summaryrefslogtreecommitdiff
path: root/chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp
diff options
context:
space:
mode:
authorAndras Becsi <andras.becsi@digia.com>2014-03-18 13:16:26 +0100
committerFrederik Gladhorn <frederik.gladhorn@digia.com>2014-03-20 15:55:39 +0100
commit3f0f86b0caed75241fa71c95a5d73bc0164348c5 (patch)
tree92b9fb00f2e9e90b0be2262093876d4f43b6cd13 /chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp
parente90d7c4b152c56919d963987e2503f9909a666d2 (diff)
downloadqtwebengine-chromium-3f0f86b0caed75241fa71c95a5d73bc0164348c5.tar.gz
Update to new stable branch 1750
This also includes an updated ninja and chromium dependencies needed on Windows. Change-Id: Icd597d80ed3fa4425933c9f1334c3c2e31291c42 Reviewed-by: Zoltan Arvai <zarvai@inf.u-szeged.hu> Reviewed-by: Zeno Albisser <zeno.albisser@digia.com>
Diffstat (limited to 'chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp')
-rw-r--r--chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp2628
1 files changed, 2628 insertions, 0 deletions
diff --git a/chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp b/chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp
new file mode 100644
index 00000000000..ee0ec8e03f1
--- /dev/null
+++ b/chromium/third_party/angle/src/libGLESv2/ProgramBinary.cpp
@@ -0,0 +1,2628 @@
+#include "precompiled.h"
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+// Program.cpp: Implements the gl::Program class. Implements GL program objects
+// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
+
+#include "libGLESv2/BinaryStream.h"
+#include "libGLESv2/ProgramBinary.h"
+#include "libGLESv2/renderer/ShaderExecutable.h"
+
+#include "common/debug.h"
+#include "common/version.h"
+#include "utilities.h"
+
+#include "libGLESv2/main.h"
+#include "libGLESv2/Shader.h"
+#include "libGLESv2/Program.h"
+#include "libGLESv2/renderer/Renderer.h"
+#include "libGLESv2/renderer/VertexDataManager.h"
+
+#undef near
+#undef far
+
+namespace gl
+{
+std::string str(int i)
+{
+ char buffer[20];
+ snprintf(buffer, sizeof(buffer), "%d", i);
+ return buffer;
+}
+
+static rx::D3DWorkaroundType DiscardWorkaround(bool usesDiscard)
+{
+ return (usesDiscard ? rx::ANGLE_D3D_WORKAROUND_SM3_OPTIMIZER : rx::ANGLE_D3D_WORKAROUND_NONE);
+}
+
+UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index)
+ : name(name), element(element), index(index)
+{
+}
+
+unsigned int ProgramBinary::mCurrentSerial = 1;
+
+ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial())
+{
+ mPixelExecutable = NULL;
+ mVertexExecutable = NULL;
+ mGeometryExecutable = NULL;
+
+ mValidated = false;
+
+ for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
+ {
+ mSemanticIndex[index] = -1;
+ }
+
+ for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
+ {
+ mSamplersPS[index].active = false;
+ }
+
+ for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
+ {
+ mSamplersVS[index].active = false;
+ }
+
+ mUsedVertexSamplerRange = 0;
+ mUsedPixelSamplerRange = 0;
+ mUsesPointSize = false;
+}
+
+ProgramBinary::~ProgramBinary()
+{
+ delete mPixelExecutable;
+ mPixelExecutable = NULL;
+
+ delete mVertexExecutable;
+ mVertexExecutable = NULL;
+
+ delete mGeometryExecutable;
+ mGeometryExecutable = NULL;
+
+ while (!mUniforms.empty())
+ {
+ delete mUniforms.back();
+ mUniforms.pop_back();
+ }
+}
+
+unsigned int ProgramBinary::getSerial() const
+{
+ return mSerial;
+}
+
+unsigned int ProgramBinary::issueSerial()
+{
+ return mCurrentSerial++;
+}
+
+rx::ShaderExecutable *ProgramBinary::getPixelExecutable()
+{
+ return mPixelExecutable;
+}
+
+rx::ShaderExecutable *ProgramBinary::getVertexExecutable()
+{
+ return mVertexExecutable;
+}
+
+rx::ShaderExecutable *ProgramBinary::getGeometryExecutable()
+{
+ return mGeometryExecutable;
+}
+
+GLuint ProgramBinary::getAttributeLocation(const char *name)
+{
+ if (name)
+ {
+ for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
+ {
+ if (mLinkedAttribute[index].name == std::string(name))
+ {
+ return index;
+ }
+ }
+ }
+
+ return -1;
+}
+
+int ProgramBinary::getSemanticIndex(int attributeIndex)
+{
+ ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
+
+ return mSemanticIndex[attributeIndex];
+}
+
+// Returns one more than the highest sampler index used.
+GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
+{
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ return mUsedPixelSamplerRange;
+ case SAMPLER_VERTEX:
+ return mUsedVertexSamplerRange;
+ default:
+ UNREACHABLE();
+ return 0;
+ }
+}
+
+bool ProgramBinary::usesPointSize() const
+{
+ return mUsesPointSize;
+}
+
+bool ProgramBinary::usesPointSpriteEmulation() const
+{
+ return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
+}
+
+bool ProgramBinary::usesGeometryShader() const
+{
+ return usesPointSpriteEmulation();
+}
+
+// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
+// index (0-15 for the pixel shader and 0-3 for the vertex shader).
+GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
+{
+ GLint logicalTextureUnit = -1;
+
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
+
+ if (mSamplersPS[samplerIndex].active)
+ {
+ logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
+ }
+ break;
+ case SAMPLER_VERTEX:
+ ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
+
+ if (mSamplersVS[samplerIndex].active)
+ {
+ logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
+ }
+ break;
+ default: UNREACHABLE();
+ }
+
+ if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits())
+ {
+ return logicalTextureUnit;
+ }
+
+ return -1;
+}
+
+// Returns the texture type for a given Direct3D 9 sampler type and
+// index (0-15 for the pixel shader and 0-3 for the vertex shader).
+TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
+{
+ switch (type)
+ {
+ case SAMPLER_PIXEL:
+ ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
+ ASSERT(mSamplersPS[samplerIndex].active);
+ return mSamplersPS[samplerIndex].textureType;
+ case SAMPLER_VERTEX:
+ ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
+ ASSERT(mSamplersVS[samplerIndex].active);
+ return mSamplersVS[samplerIndex].textureType;
+ default: UNREACHABLE();
+ }
+
+ return TEXTURE_2D;
+}
+
+GLint ProgramBinary::getUniformLocation(std::string name)
+{
+ unsigned int subscript = 0;
+
+ // Strip any trailing array operator and retrieve the subscript
+ size_t open = name.find_last_of('[');
+ size_t close = name.find_last_of(']');
+ if (open != std::string::npos && close == name.length() - 1)
+ {
+ subscript = atoi(name.substr(open + 1).c_str());
+ name.erase(open);
+ }
+
+ unsigned int numUniforms = mUniformIndex.size();
+ for (unsigned int location = 0; location < numUniforms; location++)
+ {
+ if (mUniformIndex[location].name == name &&
+ mUniformIndex[location].element == subscript)
+ {
+ return location;
+ }
+ }
+
+ return -1;
+}
+
+bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_FLOAT)
+ {
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = 0;
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 1;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = GL_FALSE;
+ boolParams[2] = GL_FALSE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 1;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_FLOAT_VEC2)
+ {
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 2;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC2)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = GL_FALSE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 2;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_FLOAT_VEC3)
+ {
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = v[2];
+ target[3] = 0;
+ target += 4;
+ v += 3;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC3)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 3;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_FLOAT_VEC4)
+ {
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = v[2];
+ target[3] = v[3];
+ target += 4;
+ v += 4;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC4)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE;
+ boolParams += 4;
+ v += 4;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
+void transposeMatrix(T *target, const GLfloat *value)
+{
+ int copyWidth = std::min(targetWidth, srcWidth);
+ int copyHeight = std::min(targetHeight, srcHeight);
+
+ for (int x = 0; x < copyWidth; x++)
+ {
+ for (int y = 0; y < copyHeight; y++)
+ {
+ target[x * targetWidth + y] = (T)value[y * srcWidth + x];
+ }
+ }
+ // clear unfilled right side
+ for (int y = 0; y < copyHeight; y++)
+ {
+ for (int x = srcWidth; x < targetWidth; x++)
+ {
+ target[y * targetWidth + x] = (T)0;
+ }
+ }
+ // clear unfilled bottom.
+ for (int y = srcHeight; y < targetHeight; y++)
+ {
+ for (int x = 0; x < targetWidth; x++)
+ {
+ target[y * targetWidth + x] = (T)0;
+ }
+ }
+}
+
+bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT2)
+ {
+ return false;
+ }
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
+
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,2,2,2>(target, value);
+ target += 8;
+ value += 4;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT3)
+ {
+ return false;
+ }
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+ GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
+
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,3,3,3>(target, value);
+ target += 12;
+ value += 9;
+ }
+
+ return true;
+}
+
+
+bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ if (targetUniform->type != GL_FLOAT_MAT4)
+ {
+ return false;
+ }
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+ GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
+
+ for (int i = 0; i < count; i++)
+ {
+ transposeMatrix<GLfloat,4,4,4,4>(target, value);
+ target += 16;
+ value += 16;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_INT ||
+ targetUniform->type == GL_SAMPLER_2D ||
+ targetUniform->type == GL_SAMPLER_CUBE)
+ {
+ GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = 0;
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 1;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = GL_FALSE;
+ boolParams[2] = GL_FALSE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 1;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_INT_VEC2)
+ {
+ GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = 0;
+ target[3] = 0;
+ target += 4;
+ v += 2;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC2)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = GL_FALSE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 2;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_INT_VEC3)
+ {
+ GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = v[2];
+ target[3] = 0;
+ target += 4;
+ v += 3;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC3)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[3] = GL_FALSE;
+ boolParams += 4;
+ v += 3;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+ targetUniform->dirty = true;
+
+ int elementCount = targetUniform->elementCount();
+
+ if (elementCount == 1 && count > 1)
+ return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
+
+ count = std::min(elementCount - (int)mUniformIndex[location].element, count);
+
+ if (targetUniform->type == GL_INT_VEC4)
+ {
+ GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ target[0] = v[0];
+ target[1] = v[1];
+ target[2] = v[2];
+ target[3] = v[3];
+ target += 4;
+ v += 4;
+ }
+ }
+ else if (targetUniform->type == GL_BOOL_VEC4)
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (int i = 0; i < count; i++)
+ {
+ boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE;
+ boolParams += 4;
+ v += 4;
+ }
+ }
+ else
+ {
+ return false;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+
+ // sized queries -- ensure the provided buffer is large enough
+ if (bufSize)
+ {
+ int requiredBytes = UniformExternalSize(targetUniform->type);
+ if (*bufSize < requiredBytes)
+ {
+ return false;
+ }
+ }
+
+ switch (targetUniform->type)
+ {
+ case GL_FLOAT_MAT2:
+ transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
+ break;
+ case GL_FLOAT_MAT3:
+ transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
+ break;
+ case GL_FLOAT_MAT4:
+ transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
+ break;
+ default:
+ {
+ unsigned int size = UniformComponentCount(targetUniform->type);
+
+ switch (UniformComponentType(targetUniform->type))
+ {
+ case GL_BOOL:
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (unsigned int i = 0; i < size; i++)
+ {
+ params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
+ }
+ }
+ break;
+ case GL_FLOAT:
+ memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat),
+ size * sizeof(GLfloat));
+ break;
+ case GL_INT:
+ {
+ GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (unsigned int i = 0; i < size; i++)
+ {
+ params[i] = (float)intParams[i];
+ }
+ }
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+
+ return true;
+}
+
+bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
+{
+ if (location < 0 || location >= (int)mUniformIndex.size())
+ {
+ return false;
+ }
+
+ Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
+
