summaryrefslogtreecommitdiff
path: root/src/linguist/shared/simtexth.cpp
blob: 7d978f475ef270712135da9b632e8c5af52c1b1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (C) 2016 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0

#include "simtexth.h"
#include "translator.h"

#include <QtCore/QByteArray>
#include <QtCore/QString>
#include <QtCore/QList>


QT_BEGIN_NAMESPACE

typedef QList<TranslatorMessage> TML;

/*
  How similar are two texts?  The approach used here relies on co-occurrence
  matrices and is very efficient.

  Let's see with an example: how similar are "here" and "hither"?  The
  co-occurrence matrix M for "here" is M[h,e] = 1, M[e,r] = 1, M[r,e] = 1, and 0
  elsewhere; the matrix N for "hither" is N[h,i] = 1, N[i,t] = 1, ...,
  N[h,e] = 1, N[e,r] = 1, and 0 elsewhere.  The union U of both matrices is the
  matrix U[i,j] = max { M[i,j], N[i,j] }, and the intersection V is
  V[i,j] = min { M[i,j], N[i,j] }.  The score for a pair of texts is

      score = (sum of V[i,j] over all i, j) / (sum of U[i,j] over all i, j),

  a formula suggested by Arnt Gulbrandsen.  Here we have

      score = 2 / 6,

  or one third.

  The implementation differs from this in a few details.  Most importantly,
  repetitions are ignored; for input "xxx", M[x,x] equals 1, not 2.
*/

/*
  Every character is assigned to one of 20 buckets so that the co-occurrence
  matrix requires only 20 * 20 = 400 bits, not 256 * 256 = 65536 bits or even
  more if we want the whole Unicode.  Which character falls in which bucket is
  arbitrary.

  The second half of the table is a replica of the first half, because of
  laziness.
*/
static const int indexOf[256] = {
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
//      !   "   #   $   %   &   '   (   )   *   +   ,   -   .   /
    0,  2,  6,  7,  10, 12, 15, 19, 2,  6,  7,  10, 12, 15, 19, 0,
//  0   1   2   3   4   5   6   7   8   9   :   ;   <   =   >   ?
    1,  3,  4,  5,  8,  9,  11, 13, 14, 16, 2,  6,  7,  10, 12, 15,
//  @   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
//  P   Q   R   S   T   U   V   W   X   Y   Z   [   \   ]   ^   _
    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,
//  `   a   b   c   d   e   f   g   h   i   j   k   l   m   n   o
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
//  p   q   r   s   t   u   v   w   x   y   z   {   |   }   ~
    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,

    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  2,  6,  7,  10, 12, 15, 19, 2,  6,  7,  10, 12, 15, 19, 0,
    1,  3,  4,  5,  8,  9,  11, 13, 14, 16, 2,  6,  7,  10, 12, 15,
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0
};

/*
  The entry bitCount[i] (for i between 0 and 255) is the number of bits used to
  represent i in binary.
*/
static const int bitCount[256] = {
    0,  1,  1,  2,  1,  2,  2,  3,  1,  2,  2,  3,  2,  3,  3,  4,
    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
    4,  5,  5,  6,  5,  6,  6,  7,  5,  6,  6,  7,  6,  7,  7,  8
};

static inline void setCoOccurence(CoMatrix &m, char c, char d)
{
    int k = indexOf[(uchar) c] + 20 * indexOf[(uchar) d];
    m.b[k >> 3] |= (1 << (k & 0x7));
}

CoMatrix::CoMatrix(const QString &str)
{
    QByteArray ba = str.toUtf8();
    const char *text = ba.constData();
    char c = '\0', d;
    memset( b, 0, 52 );
    /*
      The Knuth books are not in the office only for show; they help make
      loops 30% faster and 20% as readable.
    */
    while ( (d = *text) != '\0' ) {
        setCoOccurence(*this, c, d);
        if ( (c = *++text) != '\0' ) {
            setCoOccurence(*this, d, c);
            text++;
        }
    }
}

static inline int worth(const CoMatrix &m)
{
    int w = 0;
    for (int i = 0; i < 50; i++)
        w += bitCount[m.b[i]];
    return w;
}

static inline CoMatrix reunion(const CoMatrix &m, const CoMatrix &n)
{
    CoMatrix p;
    for (int i = 0; i < 13; ++i)
        p.w[i] = m.w[i] | n.w[i];
    return p;
}

static inline CoMatrix intersection(const CoMatrix &m, const CoMatrix &n)
{
    CoMatrix p;
    for (int i = 0; i < 13; ++i)
        p.w[i] = m.w[i] & n.w[i];
    return p;
}

StringSimilarityMatcher::StringSimilarityMatcher(const QString &stringToMatch)
    : m_cm(stringToMatch)
{
    m_length = stringToMatch.size();
}

int StringSimilarityMatcher::getSimilarityScore(const QString &strCandidate)
{
    CoMatrix cmTarget(strCandidate);
    int delta = qAbs(m_length - strCandidate.size());
    int score = ( (worth(intersection(m_cm, cmTarget)) + 1) << 10 ) /
        ( worth(reunion(m_cm, cmTarget)) + (delta << 1) + 1 );
    return score;
}

CandidateList similarTextHeuristicCandidates(const Translator *tor,
    const QString &text, int maxCandidates)
{
    QList<int> scores;
    CandidateList candidates;
    StringSimilarityMatcher matcher(text);

    for (const TranslatorMessage &mtm : tor->messages()) {
        if (mtm.type() == TranslatorMessage::Unfinished
            || mtm.translation().isEmpty())
            continue;

        QString s = mtm.sourceText();
        int score = matcher.getSimilarityScore(s);

        if (candidates.size() == maxCandidates && score > scores[maxCandidates - 1] )
            candidates.removeLast();

        if (candidates.size() < maxCandidates && score >= textSimilarityThreshold) {
            Candidate cand(mtm.context(), s, mtm.comment(), mtm.translation());

            int i;
            for (i = 0; i < candidates.size(); i++) {
                if (score >= scores.at(i)) {
                    if (score == scores.at(i)) {
                        if (candidates.at(i) == cand)
                            goto continue_outer_loop;
                    } else {
                        break;
                    }
                }
            }
            scores.insert(i, score);
            candidates.insert(i, cand);
        }
        continue_outer_loop:
        ;
    }
    return candidates;
}

QT_END_NAMESPACE