diff options
author | Zeno Albisser <zeno.albisser@digia.com> | 2013-08-15 21:46:11 +0200 |
---|---|---|
committer | Zeno Albisser <zeno.albisser@digia.com> | 2013-08-15 21:46:11 +0200 |
commit | 679147eead574d186ebf3069647b4c23e8ccace6 (patch) | |
tree | fc247a0ac8ff119f7c8550879ebb6d3dd8d1ff69 /chromium/v8/src/jsregexp.cc | |
download | qtwebengine-chromium-679147eead574d186ebf3069647b4c23e8ccace6.tar.gz |
Initial import.
Diffstat (limited to 'chromium/v8/src/jsregexp.cc')
-rw-r--r-- | chromium/v8/src/jsregexp.cc | 6134 |
1 files changed, 6134 insertions, 0 deletions
diff --git a/chromium/v8/src/jsregexp.cc b/chromium/v8/src/jsregexp.cc new file mode 100644 index 00000000000..666866ed32e --- /dev/null +++ b/chromium/v8/src/jsregexp.cc @@ -0,0 +1,6134 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "v8.h" + +#include "ast.h" +#include "compiler.h" +#include "execution.h" +#include "factory.h" +#include "jsregexp.h" +#include "jsregexp-inl.h" +#include "platform.h" +#include "string-search.h" +#include "runtime.h" +#include "compilation-cache.h" +#include "string-stream.h" +#include "parser.h" +#include "regexp-macro-assembler.h" +#include "regexp-macro-assembler-tracer.h" +#include "regexp-macro-assembler-irregexp.h" +#include "regexp-stack.h" + +#ifndef V8_INTERPRETED_REGEXP +#if V8_TARGET_ARCH_IA32 +#include "ia32/regexp-macro-assembler-ia32.h" +#elif V8_TARGET_ARCH_X64 +#include "x64/regexp-macro-assembler-x64.h" +#elif V8_TARGET_ARCH_ARM +#include "arm/regexp-macro-assembler-arm.h" +#elif V8_TARGET_ARCH_MIPS +#include "mips/regexp-macro-assembler-mips.h" +#else +#error Unsupported target architecture. +#endif +#endif + +#include "interpreter-irregexp.h" + + +namespace v8 { +namespace internal { + +Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor, + Handle<String> pattern, + Handle<String> flags, + bool* has_pending_exception) { + // Call the construct code with 2 arguments. + Handle<Object> argv[] = { pattern, flags }; + return Execution::New(constructor, ARRAY_SIZE(argv), argv, + has_pending_exception); +} + + +static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) { + int flags = JSRegExp::NONE; + for (int i = 0; i < str->length(); i++) { + switch (str->Get(i)) { + case 'i': + flags |= JSRegExp::IGNORE_CASE; + break; + case 'g': + flags |= JSRegExp::GLOBAL; + break; + case 'm': + flags |= JSRegExp::MULTILINE; + break; + } + } + return JSRegExp::Flags(flags); +} + + +static inline void ThrowRegExpException(Handle<JSRegExp> re, + Handle<String> pattern, + Handle<String> error_text, + const char* message) { + Isolate* isolate = re->GetIsolate(); + Factory* factory = isolate->factory(); + Handle<FixedArray> elements = factory->NewFixedArray(2); + elements->set(0, *pattern); + elements->set(1, *error_text); + Handle<JSArray> array = factory->NewJSArrayWithElements(elements); + Handle<Object> regexp_err = factory->NewSyntaxError(message, array); + isolate->Throw(*regexp_err); +} + + +ContainedInLattice AddRange(ContainedInLattice containment, + const int* ranges, + int ranges_length, + Interval new_range) { + ASSERT((ranges_length & 1) == 1); + ASSERT(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1); + if (containment == kLatticeUnknown) return containment; + bool inside = false; + int last = 0; + for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { + // Consider the range from last to ranges[i]. + // We haven't got to the new range yet. + if (ranges[i] <= new_range.from()) continue; + // New range is wholly inside last-ranges[i]. Note that new_range.to() is + // inclusive, but the values in ranges are not. + if (last <= new_range.from() && new_range.to() < ranges[i]) { + return Combine(containment, inside ? kLatticeIn : kLatticeOut); + } + return kLatticeUnknown; + } + return containment; +} + + +// More makes code generation slower, less makes V8 benchmark score lower. +const int kMaxLookaheadForBoyerMoore = 8; +// In a 3-character pattern you can maximally step forwards 3 characters +// at a time, which is not always enough to pay for the extra logic. +const int kPatternTooShortForBoyerMoore = 2; + + +// Identifies the sort of regexps where the regexp engine is faster +// than the code used for atom matches. +static bool HasFewDifferentCharacters(Handle<String> pattern) { + int length = Min(kMaxLookaheadForBoyerMoore, pattern->length()); + if (length <= kPatternTooShortForBoyerMoore) return false; + const int kMod = 128; + bool character_found[kMod]; + int different = 0; + memset(&character_found[0], 0, sizeof(character_found)); + for (int i = 0; i < length; i++) { + int ch = (pattern->Get(i) & (kMod - 1)); + if (!character_found[ch]) { + character_found[ch] = true; + different++; + // We declare a regexp low-alphabet if it has at least 3 times as many + // characters as it has different characters. + if (different * 3 > length) return false; + } + } + return true; +} + + +// Generic RegExp methods. Dispatches to implementation specific methods. + + +Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re, + Handle<String> pattern, + Handle<String> flag_str) { + Isolate* isolate = re->GetIsolate(); + Zone zone(isolate); + JSRegExp::Flags flags = RegExpFlagsFromString(flag_str); + CompilationCache* compilation_cache = isolate->compilation_cache(); + Handle<FixedArray> cached = compilation_cache->LookupRegExp(pattern, flags); + bool in_cache = !cached.is_null(); + LOG(isolate, RegExpCompileEvent(re, in_cache)); + + Handle<Object> result; + if (in_cache) { + re->set_data(*cached); + return re; + } + pattern = FlattenGetString(pattern); + PostponeInterruptsScope postpone(isolate); + RegExpCompileData parse_result; + FlatStringReader reader(isolate, pattern); + if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(), + &parse_result, &zone)) { + // Throw an exception if we fail to parse the pattern. + ThrowRegExpException(re, + pattern, + parse_result.error, + "malformed_regexp"); + return Handle<Object>::null(); + } + + bool has_been_compiled = false; + + if (parse_result.simple && + !flags.is_ignore_case() && + !HasFewDifferentCharacters(pattern)) { + // Parse-tree is a single atom that is equal to the pattern. + AtomCompile(re, pattern, flags, pattern); + has_been_compiled = true; + } else if (parse_result.tree->IsAtom() && + !flags.is_ignore_case() && + parse_result.capture_count == 0) { + RegExpAtom* atom = parse_result.tree->AsAtom(); + Vector<const uc16> atom_pattern = atom->data(); + Handle<String> atom_string = + isolate->factory()->NewStringFromTwoByte(atom_pattern); + if (!HasFewDifferentCharacters(atom_string)) { + AtomCompile(re, pattern, flags, atom_string); + has_been_compiled = true; + } + } + if (!has_been_compiled) { + IrregexpInitialize(re, pattern, flags, parse_result.capture_count); + } + ASSERT(re->data()->IsFixedArray()); + // Compilation succeeded so the data is set on the regexp + // and we can store it in the cache. + Handle<FixedArray> data(FixedArray::cast(re->data())); + compilation_cache->PutRegExp(pattern, flags, data); + + return re; +} + + +Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp, + Handle<String> subject, + int index, + Handle<JSArray> last_match_info) { + switch (regexp->TypeTag()) { + case JSRegExp::ATOM: + return AtomExec(regexp, subject, index, last_match_info); + case JSRegExp::IRREGEXP: { + Handle<Object> result = + IrregexpExec(regexp, subject, index, last_match_info); + ASSERT(!result.is_null() || + regexp->GetIsolate()->has_pending_exception()); + return result; + } + default: + UNREACHABLE(); + return Handle<Object>::null(); + } +} + + +// RegExp Atom implementation: Simple string search using indexOf. + + +void RegExpImpl::AtomCompile(Handle<JSRegExp> re, + Handle<String> pattern, + JSRegExp::Flags flags, + Handle<String> match_pattern) { + re->GetIsolate()->factory()->SetRegExpAtomData(re, + JSRegExp::ATOM, + pattern, + flags, + match_pattern); +} + + +static void SetAtomLastCapture(FixedArray* array, + String* subject, + int from, + int to) { + SealHandleScope shs(array->GetIsolate()); + RegExpImpl::SetLastCaptureCount(array, 2); + RegExpImpl::SetLastSubject(array, subject); + RegExpImpl::SetLastInput(array, subject); + RegExpImpl::SetCapture(array, 0, from); + RegExpImpl::SetCapture(array, 1, to); +} + + +int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp, + Handle<String> subject, + int index, + int32_t* output, + int output_size) { + Isolate* isolate = regexp->GetIsolate(); + + ASSERT(0 <= index); + ASSERT(index <= subject->length()); + + if (!subject->IsFlat()) FlattenString(subject); + DisallowHeapAllocation no_gc; // ensure vectors stay valid + + String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex)); + int needle_len = needle->length(); + ASSERT(needle->IsFlat()); + ASSERT_LT(0, needle_len); + + if (index + needle_len > subject->length()) { + return RegExpImpl::RE_FAILURE; + } + + for (int i = 0; i < output_size; i += 2) { + String::FlatContent needle_content = needle->GetFlatContent(); + String::FlatContent subject_content = subject->GetFlatContent(); + ASSERT(needle_content.IsFlat()); + ASSERT(subject_content.IsFlat()); + // dispatch on type of strings + index = (needle_content.IsAscii() + ? (subject_content.IsAscii() + ? SearchString(isolate, + subject_content.ToOneByteVector(), + needle_content.ToOneByteVector(), + index) + : SearchString(isolate, + subject_content.ToUC16Vector(), + needle_content.ToOneByteVector(), + index)) + : (subject_content.IsAscii() + ? SearchString(isolate, + subject_content.ToOneByteVector(), + needle_content.ToUC16Vector(), + index) + : SearchString(isolate, + subject_content.ToUC16Vector(), + needle_content.ToUC16Vector(), + index))); + if (index == -1) { + return i / 2; // Return number of matches. + } else { + output[i] = index; + output[i+1] = index + needle_len; + index += needle_len; + } + } + return output_size / 2; +} + + +Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re, + Handle<String> subject, + int index, + Handle<JSArray> last_match_info) { + Isolate* isolate = re->GetIsolate(); + + static const int kNumRegisters = 2; + STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize); + int32_t* output_registers = isolate->jsregexp_static_offsets_vector(); + + int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters); + + if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value(); + + ASSERT_EQ(res, RegExpImpl::RE_SUCCESS); + SealHandleScope shs(isolate); + FixedArray* array = FixedArray::cast(last_match_info->elements()); + SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]); + return last_match_info; +} + + +// Irregexp implementation. + +// Ensures that the regexp object contains a compiled version of the +// source for either ASCII or non-ASCII strings. +// If the compiled version doesn't already exist, it is compiled +// from the source pattern. +// If compilation fails, an exception is thrown and this function +// returns false. +bool RegExpImpl::EnsureCompiledIrregexp( + Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii) { + Object* compiled_code = re->DataAt(JSRegExp::code_index(is_ascii)); +#ifdef V8_INTERPRETED_REGEXP + if (compiled_code->IsByteArray()) return true; +#else // V8_INTERPRETED_REGEXP (RegExp native code) + if (compiled_code->IsCode()) return true; +#endif + // We could potentially have marked this as flushable, but have kept + // a saved version if we did not flush it yet. + Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_ascii)); + if (saved_code->IsCode()) { + // Reinstate the code in the original place. + re->SetDataAt(JSRegExp::code_index(is_ascii), saved_code); + ASSERT(compiled_code->IsSmi()); + return true; + } + return CompileIrregexp(re, sample_subject, is_ascii); +} + + +static bool CreateRegExpErrorObjectAndThrow(Handle<JSRegExp> re, + bool is_ascii, + Handle<String> error_message, + Isolate* isolate) { + Factory* factory = isolate->factory(); + Handle<FixedArray> elements = factory->NewFixedArray(2); + elements->set(0, re->Pattern()); + elements->set(1, *error_message); + Handle<JSArray> array = factory->NewJSArrayWithElements(elements); + Handle<Object> regexp_err = + factory->NewSyntaxError("malformed_regexp", array); + isolate->Throw(*regexp_err); + return false; +} + + +bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, + Handle<String> sample_subject, + bool is_ascii) { + // Compile the RegExp. + Isolate* isolate = re->GetIsolate(); + Zone zone(isolate); + PostponeInterruptsScope postpone(isolate); + // If we had a compilation error the last time this is saved at the + // saved code index. + Object* entry = re->DataAt(JSRegExp::code_index(is_ascii)); + // When arriving here entry can only be a smi, either representing an + // uncompiled regexp, a previous compilation error, or code that has + // been flushed. + ASSERT(entry->IsSmi()); + int entry_value = Smi::cast(entry)->value(); + ASSERT(entry_value == JSRegExp::kUninitializedValue || + entry_value == JSRegExp::kCompilationErrorValue || + (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0)); + + if (entry_value == JSRegExp::kCompilationErrorValue) { + // A previous compilation failed and threw an error which we store in + // the saved code index (we store the error message, not the actual + // error). Recreate the error object and throw it. + Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_ascii)); + ASSERT(error_string->IsString()); + Handle<String> error_message(String::cast(error_string)); + CreateRegExpErrorObjectAndThrow(re, is_ascii, error_message, isolate); + return false; + } + + JSRegExp::Flags flags = re->GetFlags(); + + Handle<String> pattern(re->Pattern()); + if (!pattern->IsFlat()) FlattenString(pattern); + RegExpCompileData compile_data; + FlatStringReader reader(isolate, pattern); + if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(), + &compile_data, + &zone)) { + // Throw an exception if we fail to parse the pattern. + // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once. + ThrowRegExpException(re, + pattern, + compile_data.error, + "malformed_regexp"); + return false; + } + RegExpEngine::CompilationResult result = + RegExpEngine::Compile(&compile_data, + flags.is_ignore_case(), + flags.is_global(), + flags.is_multiline(), + pattern, + sample_subject, + is_ascii, + &zone); + if (result.error_message != NULL) { + // Unable to compile regexp. + Handle<String> error_message = + isolate->factory()->NewStringFromUtf8(CStrVector(result.error_message)); + CreateRegExpErrorObjectAndThrow(re, is_ascii, error_message, isolate); + return false; + } + + Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data())); + data->set(JSRegExp::code_index(is_ascii), result.code); + int register_max = IrregexpMaxRegisterCount(*data); + if (result.num_registers > register_max) { + SetIrregexpMaxRegisterCount(*data, result.num_registers); + } + + return true; +} + + +int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) { + return Smi::cast( + re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); +} + + +void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) { + re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value)); +} + + +int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) { + return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value(); +} + + +int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) { + return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); +} + + +ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) { + return ByteArray::cast(re->get(JSRegExp::code_index(is_ascii))); +} + + +Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) { + return Code::cast(re->get(JSRegExp::code_index(is_ascii))); +} + + +void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re, + Handle<String> pattern, + JSRegExp::Flags flags, + int capture_count) { + // Initialize compiled code entries to null. + re->GetIsolate()->factory()->SetRegExpIrregexpData(re, + JSRegExp::IRREGEXP, + pattern, + flags, + capture_count); +} + + +int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp, + Handle<String> subject) { + if (!subject->IsFlat()) FlattenString(subject); + + // Check the asciiness of the underlying storage. + bool is_ascii = subject->IsOneByteRepresentationUnderneath(); + if (!EnsureCompiledIrregexp(regexp, subject, is_ascii)) return -1; + +#ifdef V8_INTERPRETED_REGEXP + // Byte-code regexp needs space allocated for all its registers. + // The result captures are copied to the start of the registers array + // if the match succeeds. This way those registers are not clobbered + // when we set the last match info from last successful match. + return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) + + (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; +#else // V8_INTERPRETED_REGEXP + // Native regexp only needs room to output captures. Registers are handled + // internally. + return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; +#endif // V8_INTERPRETED_REGEXP +} + + +int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp, + Handle<String> subject, + int index, + int32_t* output, + int output_size) { + Isolate* isolate = regexp->GetIsolate(); + + Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate); + + ASSERT(index >= 0); + ASSERT(index <= subject->length()); + ASSERT(subject->IsFlat()); + + bool is_ascii = subject->IsOneByteRepresentationUnderneath(); + +#ifndef V8_INTERPRETED_REGEXP + ASSERT(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2); + do { + EnsureCompiledIrregexp(regexp, subject, is_ascii); + Handle<Code> code(IrregexpNativeCode(*irregexp, is_ascii), isolate); + // The stack is used to allocate registers for the compiled regexp code. + // This means that in case of failure, the output registers array is left + // untouched and contains the capture results from the previous successful + // match. We can use that to set the last match info lazily. + NativeRegExpMacroAssembler::Result res = + NativeRegExpMacroAssembler::Match(code, + subject, + output, + output_size, + index, + isolate); + if (res != NativeRegExpMacroAssembler::RETRY) { + ASSERT(res != NativeRegExpMacroAssembler::EXCEPTION || + isolate->has_pending_exception()); + STATIC_ASSERT( + static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS); + STATIC_ASSERT( + static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE); + STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION) + == RE_EXCEPTION); + return static_cast<IrregexpResult>(res); + } + // If result is RETRY, the string has changed representation, and we + // must restart from scratch. + // In this case, it means we must make sure we are prepared to handle + // the, potentially, different subject (the string can switch between + // being internal and external, and even between being ASCII and UC16, + // but the characters are always the same). + IrregexpPrepare(regexp, subject); + is_ascii = subject->IsOneByteRepresentationUnderneath(); + } while (true); + UNREACHABLE(); + return RE_EXCEPTION; +#else // V8_INTERPRETED_REGEXP + + ASSERT(output_size >= IrregexpNumberOfRegisters(*irregexp)); + // We must have done EnsureCompiledIrregexp, so we can get the number of + // registers. + int number_of_capture_registers = + (IrregexpNumberOfCaptures(*irregexp) + 1) * 2; + int32_t* raw_output = &output[number_of_capture_registers]; + // We do not touch the actual capture result registers until we know there + // has been a match so that we can use those capture results to set the + // last match info. + for (int i = number_of_capture_registers - 1; i >= 