Receiver. + Handle<Code> ic = is_strict_mode() + ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() + : isolate()->builtins()->KeyedStoreIC_Initialize(); + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + } +} + + +void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { + ASSERT(!context()->IsEffect()); + ASSERT(!context()->IsTest()); + VariableProxy* proxy = expr->AsVariableProxy(); + if (proxy != NULL && proxy->var()->IsUnallocated()) { + Comment cmnt(masm_, "Global variable"); + __ lw(a0, GlobalObjectOperand()); + __ li(a2, Operand(proxy->name())); + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); + // Use a regular load, not a contextual load, to avoid a reference + // error. + __ Call(ic); + PrepareForBailout(expr, TOS_REG); + context()->Plug(v0); + } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { + Label done, slow; + + // Generate code for loading from variables potentially shadowed + // by eval-introduced variables. + EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done); + + __ bind(&slow); + __ li(a0, Operand(proxy->name())); + __ Push(cp, a0); + __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); + PrepareForBailout(expr, TOS_REG); + __ bind(&done); + + context()->Plug(v0); + } else { + // This expression cannot throw a reference error at the top level. + VisitInCurrentContext(expr); + } +} + +void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, + Handle<String> check) { + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + { AccumulatorValueContext context(this); + VisitForTypeofValue(expr); + } + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + + if (check->Equals(isolate()->heap()->number_symbol())) { + __ JumpIfSmi(v0, if_true); + __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + } else if (check->Equals(isolate()->heap()->string_symbol())) { + __ JumpIfSmi(v0, if_false); + // Check for undetectable objects => false. + __ GetObjectType(v0, v0, a1); + __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE)); + __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(eq, a1, Operand(zero_reg), + if_true, if_false, fall_through); + } else if (check->Equals(isolate()->heap()->boolean_symbol())) { + __ LoadRoot(at, Heap::kTrueValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ LoadRoot(at, Heap::kFalseValueRootIndex); + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + } else if (FLAG_harmony_typeof && + check->Equals(isolate()->heap()->null_symbol())) { + __ LoadRoot(at, Heap::kNullValueRootIndex); + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + } else if (check->Equals(isolate()->heap()->undefined_symbol())) { + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ JumpIfSmi(v0, if_false); + // Check for undetectable objects => true. + __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); + } else if (check->Equals(isolate()->heap()->function_symbol())) { + __ JumpIfSmi(v0, if_false); + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); + __ GetObjectType(v0, v0, a1); + __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE)); + Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE), + if_true, if_false, fall_through); + } else if (check->Equals(isolate()->heap()->object_symbol())) { + __ JumpIfSmi(v0, if_false); + if (!FLAG_harmony_typeof) { + __ LoadRoot(at, Heap::kNullValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + } + // Check for JS objects => true. + __ GetObjectType(v0, v0, a1); + __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); + __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset)); + __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); + // Check for undetectable objects => false. + __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); + } else { + if (if_false != fall_through) __ jmp(if_false); + } + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { + Comment cmnt(masm_, "[ CompareOperation"); + SetSourcePosition(expr->position()); + + // First we try a fast inlined version of the compare when one of + // the operands is a literal. + if (TryLiteralCompare(expr)) return; + + // Always perform the comparison for its control flow. Pack the result + // into the expression's context after the comparison is performed. + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + Token::Value op = expr->op(); + VisitForStackValue(expr->left()); + switch (op) { + case Token::IN: + VisitForStackValue(expr->right()); + __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); + PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); + __ LoadRoot(t0, Heap::kTrueValueRootIndex); + Split(eq, v0, Operand(t0), if_true, if_false, fall_through); + break; + + case Token::INSTANCEOF: { + VisitForStackValue(expr->right()); + InstanceofStub stub(InstanceofStub::kNoFlags); + __ CallStub(&stub); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + // The stub returns 0 for true. + Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through); + break; + } + + default: { + VisitForAccumulatorValue(expr->right()); + Condition cc = eq; + switch (op) { + case Token::EQ_STRICT: + case Token::EQ: + cc = eq; + break; + case Token::LT: + cc = lt; + break; + case Token::GT: + cc = gt; + break; + case Token::LTE: + cc = le; + break; + case Token::GTE: + cc = ge; + break; + case Token::IN: + case Token::INSTANCEOF: + default: + UNREACHABLE(); + } + __ mov(a0, result_register()); + __ pop(a1); + + bool inline_smi_code = ShouldInlineSmiCase(op); + JumpPatchSite patch_site(masm_); + if (inline_smi_code) { + Label slow_case; + __ Or(a2, a0, Operand(a1)); + patch_site.EmitJumpIfNotSmi(a2, &slow_case); + Split(cc, a1, Operand(a0), if_true, if_false, NULL); + __ bind(&slow_case); + } + // Record position and call the compare IC. + SetSourcePosition(expr->position()); + Handle<Code> ic = CompareIC::GetUninitialized(op); + __ Call(ic, RelocInfo::CODE_TARGET, expr->id()); + patch_site.EmitPatchInfo(); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); + } + } + + // Convert the result of the comparison into one expected for this + // expression's context. + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, + Expression* sub_expr, + NilValue nil) { + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + VisitForAccumulatorValue(sub_expr); + PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false); + Heap::RootListIndex nil_value = nil == kNullValue ? + Heap::kNullValueRootIndex : + Heap::kUndefinedValueRootIndex; + __ mov(a0, result_register()); + __ LoadRoot(a1, nil_value); + if (expr->op() == Token::EQ_STRICT) { + Split(eq, a0, Operand(a1), if_true, if_false, fall_through); + } else { + Heap::RootListIndex other_nil_value = nil == kNullValue ? + Heap::kUndefinedValueRootIndex : + Heap::kNullValueRootIndex; + __ Branch(if_true, eq, a0, Operand(a1)); + __ LoadRoot(a1, other_nil_value); + __ Branch(if_true, eq, a0, Operand(a1)); + __ And(at, a0, Operand(kSmiTagMask)); + __ Branch(if_false, eq, at, Operand(zero_reg)); + // It can be an undetectable object. + __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset)); + __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); + } + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { + __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + context()->Plug(v0); +} + + +Register FullCodeGenerator::result_register() { + return v0; +} + + +Register FullCodeGenerator::context_register() { + return cp; +} + + +void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { + ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); + __ sw(value, MemOperand(fp, frame_offset)); +} + + +void FullCodeGenerator::LoadContextField(Register dst, int context_index) { + __ lw(dst, ContextOperand(cp, context_index)); +} + + +void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { + Scope* declaration_scope = scope()->DeclarationScope(); + if (declaration_scope->is_global_scope()) { + // Contexts nested in the global context have a canonical empty function + // as their closure, not the anonymous closure containing the global + // code. Pass a smi sentinel and let the runtime look up the empty + // function. + __ li(at, Operand(Smi::FromInt(0))); + } else if (declaration_scope->is_eval_scope()) { + // Contexts created by a call to eval have the same closure as the + // context calling eval, not the anonymous closure containing the eval + // code. Fetch it from the context. + __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX)); + } else { + ASSERT(declaration_scope->is_function_scope()); + __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + } + __ push(at); +} + + +// ---------------------------------------------------------------------------- +// Non-local control flow support. + +void FullCodeGenerator::EnterFinallyBlock() { + ASSERT(!result_register().is(a1)); + // Store result register while executing finally block. + __ push(result_register()); + // Cook return address in link register to stack (smi encoded Code* delta). + __ Subu(a1, ra, Operand(masm_->CodeObject())); + ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); + STATIC_ASSERT(0 == kSmiTag); + __ Addu(a1, a1, Operand(a1)); // Convert to smi. + __ push(a1); +} + + +void FullCodeGenerator::ExitFinallyBlock() { + ASSERT(!result_register().is(a1)); + // Restore result register from stack. + __ pop(a1); + // Uncook return address and return. + __ pop(result_register()); + ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); + __ sra(a1, a1, 1); // Un-smi-tag value. + __ Addu(at, a1, Operand(masm_->CodeObject())); + __ Jump(at); +} + + +#undef __ + +#define __ ACCESS_MASM(masm()) + +FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( + int* stack_depth, + int* context_length) { + // The macros used here must preserve the result register. + + // Because the handler block contains the context of the finally + // code, we can restore it directly from there for the finally code + // rather than iteratively unwinding contexts via their previous + // links. + __ Drop(*stack_depth); // Down to the handler block. + if (*context_length > 0) { + // Restore the context to its dedicated register and the stack. + __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); + __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + } + __ PopTryHandler(); + __ Call(finally_entry_); + + *stack_depth = 0; + *context_length = 0; + return previous_; +} + + +#undef __ + +} } // namespace v8::internal + +#endif // V8_TARGET_ARCH_MIPS |