+ // sized queries -- ensure the provided buffer is large enough
+ if (bufSize)
+ {
+ int requiredBytes = UniformExternalSize(targetUniform->type);
+ if (*bufSize < requiredBytes)
+ {
+ return false;
+ }
+ }
+
+ switch (targetUniform->type)
+ {
+ case GL_FLOAT_MAT2:
+ transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
+ break;
+ case GL_FLOAT_MAT3:
+ transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
+ break;
+ case GL_FLOAT_MAT4:
+ transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
+ break;
+ default:
+ {
+ unsigned int size = VariableColumnCount(targetUniform->type);
+
+ switch (UniformComponentType(targetUniform->type))
+ {
+ case GL_BOOL:
+ {
+ GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (unsigned int i = 0; i < size; i++)
+ {
+ params[i] = boolParams[i];
+ }
+ }
+ break;
+ case GL_FLOAT:
+ {
+ GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
+
+ for (unsigned int i = 0; i < size; i++)
+ {
+ params[i] = (GLint)floatParams[i];
+ }
+ }
+ break;
+ case GL_INT:
+ memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint),
+ size * sizeof(GLint));
+ break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+
+ return true;
+}
+
+void ProgramBinary::dirtyAllUniforms()
+{
+ unsigned int numUniforms = mUniforms.size();
+ for (unsigned int index = 0; index < numUniforms; index++)
+ {
+ mUniforms[index]->dirty = true;
+ }
+}
+
+// Applies all the uniforms set for this program object to the renderer
+void ProgramBinary::applyUniforms()
+{
+ // Retrieve sampler uniform values
+ for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub)
+ {
+ Uniform *targetUniform = *ub;
+
+ if (targetUniform->dirty)
+ {
+ if (targetUniform->type == GL_SAMPLER_2D ||
+ targetUniform->type == GL_SAMPLER_CUBE)
+ {
+ int count = targetUniform->elementCount();
+ GLint (*v)[4] = (GLint(*)[4])targetUniform->data;
+
+ if (targetUniform->psRegisterIndex >= 0)
+ {
+ unsigned int firstIndex = targetUniform->psRegisterIndex;
+
+ for (int i = 0; i < count; i++)
+ {
+ unsigned int samplerIndex = firstIndex + i;
+
+ if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
+ {
+ ASSERT(mSamplersPS[samplerIndex].active);
+ mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
+ }
+ }
+ }
+
+ if (targetUniform->vsRegisterIndex >= 0)
+ {
+ unsigned int firstIndex = targetUniform->vsRegisterIndex;
+
+ for (int i = 0; i < count; i++)
+ {
+ unsigned int samplerIndex = firstIndex + i;
+
+ if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS)
+ {
+ ASSERT(mSamplersVS[samplerIndex].active);
+ mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ mRenderer->applyUniforms(this, &mUniforms);
+}
+
+// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
+// Returns the number of used varying registers, or -1 if unsuccesful
+int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
+{
+ const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
+
+ fragmentShader->resetVaryingsRegisterAssignment();
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ int n = VariableRowCount(varying->type) * varying->size;
+ int m = VariableColumnCount(varying->type);
+ bool success = false;
+
+ if (m == 2 || m == 3 || m == 4)
+ {
+ for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
+ {
+ bool available = true;
+
+ for (int y = 0; y < n && available; y++)
+ {
+ for (int x = 0; x < m && available; x++)
+ {
+ if (packing[r + y][x])
+ {
+ available = false;
+ }
+ }
+ }
+
+ if (available)
+ {
+ varying->reg = r;
+ varying->col = 0;
+
+ for (int y = 0; y < n; y++)
+ {
+ for (int x = 0; x < m; x++)
+ {
+ packing[r + y][x] = &*varying;
+ }
+ }
+
+ success = true;
+ }
+ }
+
+ if (!success && m == 2)
+ {
+ for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
+ {
+ bool available = true;
+
+ for (int y = 0; y < n && available; y++)
+ {
+ for (int x = 2; x < 4 && available; x++)
+ {
+ if (packing[r + y][x])
+ {
+ available = false;
+ }
+ }
+ }
+
+ if (available)
+ {
+ varying->reg = r;
+ varying->col = 2;
+
+ for (int y = 0; y < n; y++)
+ {
+ for (int x = 2; x < 4; x++)
+ {
+ packing[r + y][x] = &*varying;
+ }
+ }
+
+ success = true;
+ }
+ }
+ }
+ }
+ else if (m == 1)
+ {
+ int space[4] = {0};
+
+ for (int y = 0; y < maxVaryingVectors; y++)
+ {
+ for (int x = 0; x < 4; x++)
+ {
+ space[x] += packing[y][x] ? 0 : 1;
+ }
+ }
+
+ int column = 0;
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (space[x] >= n && space[x] < space[column])
+ {
+ column = x;
+ }
+ }
+
+ if (space[column] >= n)
+ {
+ for (int r = 0; r < maxVaryingVectors; r++)
+ {
+ if (!packing[r][column])
+ {
+ varying->reg = r;
+
+ for (int y = r; y < r + n; y++)
+ {
+ packing[y][column] = &*varying;
+ }
+
+ break;
+ }
+ }
+
+ varying->col = column;
+
+ success = true;
+ }
+ }
+ else UNREACHABLE();
+
+ if (!success)
+ {
+ infoLog.append("Could not pack varying %s", varying->name.c_str());
+
+ return -1;
+ }
+ }
+
+ // Return the number of used registers
+ int registers = 0;
+
+ for (int r = 0; r < maxVaryingVectors; r++)
+ {
+ if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
+ {
+ registers++;
+ }
+ }
+
+ return registers;
+}
+
+bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4],
+ std::string& pixelHLSL, std::string& vertexHLSL,
+ FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ if (pixelHLSL.empty() || vertexHLSL.empty())
+ {
+ return false;
+ }
+
+ bool usesMRT = fragmentShader->mUsesMultipleRenderTargets;
+ bool usesFragColor = fragmentShader->mUsesFragColor;
+ bool usesFragData = fragmentShader->mUsesFragData;
+ if (usesFragColor && usesFragData)
+ {
+ infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader.");
+ return false;
+ }
+
+ // Write the HLSL input/output declarations
+ const int shaderModel = mRenderer->getMajorShaderModel();
+ const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
+
+ const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0);
+
+ // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor
+ const bool broadcast = fragmentShader->mUsesFragColor;
+ const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1);
+
+ if (registersNeeded > maxVaryingVectors)
+ {
+ infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord");
+
+ return false;
+ }
+
+ vertexShader->resetVaryingsRegisterAssignment();
+
+ for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
+ {
+ bool matched = false;
+
+ for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
+ {
+ if (output->name == input->name)
+ {
+ if (output->type != input->type || output->size != input->size)
+ {
+ infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
+
+ return false;
+ }
+
+ output->reg = input->reg;
+ output->col = input->col;
+
+ matched = true;
+ break;
+ }
+ }
+
+ if (!matched)
+ {
+ infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
+
+ return false;
+ }
+ }
+
+ mUsesPointSize = vertexShader->mUsesPointSize;
+ std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD";
+ std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR";
+ std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION";
+ std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH";
+
+ // special varyings that use reserved registers
+ int reservedRegisterIndex = registers;
+ std::string fragCoordSemantic;
+ std::string pointCoordSemantic;
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
+ }
+
+ if (fragmentShader->mUsesPointCoord)
+ {
+ // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords.