0; i--) { + raw_output[i] = -1; + } + Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_ascii), isolate); + + IrregexpResult result = IrregexpInterpreter::Match(isolate, + byte_codes, + subject, + raw_output, + index); + if (result == RE_SUCCESS) { + // Copy capture results to the start of the registers array. + OS::MemCopy( + output, raw_output, number_of_capture_registers * sizeof(int32_t)); + } + if (result == RE_EXCEPTION) { + ASSERT(!isolate->has_pending_exception()); + isolate->StackOverflow(); + } + return result; +#endif // V8_INTERPRETED_REGEXP +} + + +Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp, + Handle<String> subject, + int previous_index, + Handle<JSArray> last_match_info) { + Isolate* isolate = regexp->GetIsolate(); + ASSERT_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); + + // Prepare space for the return values. +#if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG) + if (FLAG_trace_regexp_bytecodes) { + String* pattern = regexp->Pattern(); + PrintF("\n\nRegexp match: /%s/\n\n", *(pattern->ToCString())); + PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString())); + } +#endif + int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); + if (required_registers < 0) { + // Compiling failed with an exception. + ASSERT(isolate->has_pending_exception()); + return Handle<Object>::null(); + } + + int32_t* output_registers = NULL; + if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) { + output_registers = NewArray<int32_t>(required_registers); + } + SmartArrayPointer<int32_t> auto_release(output_registers); + if (output_registers == NULL) { + output_registers = isolate->jsregexp_static_offsets_vector(); + } + + int res = RegExpImpl::IrregexpExecRaw( + regexp, subject, previous_index, output_registers, required_registers); + if (res == RE_SUCCESS) { + int capture_count = + IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())); + return SetLastMatchInfo( + last_match_info, subject, capture_count, output_registers); + } + if (res == RE_EXCEPTION) { + ASSERT(isolate->has_pending_exception()); + return Handle<Object>::null(); + } + ASSERT(res == RE_FAILURE); + return isolate->factory()->null_value(); +} + + +Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info, + Handle<String> subject, + int capture_count, + int32_t* match) { + ASSERT(last_match_info->HasFastObjectElements()); + int capture_register_count = (capture_count + 1) * 2; + last_match_info->EnsureSize(capture_register_count + kLastMatchOverhead); + DisallowHeapAllocation no_allocation; + FixedArray* array = FixedArray::cast(last_match_info->elements()); + if (match != NULL) { + for (int i = 0; i < capture_register_count; i += 2) { + SetCapture(array, i, match[i]); + SetCapture(array, i + 1, match[i + 1]); + } + } + SetLastCaptureCount(array, capture_register_count); + SetLastSubject(array, *subject); + SetLastInput(array, *subject); + return last_match_info; +} + + +RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp, + Handle<String> subject, + bool is_global, + Isolate* isolate) + : register_array_(NULL), + register_array_size_(0), + regexp_(regexp), + subject_(subject) { +#ifdef V8_INTERPRETED_REGEXP + bool interpreted = true; +#else + bool interpreted = false; +#endif // V8_INTERPRETED_REGEXP + + if (regexp_->TypeTag() == JSRegExp::ATOM) { + static const int kAtomRegistersPerMatch = 2; + registers_per_match_ = kAtomRegistersPerMatch; + // There is no distinction between interpreted and native for atom regexps. + interpreted = false; + } else { + registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_); + if (registers_per_match_ < 0) { + num_matches_ = -1; // Signal exception. + return; + } + } + + if (is_global && !interpreted) { + register_array_size_ = + Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize); + max_matches_ = register_array_size_ / registers_per_match_; + } else { + // Global loop in interpreted regexp is not implemented. We choose + // the size of the offsets vector so that it can only store one match. + register_array_size_ = registers_per_match_; + max_matches_ = 1; + } + + if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { + register_array_ = NewArray<int32_t>(register_array_size_); + } else { + register_array_ = isolate->jsregexp_static_offsets_vector(); + } + + // Set state so that fetching the results the first time triggers a call + // to the compiled regexp. + current_match_index_ = max_matches_ - 1; + num_matches_ = max_matches_; + ASSERT(registers_per_match_ >= 2); // Each match has at least one capture. + ASSERT_GE(register_array_size_, registers_per_match_); + int32_t* last_match = + ®ister_array_[current_match_index_ * registers_per_match_]; + last_match[0] = -1; + last_match[1] = 0; +} + + +// ------------------------------------------------------------------- +// Implementation of the Irregexp regular expression engine. +// +// The Irregexp regular expression engine is intended to be a complete +// implementation of ECMAScript regular expressions. It generates either +// bytecodes or native code. + +// The Irregexp regexp engine is structured in three steps. +// 1) The parser generates an abstract syntax tree. See ast.cc. +// 2) From the AST a node network is created. The nodes are all +// subclasses of RegExpNode. The nodes represent states when +// executing a regular expression. Several optimizations are +// performed on the node network. +// 3) From the nodes we generate either byte codes or native code +// that can actually execute the regular expression (perform +// the search). The code generation step is described in more +// detail below. + +// Code generation. +// +// The nodes are divided into four main categories. +// * Choice nodes +// These represent places where the regular expression can +// match in more than one way. For example on entry to an +// alternation (foo|bar) or a repetition (*, +, ? or {}). +// * Action nodes +// These represent places where some action should be +// performed. Examples include recording the current position +// in the input string to a register (in order to implement +// captures) or other actions on register for example in order +// to implement the counters needed for {} repetitions. +// * Matching nodes +// These attempt to match some element part of the input string. +// Examples of elements include character classes, plain strings +// or back references. +// * End nodes +// These are used to implement the actions required on finding +// a successful match or failing to find a match. +// +// The code generated (whether as byte codes or native code) maintains +// some state as it runs. This consists of the following elements: +// +// * The capture registers. Used for string captures. +// * Other registers. Used for counters etc. +// * The current position. +// * The stack of backtracking information. Used when a matching node +// fails to find a match and needs to try an alternative. +// +// Conceptual regular expression execution model: +// +// There is a simple conceptual model of regular expression execution +// which will be presented first. The actual code generated is a more +// efficient simulation of the simple conceptual model: +// +// * Choice nodes are implemented as follows: +// For each choice except the last { +// push current position +// push backtrack code location +// <generate code to test for choice> +// backtrack code location: +// pop current position +// } +// <generate code to test for last choice> +// +// * Actions nodes are generated as follows +// <push affected registers on backtrack stack> +// <generate code to perform action> +// push backtrack code location +// <generate code to test for following nodes> +// backtrack code location: +// <pop affected registers to restore their state> +// <pop backtrack location from stack and go to it> +// +// * Matching nodes are generated as follows: +// if input string matches at current position +// update current position +// <generate code to test for following nodes> +// else +// <pop backtrack location from stack and go to it> +// +// Thus it can be seen that the current position is saved and restored +// by the choice nodes, whereas the registers are saved and restored by +// by the action nodes that manipulate them. +// +// The other interesting aspect of this model is that nodes are generated +// at the point where they are needed by a recursive call to Emit(). If +// the node has already been code generated then the Emit() call will +// generate a jump to the previously generated code instead. In order to +// limit recursion it is possible for the Emit() function to put the node +// on a work list for later generation and instead generate a jump. The +// destination of the jump is resolved later when the code is generated. +// +// Actual regular expression code generation. +// +// Code generation is actually more complicated than the above. In order +// to improve the efficiency of the generated code some optimizations are +// performed +// +// * Choice nodes have 1-character lookahead. +// A choice node looks at the following character and eliminates some of +// the choices immediately based on that character. This is not yet +// implemented. +// * Simple greedy loops store reduced backtracking information. +// A quantifier like /.