+ // In DX11 we compute this in the GS.
+ if (shaderModel == 3)
+ {
+ pointCoordSemantic = "TEXCOORD0";
+ }
+ else if (shaderModel >= 4)
+ {
+ pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
+ }
+ }
+
+ vertexHLSL += "struct VS_INPUT\n"
+ "{\n";
+
+ int semanticIndex = 0;
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ switch (attribute->type)
+ {
+ case GL_FLOAT: vertexHLSL += " float "; break;
+ case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break;
+ case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break;
+ case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break;
+ case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break;
+ case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break;
+ case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break;
+ default: UNREACHABLE();
+ }
+
+ vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
+
+ semanticIndex += VariableRowCount(attribute->type);
+ }
+
+ vertexHLSL += "};\n"
+ "\n"
+ "struct VS_OUTPUT\n"
+ "{\n";
+
+ if (shaderModel < 4)
+ {
+ vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n";
+ }
+
+ for (int r = 0; r < registers; r++)
+ {
+ int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
+
+ vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
+ }
+
+ if (vertexShader->mUsesPointSize && shaderModel >= 3)
+ {
+ vertexHLSL += " float gl_PointSize : PSIZE;\n";
+ }
+
+ if (shaderModel >= 4)
+ {
+ vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n";
+ }
+
+ vertexHLSL += "};\n"
+ "\n"
+ "VS_OUTPUT main(VS_INPUT input)\n"
+ "{\n";
+
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ vertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
+
+ if (VariableRowCount(attribute->type) > 1) // Matrix
+ {
+ vertexHLSL += "transpose";
+ }
+
+ vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
+ }
+
+ if (shaderModel >= 4)
+ {
+ vertexHLSL += "\n"
+ " gl_main();\n"
+ "\n"
+ " VS_OUTPUT output;\n"
+ " output.gl_Position.x = gl_Position.x;\n"
+ " output.gl_Position.y = -gl_Position.y;\n"
+ " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
+ " output.gl_Position.w = gl_Position.w;\n";
+ }
+ else
+ {
+ vertexHLSL += "\n"
+ " gl_main();\n"
+ "\n"
+ " VS_OUTPUT output;\n"
+ " output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n"
+ " output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n"
+ " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
+ " output.gl_Position.w = gl_Position.w;\n";
+ }
+
+ if (vertexShader->mUsesPointSize && shaderModel >= 3)
+ {
+ vertexHLSL += " output.gl_PointSize = gl_PointSize;\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
+ }
+
+ for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+
+ for (int j = 0; j < rows; j++)
+ {
+ int r = varying->reg + i * rows + j;
+ vertexHLSL += " output.v" + str(r);
+
+ bool sharedRegister = false; // Register used by multiple varyings
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (packing[r][x] && packing[r][x] != packing[r][0])
+ {
+ sharedRegister = true;
+ break;
+ }
+ }
+
+ if(sharedRegister)
+ {
+ vertexHLSL += ".";
+
+ for (int x = 0; x < 4; x++)
+ {
+ if (packing[r][x] == &*varying)
+ {
+ switch(x)
+ {
+ case 0: vertexHLSL += "x"; break;
+ case 1: vertexHLSL += "y"; break;
+ case 2: vertexHLSL += "z"; break;
+ case 3: vertexHLSL += "w"; break;
+ }
+ }
+ }
+ }
+
+ vertexHLSL += " = " + varying->name;
+
+ if (varying->array)
+ {
+ vertexHLSL += "[" + str(i) + "]";
+ }
+
+ if (rows > 1)
+ {
+ vertexHLSL += "[" + str(j) + "]";
+ }
+
+ vertexHLSL += ";\n";
+ }
+ }
+ }
+ }
+
+ vertexHLSL += "\n"
+ " return output;\n"
+ "}\n";
+
+ pixelHLSL += "struct PS_INPUT\n"
+ "{\n";
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+ for (int j = 0; j < rows; j++)
+ {
+ std::string n = str(varying->reg + i * rows + j);
+ pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n";
+ }
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
+ }
+
+ if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
+ {
+ pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
+ }
+
+ // Must consume the PSIZE element if the geometry shader is not active
+ // We won't know if we use a GS until we draw
+ if (vertexShader->mUsesPointSize && shaderModel >= 4)
+ {
+ pixelHLSL += " float gl_PointSize : PSIZE;\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ if (shaderModel >= 4)
+ {
+ pixelHLSL += " float4 dx_VPos : SV_Position;\n";
+ }
+ else if (shaderModel >= 3)
+ {
+ pixelHLSL += " float2 dx_VPos : VPOS;\n";
+ }
+ }
+
+ pixelHLSL += "};\n"
+ "\n"
+ "struct PS_OUTPUT\n"
+ "{\n";
+
+ for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
+ {
+ pixelHLSL += " float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragDepth)
+ {
+ pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n";
+ }
+
+ pixelHLSL += "};\n"
+ "\n";
+
+ if (fragmentShader->mUsesFrontFacing)
+ {
+ if (shaderModel >= 4)
+ {
+ pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n"
+ "{\n";
+ }
+ else
+ {
+ pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n"
+ "{\n";
+ }
+ }
+ else
+ {
+ pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n"
+ "{\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
+
+ if (shaderModel >= 4)
+ {
+ pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n"
+ " gl_FragCoord.y = input.dx_VPos.y;\n";
+ }
+ else if (shaderModel >= 3)
+ {
+ pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
+ " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
+ }
+ else
+ {
+ // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport()
+ pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n"
+ " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n";
+ }
+
+ pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n"
+ " gl_FragCoord.w = rhw;\n";
+ }
+
+ if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
+ {
+ pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
+ pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
+ }
+
+ if (fragmentShader->mUsesFrontFacing)