*foo/m will greedily match the whole input. It will +// then need to backtrack to a point where it can match "foo". The naive +// implementation of this would push each character position onto the +// backtracking stack, then pop them off one by one. This would use space +// proportional to the length of the input string. However since the "." +// can only match in one way and always has a constant length (in this case +// of 1) it suffices to store the current position on the top of the stack +// once. Matching now becomes merely incrementing the current position and +// backtracking becomes decrementing the current position and checking the +// result against the stored current position. This is faster and saves +// space. +// * The current state is virtualized. +// This is used to defer expensive operations until it is clear that they +// are needed and to generate code for a node more than once, allowing +// specialized an efficient versions of the code to be created. This is +// explained in the section below. +// +// Execution state virtualization. +// +// Instead of emitting code, nodes that manipulate the state can record their +// manipulation in an object called the Trace. The Trace object can record a +// current position offset, an optional backtrack code location on the top of +// the virtualized backtrack stack and some register changes. When a node is +// to be emitted it can flush the Trace or update it. Flushing the Trace +// will emit code to bring the actual state into line with the virtual state. +// Avoiding flushing the state can postpone some work (e.g. updates of capture +// registers). Postponing work can save time when executing the regular +// expression since it may be found that the work never has to be done as a +// failure to match can occur. In addition it is much faster to jump to a +// known backtrack code location than it is to pop an unknown backtrack +// location from the stack and jump there. +// +// The virtual state found in the Trace affects code generation. For example +// the virtual state contains the difference between the actual current +// position and the virtual current position, and matching code needs to use +// this offset to attempt a match in the correct location of the input +// string. Therefore code generated for a non-trivial trace is specialized +// to that trace. The code generator therefore has the ability to generate +// code for each node several times. In order to limit the size of the +// generated code there is an arbitrary limit on how many specialized sets of +// code may be generated for a given node. If the limit is reached, the +// trace is flushed and a generic version of the code for a node is emitted. +// This is subsequently used for that node. The code emitted for non-generic +// trace is not recorded in the node and so it cannot currently be reused in +// the event that code generation is requested for an identical trace. + + +void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { + UNREACHABLE(); +} + + +void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { + text->AddElement(TextElement::Atom(this), zone); +} + + +void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { + text->AddElement(TextElement::CharClass(this), zone); +} + + +void RegExpText::AppendToText(RegExpText* text, Zone* zone) { + for (int i = 0; i < elements()->length(); i++) + text->AddElement(elements()->at(i), zone); +} + + +TextElement TextElement::Atom(RegExpAtom* atom) { + TextElement result = TextElement(ATOM); + result.data.u_atom = atom; + return result; +} + + +TextElement TextElement::CharClass( + RegExpCharacterClass* char_class) { + TextElement result = TextElement(CHAR_CLASS); + result.data.u_char_class = char_class; + return result; +} + + +int TextElement::length() { + if (text_type == ATOM) { + return data.u_atom->length(); + } else { + ASSERT(text_type == CHAR_CLASS); + return 1; + } +} + + +DispatchTable* ChoiceNode::GetTable(bool ignore_case) { + if (table_ == NULL) { + table_ = new(zone()) DispatchTable(zone()); + DispatchTableConstructor cons(table_, ignore_case, zone()); + cons.BuildTable(this); + } + return table_; +} + + +class FrequencyCollator { + public: + FrequencyCollator() : total_samples_(0) { + for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { + frequencies_[i] = CharacterFrequency(i); + } + } + + void CountCharacter(int character) { + int index = (character & RegExpMacroAssembler::kTableMask); + frequencies_[index].Increment(); + total_samples_++; + } + + // Does not measure in percent, but rather per-128 (the table size from the + // regexp macro assembler). + int Frequency(int in_character) { + ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); + if (total_samples_ < 1) return 1; // Division by zero. + int freq_in_per128 = + (frequencies_[in_character].counter() * 128) / total_samples_; + return freq_in_per128; + } + + private: + class CharacterFrequency { + public: + CharacterFrequency() : counter_(0), character_(-1) { } + explicit CharacterFrequency(int character) + : counter_(0), character_(character) { } + + void Increment() { counter_++; } + int counter() { return counter_; } + int character() { return character_; } + + private: + int counter_; + int character_; + }; + + + private: + CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; + int total_samples_; +}; + + +class RegExpCompiler { + public: + RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii, + Zone* zone); + + int AllocateRegister() { + if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { + reg_exp_too_big_ = true; + return next_register_; + } + return next_register_++; + } + + RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, + RegExpNode* start, + int capture_count, + Handle<String> pattern); + + inline void AddWork(RegExpNode* node) { work_list_->Add(node); } + + static const int kImplementationOffset = 0; + static const int kNumberOfRegistersOffset = 0; + static const int kCodeOffset = 1; + + RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } + EndNode* accept() { return accept_; } + + static const int kMaxRecursion = 100; + inline int recursion_depth() { return recursion_depth_; } + inline void IncrementRecursionDepth() { recursion_depth_++; } + inline void DecrementRecursionDepth() { recursion_depth_--; } + + void SetRegExpTooBig() { reg_exp_too_big_ = true; } + + inline bool ignore_case() { return ignore_case_; } + inline bool ascii() { return ascii_; } + FrequencyCollator* frequency_collator() { return &frequency_collator_; } + + int current_expansion_factor() { return current_expansion_factor_; } + void set_current_expansion_factor(int value) { + current_expansion_factor_ = value; + } + + Zone* zone() const { return zone_; } + + static const int kNoRegister = -1; + + private: + EndNode* accept_; + int next_register_; + List<RegExpNode*>* work_list_; + int recursion_depth_; + RegExpMacroAssembler* macro_assembler_; + bool ignore_case_; + bool ascii_; + bool reg_exp_too_big_; + int current_expansion_factor_; + FrequencyCollator frequency_collator_; + Zone* zone_; +}; + + +class RecursionCheck { + public: + explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { + compiler->IncrementRecursionDepth(); + } + ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } + private: + RegExpCompiler* compiler_; +}; + + +static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { + return RegExpEngine::CompilationResult("RegExp too big"); +} + + +// Attempts to compile the regexp using an Irregexp code generator. Returns +// a fixed array or a null handle depending on whether it succeeded. +RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii, + Zone* zone) + : next_register_(2 * (capture_count + 1)), + work_list_(NULL), + recursion_depth_(0), + ignore_case_(ignore_case), + ascii_(ascii), + reg_exp_too_big_(false), + current_expansion_factor_(1), + frequency_collator_(), + zone_(zone) { + accept_ = new(zone) EndNode(EndNode::ACCEPT, zone); + ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); +} + + +RegExpEngine::CompilationResult RegExpCompiler::Assemble( + RegExpMacroAssembler* macro_assembler, + RegExpNode* start, + int capture_count, + Handle<String> pattern) { + Heap* heap = pattern->GetHeap(); + + bool use_slow_safe_regexp_compiler = false; + if (heap->total_regexp_code_generated() > + RegExpImpl::kRegWxpCompiledLimit && + heap->isolate()->memory_allocator()->SizeExecutable() > + RegExpImpl::kRegExpExecutableMemoryLimit) { + use_slow_safe_regexp_compiler = true; + } + + macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler); + +#ifdef DEBUG + if (FLAG_trace_regexp_assembler) + macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler); + else +#endif + macro_assembler_ = macro_assembler; + + List <RegExpNode*> work_list(0); + work_list_ = &work_list; + Label fail; + macro_assembler_->PushBacktrack(&fail); + Trace new_trace; + start->Emit(this, &new_trace); + macro_assembler_->Bind(&fail); + macro_assembler_->Fail(); + while (!work_list.is_empty()) { + work_list.RemoveLast()->Emit(this, &new_trace); + } + if (reg_exp_too_big_) return IrregexpRegExpTooBig(); + + Handle<HeapObject> code = macro_assembler_->GetCode(pattern); + heap->IncreaseTotalRegexpCodeGenerated(code->Size()); + work_list_ = NULL; +#ifdef DEBUG + if (FLAG_print_code) { + Handle<Code>::cast(code)->Disassemble(*pattern->ToCString()); + } + if (FLAG_trace_regexp_assembler) { + delete macro_assembler_; + } +#endif + return RegExpEngine::CompilationResult(*code, next_register_); +} + + +bool Trace::DeferredAction::Mentions(int that) { + if (action_type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(this)->range(); + return range.Contains(that); + } else { + return reg() == that; + } +} + + +bool Trace::mentions_reg(int reg) { + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) + return true; + } + return false; +} + + +bool Trace::GetStoredPosition(int reg, int* cp_offset) { + ASSERT_EQ(0, *cp_offset); + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) { + if (action->action_type() == ActionNode::STORE_POSITION) { + *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); + return true; + } else { + return false; + } + } + } + return false; +} + + +int Trace::FindAffectedRegisters(OutSet* affected_registers, + Zone* zone) { + int max_register = RegExpCompiler::kNoRegister; + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->action_type() == ActionNode::CLEAR_CAPTURES) { + Interval range = static_cast<DeferredClearCaptures*>(action)->range(); + for (int i = range.from(); i <= range.to(); i++) + affected_registers->Set(i, zone); + if (range.to() > max_register) max_register = range.to(); + } else { + affected_registers->Set(action->reg(), zone); + if (action->reg() > max_register) max_register = action->reg(); + } + } + return max_register; +} + + +void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, + int max_register, + OutSet& registers_to_pop, + OutSet& registers_to_clear) { + for (int reg = max_register; reg >= 0; reg--) { + if (registers_to_pop.Get(reg)) assembler->PopRegister(reg); + else if (registers_to_clear.Get(reg)) { + int clear_to = reg; + while (reg > 0 && registers_to_clear.Get(reg - 1)) { + reg--; + } + assembler->ClearRegisters(reg, clear_to); + } + } +} + + +void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, + int max_register, + OutSet& affected_registers, + OutSet* registers_to_pop, + OutSet* registers_to_clear, + Zone* zone) { + // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. + const int push_limit = (assembler->stack_limit_slack() + 1) / 2; + + // Count pushes performed to force a stack limit check occasionally. + int pushes = 0; + + for (int reg = 0; reg <= max_register; reg++) { + if (!affected_registers.Get(reg)) { + continue; + } + + // The chronologically first deferred action in the trace + // is used to infer the action needed to restore a register + // to its previous state (or not, if it's safe to ignore it). + enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; + DeferredActionUndoType undo_action = IGNORE; + + int value = 0; + bool absolute = false; + bool clear = false; + int store_position = -1; + // This is a little tricky because we are scanning the actions in reverse + // historical order (newest first). + for (DeferredAction* action = actions_; + action != NULL; + action = action->next()) { + if (action->Mentions(reg)) { + switch (action->action_type()) { + case ActionNode::SET_REGISTER: { + Trace::DeferredSetRegister* psr = + static_cast<Trace::DeferredSetRegister*>(action); + if (!absolute) { + value += psr->value(); + absolute = true; + } + // SET_REGISTER is currently only used for newly introduced loop + // counters. They can have a significant previous value if they + // occour in a loop. TODO(lrn): Propagate this information, so + // we can set undo_action to IGNORE if we know there is no value to + // restore. + undo_action = RESTORE; + ASSERT_EQ(store_position, -1); + ASSERT(!clear); + break; + } + case ActionNode::INCREMENT_REGISTER: + if (!absolute) { + value++; + } + ASSERT_EQ(store_position, -1); + ASSERT(!clear); + undo_action = RESTORE; + break; + case ActionNode::STORE_POSITION: { + Trace::DeferredCapture* pc = + static_cast<Trace::DeferredCapture*>(action); + if (!clear && store_position == -1) { + store_position = pc->cp_offset(); + } + + // For captures we know that stores and clears alternate. + // Other register, are never cleared, and if the occur + // inside a loop, they might be assigned more than once. + if (reg <= 1) { + // Registers zero and one, aka "capture zero", is + // always set correctly if we succeed. There is no + // need to undo a setting on backtrack, because we + // will set it again or fail. + undo_action = IGNORE; + } else { + undo_action = pc->is_capture() ? CLEAR : RESTORE; + } + ASSERT(!absolute); + ASSERT_EQ(value, 0); + break; + } + case ActionNode::CLEAR_CAPTURES: { + // Since we're scanning in reverse order, if we've already + // set the position we have to ignore historically earlier + // clearing operations. + if (store_position == -1) { + clear = true; + } + undo_action = RESTORE; + ASSERT(!absolute); + ASSERT_EQ(value, 0); + break; + } + default: + UNREACHABLE(); + break; + } + } + } + // Prepare for the undo-action (e.g., push if it's going to be popped). + if (undo_action == RESTORE) { + pushes++; + RegExpMacroAssembler::StackCheckFlag stack_check = + RegExpMacroAssembler::kNoStackLimitCheck; + if (pushes == push_limit) { + stack_check = RegExpMacroAssembler::kCheckStackLimit; + pushes = 0; + } + + assembler->PushRegister(reg, stack_check); + registers_to_pop->Set(reg, zone); + } else if (undo_action == CLEAR) { + registers_to_clear->Set(reg, zone); + } + // Perform the chronologically last action (or accumulated increment) + // for the register. + if (store_position != -1) { + assembler->WriteCurrentPositionToRegister(reg, store_position); + } else if (clear) { + assembler->ClearRegisters(reg, reg); + } else if (absolute) { + assembler->SetRegister(reg, value); + } else if (value != 0) { + assembler->AdvanceRegister(reg, value); + } + } +} + + +// This is called as we come into a loop choice node and some other tricky +// nodes. It normalizes the state of the code generator to ensure we can +// generate generic code. +void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + ASSERT(!is_trivial()); + + if (actions_ == NULL && backtrack() == NULL) { + // Here we just have some deferred cp advances to fix and we are back to + // a normal situation. We may also have to forget some information gained + // through a quick check that was already performed. + if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); + // Create a new trivial state and generate the node with that. + Trace new_state; + successor->Emit(compiler, &new_state); + return; + } + + // Generate deferred actions here along with code to undo them again. + OutSet affected_registers; + + if (backtrack() != NULL) { + // Here we have a concrete backtrack location. These are set up by choice + // nodes and so they indicate that we have a deferred save of the current + // position which we may need to emit here. + assembler->PushCurrentPosition(); + } + + int max_register = FindAffectedRegisters(&affected_registers, + compiler->zone()); + OutSet registers_to_pop; + OutSet registers_to_clear; + PerformDeferredActions(assembler, + max_register, + affected_registers, + ®isters_to_pop, + ®isters_to_clear, + compiler->zone()); + if (cp_offset_ != 0) { + assembler->AdvanceCurrentPosition(cp_offset_); + } + + // Create a new trivial state and generate the node with that. + Label undo; + assembler->PushBacktrack(&undo); + Trace new_state; + successor->Emit(compiler, &new_state); + + // On backtrack we need to restore state. + assembler->Bind(&undo); + RestoreAffectedRegisters(assembler, + max_register, + registers_to_pop, + registers_to_clear); + if (backtrack() == NULL) { + assembler->Backtrack(); + } else { + assembler->PopCurrentPosition(); + assembler->GoTo(backtrack()); + } +} + + +void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + // Omit flushing the trace. We discard the entire stack frame anyway. + + if (!label()->is_bound()) { + // We are completely independent of the trace, since we ignore it, + // so this code can be used as the generic version. + assembler->Bind(label()); + } + + // Throw away everything on the backtrack stack since the start + // of the negative submatch and restore the character position. + assembler->ReadCurrentPositionFromRegister(current_position_register_); + assembler->ReadStackPointerFromRegister(stack_pointer_register_); + if (clear_capture_count_ > 0) { + // Clear any captures that might have been performed during the success + // of the body of the negative look-ahead. + int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; + assembler->ClearRegisters(clear_capture_start_, clear_capture_end); + } + // Now that we have unwound the stack we find at the top of the stack the + // backtrack that the BeginSubmatch node got. + assembler->Backtrack(); +} + + +void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!label()->is_bound()) { + assembler->Bind(label()); + } + switch (action_) { + case ACCEPT: + assembler->Succeed(); + return; + case BACKTRACK: + assembler->GoTo(trace->backtrack()); + return; + case NEGATIVE_SUBMATCH_SUCCESS: + // This case is handled in a different virtual method. + UNREACHABLE(); + } + UNIMPLEMENTED(); +} + + +void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { + if (guards_ == NULL) + guards_ = new(zone) ZoneList<Guard*>(1, zone); + guards_->Add(guard, zone); +} + + +ActionNode* ActionNode::SetRegister(int reg, + int val, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(SET_REGISTER, on_success); + result->data_.u_store_register.reg = reg; + result->data_.u_store_register.value = val; + return result; +} + + +ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); + result->data_.u_increment_register.reg = reg; + return result; +} + + +ActionNode* ActionNode::StorePosition(int reg, + bool is_capture, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(STORE_POSITION, on_success); + result->data_.u_position_register.reg = reg; + result->data_.u_position_register.is_capture = is_capture; + return result; +} + + +ActionNode* ActionNode::ClearCaptures(Interval range, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); + result->data_.u_clear_captures.range_from = range.from(); + result->data_.u_clear_captures.range_to = range.to(); + return result; +} + + +ActionNode* ActionNode::BeginSubmatch(int stack_reg, + int position_reg, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + return result; +} + + +ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, + int position_reg, + int clear_register_count, + int clear_register_from, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); + result->data_.u_submatch.stack_pointer_register = stack_reg; + result->data_.u_submatch.current_position_register = position_reg; + result->data_.u_submatch.clear_register_count = clear_register_count; + result->data_.u_submatch.clear_register_from = clear_register_from; + return result; +} + + +ActionNode* ActionNode::EmptyMatchCheck(int start_register, + int repetition_register, + int repetition_limit, + RegExpNode* on_success) { + ActionNode* result = + new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); + result->data_.u_empty_match_check.start_register = start_register; + result->data_.u_empty_match_check.repetition_register = repetition_register; + result->data_.u_empty_match_check.repetition_limit = repetition_limit; + return result; +} + + +#define DEFINE_ACCEPT(Type) \ + void Type##Node::Accept(NodeVisitor* visitor) { \ + visitor->Visit##Type(this); \ + } +FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) +#undef DEFINE_ACCEPT + + +void LoopChoiceNode::Accept(NodeVisitor* visitor) { + visitor->VisitLoopChoice(this); +} + + +// ------------------------------------------------------------------- +// Emit code. + + +void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, + Guard* guard, + Trace* trace) { + switch (guard->op()) { + case Guard::LT: + ASSERT(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterGE(guard->reg(), + guard->value(), + trace->backtrack()); + break; + case Guard::GEQ: + ASSERT(!trace->mentions_reg(guard->reg())); + macro_assembler->IfRegisterLT(guard->reg(), + guard->value(), + trace->backtrack()); + break; + } +} + + +// Returns the number of characters in the equivalence class, omitting those +// that cannot occur in the source string because it is ASCII. +static int GetCaseIndependentLetters(Isolate* isolate, + uc16 character, + bool ascii_subject, + unibrow::uchar* letters) { + int length = + isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); + // Unibrow returns 0 or 1 for characters where case independence is + // trivial. + if (length == 0) { + letters[0] = character; + length = 1; + } + if (!ascii_subject || character <= String::kMaxOneByteCharCode) { + return length; + } + // The standard requires that non-ASCII characters cannot have ASCII + // character codes in their equivalence class. + return 0; +} + + +static inline bool EmitSimpleCharacter(Isolate* isolate, + RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + bool bound_checked = false; + if (!preloaded) { + assembler->LoadCurrentCharacter( + cp_offset, + on_failure, + check); + bound_checked = true; + } + assembler->CheckNotCharacter(c, on_failure); + return bound_checked; +} + + +// Only emits non-letters (things that don't have case). Only used for case +// independent matches. +static inline bool EmitAtomNonLetter(Isolate* isolate, + RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(isolate, c, ascii, chars); + if (length < 1) { + // This can't match. Must be an ASCII subject and a non-ASCII character. + // We do not need to do anything since the ASCII pass already handled this. + return false; // Bounds not checked. + } + bool checked = false; + // We handle the length > 1 case in a later pass. + if (length == 1) { + if (ascii && c > String::kMaxOneByteCharCodeU) { + // Can't match - see above. + return false; // Bounds not checked. + } + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + checked = check; + } + macro_assembler->CheckNotCharacter(c, on_failure); + } + return checked; +} + + +static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, + bool ascii, + uc16 c1, + uc16 c2, + Label* on_failure) { + uc16 char_mask; + if (ascii) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + uc16 exor = c1 ^ c2; + // Check whether exor has only one bit set. + if (((exor - 1) & exor) == 0) { + // If c1 and c2 differ only by one bit. + // Ecma262UnCanonicalize always gives the highest number last. + ASSERT(c2 > c1); + uc16 mask = char_mask ^ exor; + macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); + return true; + } + ASSERT(c2 > c1); + uc16 diff = c2 - c1; + if (((diff - 1) & diff) == 0 && c1 >= diff) { + // If the characters differ by 2^n but don't differ by one bit then + // subtract the difference from the found character, then do the or + // trick. We avoid the theoretical case where negative numbers are + // involved in order to simplify code generation. + uc16 mask = char_mask ^ diff; + macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, + diff, + mask, + on_failure); + return true; + } + return false; +} + + +typedef bool EmitCharacterFunction(Isolate* isolate, + RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded); + +// Only emits letters (things that have case). Only used for case independent +// matches. +static inline bool EmitAtomLetter(Isolate* isolate, + RegExpCompiler* compiler, + uc16 c, + Label* on_failure, + int cp_offset, + bool check, + bool preloaded) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(isolate, c, ascii, chars); + if (length <= 1) return false; + // We may not need to check against the end of the input string + // if this character lies before a character that matched. + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); + } + Label ok; + ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); + switch (length) { + case 2: { + if (ShortCutEmitCharacterPair(macro_assembler, + ascii, + chars[0], + chars[1], + on_failure)) { + } else { + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckNotCharacter(chars[1], on_failure); + macro_assembler->Bind(&ok); + } + break; + } + case 4: + macro_assembler->CheckCharacter(chars[3], &ok); + // Fall through! + case 3: + macro_assembler->CheckCharacter(chars[0], &ok); + macro_assembler->CheckCharacter(chars[1], &ok); + macro_assembler->CheckNotCharacter(chars[2], on_failure); + macro_assembler->Bind(&ok); + break; + default: + UNREACHABLE(); + break; + } + return true; +} + + +static void EmitBoundaryTest(RegExpMacroAssembler* masm, + int border, + Label* fall_through, + Label* above_or_equal, + Label* below) { + if (below != fall_through) { + masm->CheckCharacterLT(border, below); + if (above_or_equal != fall_through) masm->GoTo(above_or_equal); + } else { + masm->CheckCharacterGT(border - 1, above_or_equal); + } +} + + +static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, + int first, + int last, + Label* fall_through, + Label* in_range, + Label* out_of_range) { + if (in_range == fall_through) { + if (first == last) { + masm->CheckNotCharacter(first, out_of_range); + } else { + masm->CheckCharacterNotInRange(first, last, out_of_range); + } + } else { + if (first == last) { + masm->CheckCharacter(first, in_range); + } else { + masm->CheckCharacterInRange(first, last, in_range); + } + if (out_of_range != fall_through) masm->GoTo(out_of_range); + } +} + + +// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. +// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. +static void EmitUseLookupTable( + RegExpMacroAssembler* masm, + ZoneList<int>* ranges, + int start_index, + int end_index, + int min_char, + Label* fall_through, + Label* even_label, + Label* odd_label) { + static const int kSize = RegExpMacroAssembler::kTableSize; + static const int kMask = RegExpMacroAssembler::kTableMask; + + int base = (min_char & ~kMask); + USE(base); + + // Assert that everything is on one kTableSize page. + for (int i = start_index; i <= end_index; i++) { + ASSERT_EQ(ranges->at(i) & ~kMask, base); + } + ASSERT(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); + + char templ[kSize]; + Label* on_bit_set; + Label* on_bit_clear; + int bit; + if (even_label == fall_through) { + on_bit_set = odd_label; + on_bit_clear = even_label; + bit = 1; + } else { + on_bit_set = even_label; + on_bit_clear = odd_label; + bit = 0; + } + for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { + templ[i] = bit; + } + int j = 0; + bit ^= 1; + for (int i = start_index; i < end_index; i++) { + for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { + templ[j] = bit; + } + bit ^= 1; + } + for (int i = j; i < kSize; i++) { + templ[i] = bit; + } + Factory* factory = Isolate::Current()->factory(); + // TODO(erikcorry): Cache these. + Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED); + for (int i = 0; i < kSize; i++) { + ba->set(i, templ[i]); + } + masm->CheckBitInTable(ba, on_bit_set); + if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); +} + + +static void CutOutRange(RegExpMacroAssembler* masm, + ZoneList<int>* ranges, + int start_index, + int end_index, + int cut_index, + Label* even_label, + Label* odd_label) { + bool odd = (((cut_index - start_index) & 1) == 1); + Label* in_range_label = odd ? odd_label : even_label; + Label dummy; + EmitDoubleBoundaryTest(masm, + ranges->at(cut_index), + ranges->at(cut_index + 1) - 1, + &dummy, + in_range_label, + &dummy); + ASSERT(!dummy.is_linked()); + // Cut out the single range by rewriting the array. This creates a new + // range that is a merger of the two ranges on either side of the one we + // are cutting out. The oddity of the labels is preserved. + for (int j = cut_index; j > start_index; j--) { + ranges->at(j) = ranges->at(j - 1); + } + for (int j = cut_index + 1; j < end_index; j++) { + ranges->at(j) = ranges->at(j + 1); + } +} + + +// Unicode case. Split the search space into kSize spaces that are handled +// with recursion. +static void SplitSearchSpace(ZoneList<int>* ranges, + int start_index, + int end_index, + int* new_start_index, + int* new_end_index, + int* border) { + static const int kSize = RegExpMacroAssembler::kTableSize; + static const int kMask = RegExpMacroAssembler::kTableMask; + + int first = ranges->at(start_index); + int last = ranges->at(end_index) - 1; + + *new_start_index = start_index; + *border = (ranges->at(start_index) & ~kMask) + kSize; + while (*new_start_index < end_index) { + if (ranges->at(*new_start_index) > *border) break; + (*new_start_index)++; + } + // new_start_index is the index of the first edge that is beyond the + // current kSize space. + + // For very large search spaces we do a binary chop search of the non-ASCII + // space instead of just going to the end of the current kSize space. The + // heuristics are complicated a little by the fact that any 128-character + // encoding space can be quickly tested with a table lookup, so we don't + // wish to do binary chop search at a smaller granularity than that. A + // 128-character space can take up a lot of space in the ranges array if, + // for example, we only want to match every second character (eg. the lower + // case characters on some Unicode pages). + int binary_chop_index = (end_index + start_index) / 2; + // The first test ensures that we get to the code that handles the ASCII + // range with a single not-taken branch, speeding up this important + // character range (even non-ASCII charset-based text has spaces and + // punctuation). + if (*border - 1 > String::kMaxOneByteCharCode && // ASCII case. + end_index - start_index > (*new_start_index - start_index) * 2 && + last - first > kSize * 2 && + binary_chop_index > *new_start_index && + ranges->at(binary_chop_index) >= first + 2 * kSize) { + int scan_forward_for_section_border = binary_chop_index;; + int new_border = (ranges->at(binary_chop_index) | kMask) + 1; + + while (scan_forward_for_section_border < end_index) { + if (ranges->at(scan_forward_for_section_border) > new_border) { + *new_start_index = scan_forward_for_section_border; + *border = new_border; + break; + } + scan_forward_for_section_border++; + } + } + + ASSERT(*new_start_index > start_index); + *new_end_index = *new_start_index - 1; + if (ranges->at(*new_end_index) == *border) { + (*new_end_index)--; + } + if (*border >= ranges->at(end_index)) { + *border = ranges->at(end_index); + *new_start_index = end_index; // Won't be used. + *new_end_index = end_index - 1; + } +} + + +// Gets a series of segment boundaries representing a character class. If the +// character is in the range between an even and an odd boundary (counting from +// start_index) then go to even_label, otherwise go to odd_label. We already +// know that the character is in the range of min_char to max_char inclusive. +// Either label can be NULL indicating backtracking. Either label can also be +// equal to the fall_through label. +static void GenerateBranches(RegExpMacroAssembler* masm, + ZoneList<int>* ranges, + int start_index, + int end_index, + uc16 min_char, + uc16 max_char, + Label* fall_through, + Label* even_label, + Label* odd_label) { + int first = ranges->at(start_index); + int last = ranges->at(end_index) - 1; + + ASSERT_LT(min_char, first); + + // Just need to test if the character is before or on-or-after + // a particular character. + if (start_index == end_index) { + EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); + return; + } + + // Another almost trivial case: There is one interval in the middle that is + // different from the end intervals. + if (start_index + 1 == end_index) { + EmitDoubleBoundaryTest( + masm, first, last, fall_through, even_label, odd_label); + return; + } + + // It's not worth using table lookup if there are very few intervals in the + // character class. + if (end_index - start_index <= 6) { + // It is faster to test for individual characters, so we look for those + // first, then try arbitrary ranges in the second round. + static int kNoCutIndex = -1; + int cut = kNoCutIndex; + for (int i = start_index; i < end_index; i++) { + if (ranges->at(i) == ranges->at(i + 1) - 1) { + cut = i; + break; + } + } + if (cut == kNoCutIndex) cut = start_index; + CutOutRange( + masm, ranges, start_index, end_index, cut, even_label, odd_label); + ASSERT_GE(end_index - start_index, 2); + GenerateBranches(masm, + ranges, + start_index + 1, + end_index - 1, + min_char, + max_char, + fall_through, + even_label, + odd_label); + return; + } + + // If there are a lot of intervals in the regexp, then we will use tables to + // determine whether the character is inside or outside the character class. + static const int kBits = RegExpMacroAssembler::kTableSizeBits; + + if ((max_char >> kBits) == (min_char >> kBits)) { + EmitUseLookupTable(masm, + ranges, + start_index, + end_index, + min_char, + fall_through, + even_label, + odd_label); + return; + } + + if ((min_char >> kBits) != (first >> kBits)) { + masm->CheckCharacterLT(first, odd_label); + GenerateBranches(masm, + ranges, + start_index + 1, + end_index, + first, + max_char, + fall_through, + odd_label, + even_label); + return; + } + + int new_start_index = 0; + int new_end_index = 0; + int border = 0; + + SplitSearchSpace(ranges, + start_index, + end_index, + &new_start_index, + &new_end_index, + &border); + + Label handle_rest; + Label* above = &handle_rest; + if (border == last + 1) { + // We didn't find any section that started after the limit, so everything + // above the border is one of the terminal labels. + above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; + ASSERT(new_end_index == end_index - 1); + } + + ASSERT_LE(start_index, new_end_index); + ASSERT_LE(new_start_index, end_index); + ASSERT_LT(start_index, new_start_index); + ASSERT_LT(new_end_index, end_index); + ASSERT(new_end_index + 1 == new_start_index || + (new_end_index + 2 == new_start_index && + border == ranges->at(new_end_index + 1))); + ASSERT_LT(min_char, border - 1); + ASSERT_LT(border, max_char); + ASSERT_LT(ranges->at(new_end_index), border); + ASSERT(border < ranges->at(new_start_index) || + (border == ranges->at(new_start_index) && + new_start_index == end_index && + new_end_index == end_index - 1 && + border == last + 1)); + ASSERT(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); + + masm->CheckCharacterGT(border - 1, above); + Label dummy; + GenerateBranches(masm, + ranges, + start_index, + new_end_index, + min_char, + border - 1, + &dummy, + even_label, + odd_label); + if (handle_rest.is_linked()) { + masm->Bind(&handle_rest); + bool flip = (new_start_index & 1) != (start_index & 1); + GenerateBranches(masm, + ranges, + new_start_index, + end_index, + border, + max_char, + &dummy, + flip ? odd_label : even_label, + flip ? even_label : odd_label); + } +} + + +static void EmitCharClass(RegExpMacroAssembler* macro_assembler, + RegExpCharacterClass* cc, + bool ascii, + Label* on_failure, + int cp_offset, + bool check_offset, + bool preloaded, + Zone* zone) { + ZoneList<CharacterRange>* ranges = cc->ranges(zone); + if (!CharacterRange::IsCanonical(ranges)) { + CharacterRange::Canonicalize(ranges); + } + + int max_char; + if (ascii) { + max_char = String::kMaxOneByteCharCode; + } else { + max_char = String::kMaxUtf16CodeUnit; + } + + int range_count = ranges->length(); + + int last_valid_range = range_count - 1; + while (last_valid_range >= 0) { + CharacterRange& range = ranges->at(last_valid_range); + if (range.from() <= max_char) { + break; + } + last_valid_range--; + } + + if (last_valid_range < 0) { + if (!cc->is_negated()) { + macro_assembler->GoTo(on_failure); + } + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + return; + } + + if (last_valid_range == 0 && + ranges->at(0).IsEverything(max_char)) { + if (cc->is_negated()) { + macro_assembler->GoTo(on_failure); + } else { + // This is a common case hit by non-anchored expressions. + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + } + return; + } + if (last_valid_range == 0 && + !cc->is_negated() && + ranges->at(0).IsEverything(max_char)) { + // This is a common case hit by non-anchored expressions. + if (check_offset) { + macro_assembler->CheckPosition(cp_offset, on_failure); + } + return; + } + + if (!preloaded) { + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); + } + + if (cc->is_standard(zone) && + macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), + on_failure)) { + return; + } + + + // A new list with ascending entries. Each entry is a code unit + // where there is a boundary between code units that are part of + // the class and code units that are not. Normally we insert an + // entry at zero which goes to the failure label, but if there + // was already one there we fall through for success on that entry. + // Subsequent entries have alternating meaning (success/failure). + ZoneList<int>* range_boundaries = + new(zone) ZoneList<int>(last_valid_range, zone); + + bool zeroth_entry_is_failure = !cc->is_negated(); + + for (int i = 0; i <= last_valid_range; i++) { + CharacterRange& range = ranges->at(i); + if (range.from() == 0) { + ASSERT_EQ(i, 0); + zeroth_entry_is_failure = !zeroth_entry_is_failure; + } else { + range_boundaries->Add(range.from(), zone); + } + range_boundaries->Add(range.to() + 1, zone); + } + int end_index = range_boundaries->length() - 1; + if (range_boundaries->at(end_index) > max_char) { + end_index--; + } + + Label fall_through; + GenerateBranches(macro_assembler, + range_boundaries, + 0, // start_index. + end_index, + 0, // min_char. + max_char, + &fall_through, + zeroth_entry_is_failure ? &fall_through : on_failure, + zeroth_entry_is_failure ? on_failure : &fall_through); + macro_assembler->Bind(&fall_through); +} + + +RegExpNode::~RegExpNode() { +} + + +RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, + Trace* trace) { + // If we are generating a greedy loop then don't stop and don't reuse code. + if (trace->stop_node() != NULL) { + return CONTINUE; + } + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->is_trivial()) { + if (label_.is_bound()) { + // We are being asked to generate a generic version, but that's already + // been done so just go to it. + macro_assembler->GoTo(&label_); + return