+ {
+ if (shaderModel <= 3)
+ {
+ pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n";
+ }
+ else
+ {
+ pixelHLSL += " gl_FrontFacing = isFrontFace;\n";
+ }
+ }
+
+ for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
+ {
+ if (varying->reg >= 0)
+ {
+ for (int i = 0; i < varying->size; i++)
+ {
+ int rows = VariableRowCount(varying->type);
+ for (int j = 0; j < rows; j++)
+ {
+ std::string n = str(varying->reg + i * rows + j);
+ pixelHLSL += " " + varying->name;
+
+ if (varying->array)
+ {
+ pixelHLSL += "[" + str(i) + "]";
+ }
+
+ if (rows > 1)
+ {
+ pixelHLSL += "[" + str(j) + "]";
+ }
+
+ switch (VariableColumnCount(varying->type))
+ {
+ case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break;
+ case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break;
+ case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
+ case 4: pixelHLSL += " = input.v" + n + ";\n"; break;
+ default: UNREACHABLE();
+ }
+ }
+ }
+ }
+ else UNREACHABLE();
+ }
+
+ pixelHLSL += "\n"
+ " gl_main();\n"
+ "\n"
+ " PS_OUTPUT output;\n";
+
+ for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
+ {
+ unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex;
+
+ pixelHLSL += " output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n";
+ }
+
+ if (fragmentShader->mUsesFragDepth)
+ {
+ pixelHLSL += " output.gl_Depth = gl_Depth;\n";
+ }
+
+ pixelHLSL += "\n"
+ " return output;\n"
+ "}\n";
+
+ return true;
+}
+
+bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
+{
+ BinaryInputStream stream(binary, length);
+
+ int format = 0;
+ stream.read(&format);
+ if (format != GL_PROGRAM_BINARY_ANGLE)
+ {
+ infoLog.append("Invalid program binary format.");
+ return false;
+ }
+
+ int version = 0;
+ stream.read(&version);
+ if (version != VERSION_DWORD)
+ {
+ infoLog.append("Invalid program binary version.");
+ return false;
+ }
+
+ int compileFlags = 0;
+ stream.read(&compileFlags);
+ if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
+ {
+ infoLog.append("Mismatched compilation flags.");
+ return false;
+ }
+
+ for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
+ {
+ stream.read(&mLinkedAttribute[i].type);
+ std::string name;
+ stream.read(&name);
+ mLinkedAttribute[i].name = name;
+ stream.read(&mSemanticIndex[i]);
+ }
+
+ initAttributesByLayout();
+
+ for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
+ {
+ stream.read(&mSamplersPS[i].active);
+ stream.read(&mSamplersPS[i].logicalTextureUnit);
+
+ int textureType;
+ stream.read(&textureType);
+ mSamplersPS[i].textureType = (TextureType) textureType;
+ }
+
+ for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
+ {
+ stream.read(&mSamplersVS[i].active);
+ stream.read(&mSamplersVS[i].logicalTextureUnit);
+
+ int textureType;
+ stream.read(&textureType);
+ mSamplersVS[i].textureType = (TextureType) textureType;
+ }
+
+ stream.read(&mUsedVertexSamplerRange);
+ stream.read(&mUsedPixelSamplerRange);
+ stream.read(&mUsesPointSize);
+
+ size_t size;
+ stream.read(&size);
+ if (stream.error())
+ {
+ infoLog.append("Invalid program binary.");
+ return false;
+ }
+
+ mUniforms.resize(size);
+ for (unsigned int i = 0; i < size; ++i)
+ {
+ GLenum type;
+ GLenum precision;
+ std::string name;
+ unsigned int arraySize;
+
+ stream.read(&type);
+ stream.read(&precision);
+ stream.read(&name);
+ stream.read(&arraySize);
+
+ mUniforms[i] = new Uniform(type, precision, name, arraySize);
+
+ stream.read(&mUniforms[i]->psRegisterIndex);
+ stream.read(&mUniforms[i]->vsRegisterIndex);
+ stream.read(&mUniforms[i]->registerCount);
+ }
+
+ stream.read(&size);
+ if (stream.error())
+ {
+ infoLog.append("Invalid program binary.");
+ return false;
+ }
+
+ mUniformIndex.resize(size);
+ for (unsigned int i = 0; i < size; ++i)
+ {
+ stream.read(&mUniformIndex[i].name);
+ stream.read(&mUniformIndex[i].element);
+ stream.read(&mUniformIndex[i].index);
+ }
+
+ unsigned int pixelShaderSize;
+ stream.read(&pixelShaderSize);
+
+ unsigned int vertexShaderSize;
+ stream.read(&vertexShaderSize);
+
+ unsigned int geometryShaderSize;
+ stream.read(&geometryShaderSize);
+
+ const char *ptr = (const char*) binary + stream.offset();
+
+ const GUID *binaryIdentifier = (const GUID *) ptr;
+ ptr += sizeof(GUID);
+
+ GUID identifier = mRenderer->getAdapterIdentifier();
+ if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0)
+ {
+ infoLog.append("Invalid program binary.");
+ return false;
+ }
+
+ const char *pixelShaderFunction = ptr;
+ ptr += pixelShaderSize;
+
+ const char *vertexShaderFunction = ptr;
+ ptr += vertexShaderSize;
+
+ const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL;
+ ptr += geometryShaderSize;
+
+ mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(pixelShaderFunction),
+ pixelShaderSize, rx::SHADER_PIXEL);
+ if (!mPixelExecutable)
+ {
+ infoLog.append("Could not create pixel shader.");
+ return false;
+ }
+
+ mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction),
+ vertexShaderSize, rx::SHADER_VERTEX);
+ if (!mVertexExecutable)
+ {
+ infoLog.append("Could not create vertex shader.");
+ delete mPixelExecutable;
+ mPixelExecutable = NULL;
+ return false;
+ }
+
+ if (geometryShaderFunction != NULL && geometryShaderSize > 0)
+ {
+ mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(geometryShaderFunction),
+ geometryShaderSize, rx::SHADER_GEOMETRY);
+ if (!mGeometryExecutable)
+ {
+ infoLog.append("Could not create geometry shader.");
+ delete mPixelExecutable;
+ mPixelExecutable = NULL;
+ delete mVertexExecutable;
+ mVertexExecutable = NULL;
+ return false;
+ }
+ }
+ else
+ {
+ mGeometryExecutable = NULL;
+ }
+
+ return true;
+}
+
+bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
+{
+ BinaryOutputStream stream;
+
+ stream.write(GL_PROGRAM_BINARY_ANGLE);
+ stream.write(VERSION_DWORD);
+ stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
+
+ for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
+ {
+ stream.write(mLinkedAttribute[i].type);
+ stream.write(mLinkedAttribute[i].name);
+ stream.write(mSemanticIndex[i]);
+ }
+
+ for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
+ {
+ stream.write(mSamplersPS[i].active);
+ stream.write(mSamplersPS[i].logicalTextureUnit);
+ stream.write((int) mSamplersPS[i].textureType);
+ }
+
+ for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
+ {
+ stream.write(mSamplersVS[i].active);
+ stream.write(mSamplersVS[i].logicalTextureUnit);
+ stream.write((int) mSamplersVS[i].textureType);
+ }
+
+ stream.write(mUsedVertexSamplerRange);
+ stream.write(mUsedPixelSamplerRange);
+ stream.write(mUsesPointSize);
+
+ stream.write(mUniforms.size());
+ for (unsigned int i = 0; i < mUniforms.size(); ++i)
+ {
+ stream.write(mUniforms[i]->type);
+ stream.write(mUniforms[i]->precision);
+ stream.write(mUniforms[i]->name);
+ stream.write(mUniforms[i]->arraySize);
+
+ stream.write(mUniforms[i]->psRegisterIndex);
+ stream.write(mUniforms[i]->vsRegisterIndex);
+ stream.write(mUniforms[i]->registerCount);
+ }
+
+ stream.write(mUniformIndex.size());
+ for (unsigned int i = 0; i < mUniformIndex.size(); ++i)
+ {
+ stream.write(mUniformIndex[i].name);
+ stream.write(mUniformIndex[i].element);
+ stream.write(mUniformIndex[i].index);
+ }
+
+ UINT pixelShaderSize = mPixelExecutable->getLength();
+ stream.write(pixelShaderSize);
+
+ UINT vertexShaderSize = mVertexExecutable->getLength();
+ stream.write(vertexShaderSize);
+
+ UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0;
+ stream.write(geometryShaderSize);
+
+ GUID identifier = mRenderer->getAdapterIdentifier();
+
+ GLsizei streamLength = stream.length();
+ const void *streamData = stream.data();
+
+ GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize;
+ if (totalLength > bufSize)
+ {
+ if (length)
+ {
+ *length = 0;
+ }
+
+ return false;
+ }
+
+ if (binary)
+ {
+ char *ptr = (char*) binary;
+
+ memcpy(ptr, streamData, streamLength);
+ ptr += streamLength;
+
+ memcpy(ptr, &identifier, sizeof(GUID));
+ ptr += sizeof(GUID);
+
+ memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize);
+ ptr += pixelShaderSize;
+
+ memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize);
+ ptr += vertexShaderSize;
+
+ if (mGeometryExecutable != NULL && geometryShaderSize > 0)
+ {
+ memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize);
+ ptr += geometryShaderSize;
+ }
+
+ ASSERT(ptr - totalLength == binary);
+ }
+
+ if (length)
+ {
+ *length = totalLength;
+ }
+
+ return true;
+}
+
+GLint ProgramBinary::getLength()
+{
+ GLint length;
+ if (save(NULL, INT_MAX, &length))
+ {
+ return length;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ if (!fragmentShader || !fragmentShader->isCompiled())
+ {
+ return false;
+ }
+
+ if (!vertexShader || !vertexShader->isCompiled())
+ {
+ return false;
+ }
+
+ std::string pixelHLSL = fragmentShader->getHLSL();
+ std::string vertexHLSL = vertexShader->getHLSL();
+
+ // Map the varyings to the register file
+ const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL};
+ int registers = packVaryings(infoLog, packing, fragmentShader);
+
+ if (registers < 0)
+ {
+ return false;
+ }
+
+ if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
+ {
+ return false;
+ }
+
+ bool success = true;
+
+ if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
+ {
+ success = false;
+ }
+
+ if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms()))
+ {
+ success = false;
+ }
+
+ // special case for gl_DepthRange, the only built-in uniform (also a struct)
+ if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange)
+ {
+ mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0));
+ mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0));
+ mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0));
+ }
+
+ if (success)
+ {
+ mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX, DiscardWorkaround(vertexShader->mUsesDiscardRewriting));
+ mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL, DiscardWorkaround(fragmentShader->mUsesDiscardRewriting));
+
+ if (usesGeometryShader())
+ {
+ std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader);
+ mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY, rx::ANGLE_D3D_WORKAROUND_NONE);
+ }
+
+ if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable))
+ {
+ infoLog.append("Failed to create D3D shaders.");
+ success = false;
+
+ delete mVertexExecutable;
+ mVertexExecutable = NULL;
+ delete mPixelExecutable;
+ mPixelExecutable = NULL;
+ delete mGeometryExecutable;
+ mGeometryExecutable = NULL;
+ }
+ }
+
+ return success;
+}
+
+// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
+bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
+{
+ unsigned int usedLocations = 0;
+
+ // Link attributes that have a binding location
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ int location = attributeBindings.getAttributeBinding(attribute->name);
+
+ if (location != -1) // Set by glBindAttribLocation
+ {
+ if (!mLinkedAttribute[location].name.empty())
+ {
+ // Multiple active attributes bound to the same location; not an error
+ }
+
+ mLinkedAttribute[location] = *attribute;
+
+ int rows = VariableRowCount(attribute->type);
+
+ if (rows + location > MAX_VERTEX_ATTRIBS)
+ {
+ infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
+
+ return false;
+ }
+
+ for (int i = 0; i < rows; i++)
+ {
+ usedLocations |= 1 << (location + i);
+ }
+ }
+ }
+
+ // Link attributes that don't have a binding location
+ for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
+ {
+ int location = attributeBindings.getAttributeBinding(attribute->name);
+
+ if (location == -1) // Not set by glBindAttribLocation
+ {
+ int rows = VariableRowCount(attribute->type);
+ int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
+
+ if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
+ {
+ infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
+
+ return false; // Fail to link
+ }
+
+ mLinkedAttribute[availableIndex] = *attribute;
+ }
+ }
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
+ {
+ int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
+ int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
+
+ for (int r = 0; r < rows; r++)
+ {
+ mSemanticIndex[attributeIndex++] = index++;
+ }
+ }
+
+ initAttributesByLayout();
+
+ return true;
+}
+
+bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms)
+{
+ for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++)
+ {
+ if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog))
+ {
+ return false;
+ }
+ }
+
+ for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++)
+ {
+ if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog))
+ {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog)
+{
+ if (constant.type == GL_SAMPLER_2D ||
+ constant.type == GL_SAMPLER_CUBE)
+ {
+ unsigned int samplerIndex = constant.registerIndex;
+
+ do
+ {
+ if (shader == GL_VERTEX_SHADER)
+ {
+ if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits())
+ {
+ mSamplersVS[samplerIndex].active = true;
+ mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
+ mSamplersVS[samplerIndex].logicalTextureUnit = 0;
+ mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
+ }
+ else
+ {
+ infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits());
+ return false;
+ }
+ }
+ else if (shader == GL_FRAGMENT_SHADER)
+ {
+ if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
+ {
+ mSamplersPS[samplerIndex].active = true;
+ mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
+ mSamplersPS[samplerIndex].logicalTextureUnit = 0;
+ mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
+ }
+ else
+ {
+ infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
+ return false;
+ }
+ }
+ else UNREACHABLE();
+
+ samplerIndex++;
+ }
+ while (samplerIndex < constant.registerIndex + constant.arraySize);
+ }
+
+ Uniform *uniform = NULL;
+ GLint location = getUniformLocation(constant.name);
+
+ if (location >= 0) // Previously defined, type and precision must match
+ {
+ uniform = mUniforms[mUniformIndex[location].index];
+
+ if (uniform->type != constant.type)
+ {
+ infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
+ return false;
+ }
+
+ if (uniform->precision != constant.precision)
+ {
+ infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
+ return false;
+ }
+ }
+ else
+ {
+ uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize);
+ }
+
+ if (!uniform)
+ {
+ return false;
+ }
+
+ if (shader == GL_FRAGMENT_SHADER)
+ {
+ uniform->psRegisterIndex = constant.registerIndex;
+ }
+ else if (shader == GL_VERTEX_SHADER)
+ {
+ uniform->vsRegisterIndex = constant.registerIndex;
+ }
+ else UNREACHABLE();
+
+ if (location >= 0)
+ {
+ return uniform->type == constant.type;
+ }
+
+ mUniforms.push_back(uniform);
+ unsigned int uniformIndex = mUniforms.size() - 1;
+
+ for (unsigned int i = 0; i < uniform->elementCount(); i++)
+ {
+ mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex));
+ }
+
+ if (shader == GL_VERTEX_SHADER)
+ {
+ if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors())
+ {
+ infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors());
+ return false;
+ }
+ }
+ else if (shader == GL_FRAGMENT_SHADER)
+ {
+ if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors())
+ {
+ infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors());
+ return false;
+ }
+ }
+ else UNREACHABLE();
+
+ return true;
+}
+
+std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
+{
+ // for now we only handle point sprite emulation
+ ASSERT(usesPointSpriteEmulation());
+ return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader);
+}
+
+std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
+{
+ ASSERT(registers >= 0);
+ ASSERT(vertexShader->mUsesPointSize);
+ ASSERT(mRenderer->getMajorShaderModel() >= 4);
+
+ std::string geomHLSL;
+
+ std::string varyingSemantic = "TEXCOORD";
+
+ std::string fragCoordSemantic;
+ std::string pointCoordSemantic;
+
+ int reservedRegisterIndex = registers;
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
+ }
+
+ if (fragmentShader->mUsesPointCoord)
+ {
+ pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
+ }
+
+ geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n"
+ "\n"
+ "struct GS_INPUT\n"
+ "{\n";
+
+ for (int r = 0; r < registers; r++)
+ {
+ int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
+
+ geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
+ }
+
+ geomHLSL += " float gl_PointSize : PSIZE;\n"
+ " float4 gl_Position : SV_Position;\n"
+ "};\n"
+ "\n"
+ "struct GS_OUTPUT\n"
+ "{\n";
+
+ for (int r = 0; r < registers; r++)
+ {
+ int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
+
+ geomHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
+ }
+
+ if (fragmentShader->mUsesPointCoord)
+ {
+ geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
+ }
+
+ geomHLSL += " float gl_PointSize : PSIZE;\n"
+ " float4 gl_Position : SV_Position;\n"
+ "};\n"
+ "\n"
+ "static float2 pointSpriteCorners[] = \n"
+ "{\n"
+ " float2( 0.5f, -0.5f),\n"
+ " float2( 0.5f, 0.5f),\n"
+ " float2(-0.5f, -0.5f),\n"
+ " float2(-0.5f, 0.5f)\n"
+ "};\n"
+ "\n"
+ "static float2 pointSpriteTexcoords[] = \n"
+ "{\n"
+ " float2(1.0f, 1.0f),\n"
+ " float2(1.0f, 0.0f),\n"
+ " float2(0.0f, 1.0f),\n"
+ " float2(0.0f, 0.0f)\n"
+ "};\n"
+ "\n"
+ "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n"
+ "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n"
+ "\n"
+ "[maxvertexcount(4)]\n"
+ "void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n"
+ "{\n"
+ " GS_OUTPUT output = (GS_OUTPUT)0;\n"
+ " output.gl_PointSize = input[0].gl_PointSize;\n";
+
+ for (int r = 0; r < registers; r++)
+ {
+ geomHLSL += " output.v" + str(r) + " = input[0].v" + str(r) + ";\n";
+ }
+
+ if (fragmentShader->mUsesFragCoord)
+ {
+ geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n";
+ }
+
+ geomHLSL += " \n"
+ " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n"
+ " float4 gl_Position = input[0].gl_Position;\n"
+ " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n";
+
+ for (int corner = 0; corner < 4; corner++)
+ {
+ geomHLSL += " \n"
+ " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
+
+ if (fragmentShader->mUsesPointCoord)
+ {
+ geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n";
+ }
+
+ geomHLSL += " outStream.Append(output);\n";
+ }
+
+ geomHLSL += " \n"
+ " outStream.RestartStrip();\n"
+ "}\n";
+
+ return geomHLSL;
+}
+
+// This method needs to match OutputHLSL::decorate
+std::string ProgramBinary::decorateAttribute(const std::string &name)
+{
+ if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
+ {
+ return "_" + name;
+ }
+
+ return name;
+}
+
+bool ProgramBinary::isValidated() const
+{
+ return mValidated;
+}
+
+void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
+{
+ // Skip over inactive attributes
+ unsigned int activeAttribute = 0;
+ unsigned int attribute;
+ for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
+ {
+ if (mLinkedAttribute[attribute].name.empty())
+ {
+ continue;
+ }
+
+ if (activeAttribute == index)
+ {
+ break;
+ }
+
+ activeAttribute++;
+ }
+
+ if (bufsize > 0)
+ {
+ const char *string = mLinkedAttribute[attribute].name.c_str();
+
+ strncpy(name, string, bufsize);
+ name[bufsize - 1] = '\0';
+
+ if (length)
+ {
+ *length = strlen(name);
+ }
+ }
+
+ *size = 1; // Always a single 'type' instance
+
+ *type = mLinkedAttribute[attribute].type;
+}
+
+GLint ProgramBinary::getActiveAttributeCount() const
+{
+ int count = 0;
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
+ {
+ if (!mLinkedAttribute[attributeIndex].name.empty())
+ {
+ count++;
+ }
+ }
+
+ return count;
+}
+
+GLint ProgramBinary::getActiveAttributeMaxLength() const
+{
+ int maxLength = 0;
+
+ for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
+ {
+ if (!mLinkedAttribute[attributeIndex].name.empty())
+ {
+ maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
+ }
+ }
+
+ return maxLength;
+}
+
+void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
+{
+ ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount()
+
+ if (bufsize > 0)
+ {
+ std::string string = mUniforms[index]->name;
+
+ if (mUniforms[index]->isArray())
+ {
+ string += "[0]";
+ }
+
+ strncpy(name, string.c_str(), bufsize);
+ name[bufsize - 1] = '\0';
+
+ if (length)
+ {
+ *length = strlen(name);
+ }
+ }
+
+ *size = mUniforms[index]->elementCount();
+
+ *type = mUniforms[index]->type;
+}
+
+GLint ProgramBinary::getActiveUniformCount() const
+{
+ return mUniforms.size();
+}
+
+GLint ProgramBinary::getActiveUniformMaxLength() const
+{
+ int maxLength = 0;
+
+ unsigned int numUniforms = mUniforms.size();
+ for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
+ {
+ if (!mUniforms[uniformIndex]->name.empty())
+ {
+ int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
+ if (mUniforms[uniformIndex]->isArray())
+ {
+ length += 3; // Counting in "[0]".
+ }
+ maxLength = std::max(length, maxLength);
+ }
+ }
+
+ return maxLength;
+}
+
+void ProgramBinary::validate(InfoLog &infoLog)
+{
+ applyUniforms();
+ if (!validateSamplers(&infoLog))
+ {
+ mValidated = false;
+ }
+ else
+ {
+ mValidated = true;
+ }
+}
+
+bool ProgramBinary::validateSamplers(InfoLog *infoLog)
+{
+ // if any two active samplers in a program are of different types, but refer to the same
+ // texture image unit, and this is the current program, then ValidateProgram will fail, and
+ // DrawArrays and DrawElements will issue the INVALID_OPERATION error.
+
+ const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits();
+ TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS];
+
+ for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
+ {
+ textureUnitType[i] = TEXTURE_UNKNOWN;
+ }
+
+ for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
+ {
+ if (mSamplersPS[i].active)
+ {
+ unsigned int unit = mSamplersPS[i].logicalTextureUnit;
+
+ if (unit >= maxCombinedTextureImageUnits)
+ {
+ if (infoLog)
+ {
+ infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
+ }
+
+ return false;
+ }
+
+ if (textureUnitType[unit] != TEXTURE_UNKNOWN)
+ {
+ if (mSamplersPS[i].textureType != textureUnitType[unit])
+ {
+ if (infoLog)
+ {
+ infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
+ }
+
+ return false;
+ }
+ }
+ else
+ {
+ textureUnitType[unit] = mSamplersPS[i].textureType;
+ }
+ }
+ }
+
+ for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
+ {
+ if (mSamplersVS[i].active)
+ {
+ unsigned int unit = mSamplersVS[i].logicalTextureUnit;
+
+ if (unit >= maxCombinedTextureImageUnits)
+ {
+ if (infoLog)
+ {
+ infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
+ }
+
+ return false;
+ }
+
+ if (textureUnitType[unit] != TEXTURE_UNKNOWN)
+ {
+ if (mSamplersVS[i].textureType != textureUnitType[unit])
+ {
+ if (infoLog)
+ {
+ infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
+ }
+
+ return false;
+ }
+ }
+ else
+ {
+ textureUnitType[unit] = mSamplersVS[i].textureType;
+ }
+ }
+ }
+
+ return true;
+}
+
+ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
+{
+}
+
+struct AttributeSorter
+{
+ AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
+ : originalIndices(semanticIndices)
+ {
+ }
+
+ bool operator()(int a, int b)
+ {
+ return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b];
+ }
+
+ const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
+};
+
+void ProgramBinary::initAttributesByLayout()
+{
+ for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
+ {
+ mAttributesByLayout[i] = i;
+ }
+
+ std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex));
+}
+
+void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
+{
+ rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
+
+ for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
+ {
+ oldTranslatedAttributes[i] = attributes[i];
+ }
+
+ for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
+ {
+ int oldIndex = mAttributesByLayout[i];
+ sortedSemanticIndices[i] = mSemanticIndex[oldIndex];
+ attributes[i] = oldTranslatedAttributes[oldIndex];
+ }
+}
+
+}