DONE; + } + if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) { + // To avoid too deep recursion we push the node to the work queue and just + // generate a goto here. + compiler->AddWork(this); + macro_assembler->GoTo(&label_); + return DONE; + } + // Generate generic version of the node and bind the label for later use. + macro_assembler->Bind(&label_); + return CONTINUE; + } + + // We are being asked to make a non-generic version. Keep track of how many + // non-generic versions we generate so as not to overdo it. + trace_count_++; + if (FLAG_regexp_optimization && + trace_count_ < kMaxCopiesCodeGenerated && + compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { + return CONTINUE; + } + + // If we get here code has been generated for this node too many times or + // recursion is too deep. Time to switch to a generic version. The code for + // generic versions above can handle deep recursion properly. + trace->Flush(compiler, this); + return DONE; +} + + +int ActionNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + if (budget <= 0) return 0; + if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! + return on_success()->EatsAtLeast(still_to_find, + budget - 1, + not_at_start); +} + + +void ActionNode::FillInBMInfo(int offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + if (action_type_ == BEGIN_SUBMATCH) { + bm->SetRest(offset); + } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { + on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); + } + SaveBMInfo(bm, not_at_start, offset); +} + + +int AssertionNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + if (budget <= 0) return 0; + // If we know we are not at the start and we are asked "how many characters + // will you match if you succeed?" then we can answer anything since false + // implies false. So lets just return the max answer (still_to_find) since + // that won't prevent us from preloading a lot of characters for the other + // branches in the node graph. + if (assertion_type() == AT_START && not_at_start) return still_to_find; + return on_success()->EatsAtLeast(still_to_find, + budget - 1, + not_at_start); +} + + +void AssertionNode::FillInBMInfo(int offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + // Match the behaviour of EatsAtLeast on this node. + if (assertion_type() == AT_START && not_at_start) return; + on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); + SaveBMInfo(bm, not_at_start, offset); +} + + +int BackReferenceNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + if (budget <= 0) return 0; + return on_success()->EatsAtLeast(still_to_find, + budget - 1, + not_at_start); +} + + +int TextNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + int answer = Length(); + if (answer >= still_to_find) return answer; + if (budget <= 0) return answer; + // We are not at start after this node so we set the last argument to 'true'. + return answer + on_success()->EatsAtLeast(still_to_find - answer, + budget - 1, + true); +} + + +int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + if (budget <= 0) return 0; + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = alternatives_->at(1).node(); + return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); +} + + +void NegativeLookaheadChoiceNode::GetQuickCheckDetails( + QuickCheckDetails* details, + RegExpCompiler* compiler, + int filled_in, + bool not_at_start) { + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = alternatives_->at(1).node(); + return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); +} + + +int ChoiceNode::EatsAtLeastHelper(int still_to_find, + int budget, + RegExpNode* ignore_this_node, + bool not_at_start) { + if (budget <= 0) return 0; + int min = 100; + int choice_count = alternatives_->length(); + budget = (budget - 1) / choice_count; + for (int i = 0; i < choice_count; i++) { + RegExpNode* node = alternatives_->at(i).node(); + if (node == ignore_this_node) continue; + int node_eats_at_least = + node->EatsAtLeast(still_to_find, budget, not_at_start); + if (node_eats_at_least < min) min = node_eats_at_least; + if (min == 0) return 0; + } + return min; +} + + +int LoopChoiceNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + return EatsAtLeastHelper(still_to_find, + budget - 1, + loop_node_, + not_at_start); +} + + +int ChoiceNode::EatsAtLeast(int still_to_find, + int budget, + bool not_at_start) { + return EatsAtLeastHelper(still_to_find, + budget, + NULL, + not_at_start); +} + + +// Takes the left-most 1-bit and smears it out, setting all bits to its right. +static inline uint32_t SmearBitsRight(uint32_t v) { + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return v; +} + + +bool QuickCheckDetails::Rationalize(bool asc) { + bool found_useful_op = false; + uint32_t char_mask; + if (asc) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + mask_ = 0; + value_ = 0; + int char_shift = 0; + for (int i = 0; i < characters_; i++) { + Position* pos = &positions_[i]; + if ((pos->mask & String::kMaxOneByteCharCode) != 0) { + found_useful_op = true; + } + mask_ |= (pos->mask & char_mask) << char_shift; + value_ |= (pos->value & char_mask) << char_shift; + char_shift += asc ? 8 : 16; + } + return found_useful_op; +} + + +bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, + Trace* trace, + bool preload_has_checked_bounds, + Label* on_possible_success, + QuickCheckDetails* details, + bool fall_through_on_failure) { + if (details->characters() == 0) return false; + GetQuickCheckDetails( + details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); + if (details->cannot_match()) return false; + if (!details->Rationalize(compiler->ascii())) return false; + ASSERT(details->characters() == 1 || + compiler->macro_assembler()->CanReadUnaligned()); + uint32_t mask = details->mask(); + uint32_t value = details->value(); + + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + + if (trace->characters_preloaded() != details->characters()) { + assembler->LoadCurrentCharacter(trace->cp_offset(), + trace->backtrack(), + !preload_has_checked_bounds, + details->characters()); + } + + + bool need_mask = true; + + if (details->characters() == 1) { + // If number of characters preloaded is 1 then we used a byte or 16 bit + // load so the value is already masked down. + uint32_t char_mask; + if (compiler->ascii()) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + if ((mask & char_mask) == char_mask) need_mask = false; + mask &= char_mask; + } else { + // For 2-character preloads in ASCII mode or 1-character preloads in + // TWO_BYTE mode we also use a 16 bit load with zero extend. + if (details->characters() == 2 && compiler->ascii()) { + if ((mask & 0xffff) == 0xffff) need_mask = false; + } else if (details->characters() == 1 && !compiler->ascii()) { + if ((mask & 0xffff) == 0xffff) need_mask = false; + } else { + if (mask == 0xffffffff) need_mask = false; + } + } + + if (fall_through_on_failure) { + if (need_mask) { + assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); + } else { + assembler->CheckCharacter(value, on_possible_success); + } + } else { + if (need_mask) { + assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); + } else { + assembler->CheckNotCharacter(value, trace->backtrack()); + } + } + return true; +} + + +// Here is the meat of GetQuickCheckDetails (see also the comment on the +// super-class in the .h file). +// +// We iterate along the text object, building up for each character a +// mask and value that can be used to test for a quick failure to match. +// The masks and values for the positions will be combined into a single +// machine word for the current character width in order to be used in +// generating a quick check. +void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + Isolate* isolate = Isolate::Current(); + ASSERT(characters_filled_in < details->characters()); + int characters = details->characters(); + int char_mask; + if (compiler->ascii()) { + char_mask = String::kMaxOneByteCharCode; + } else { + char_mask = String::kMaxUtf16CodeUnit; + } + for (int k = 0; k < elms_->length(); k++) { + TextElement elm = elms_->at(k); + if (elm.text_type == TextElement::ATOM) { + Vector<const uc16> quarks = elm.data.u_atom->data(); + for (int i = 0; i < characters && i < quarks.length(); i++) { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + uc16 c = quarks[i]; + if (c > char_mask) { + // If we expect a non-ASCII character from an ASCII string, + // there is no way we can match. Not even case independent + // matching can turn an ASCII character into non-ASCII or + // vice versa. + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + if (compiler->ignore_case()) { + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters(isolate, c, compiler->ascii(), + chars); + ASSERT(length != 0); // Can only happen if c > char_mask (see above). + if (length == 1) { + // This letter has no case equivalents, so it's nice and simple + // and the mask-compare will determine definitely whether we have + // a match at this character position. + pos->mask = char_mask; + pos->value = c; + pos->determines_perfectly = true; + } else { + uint32_t common_bits = char_mask; + uint32_t bits = chars[0]; + for (int j = 1; j < length; j++) { + uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); + common_bits ^= differing_bits; + bits &= common_bits; + } + // If length is 2 and common bits has only one zero in it then + // our mask and compare instruction will determine definitely + // whether we have a match at this character position. Otherwise + // it can only be an approximate check. + uint32_t one_zero = (common_bits | ~char_mask); + if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { + pos->determines_perfectly = true; + } + pos->mask = common_bits; + pos->value = bits; + } + } else { + // Don't ignore case. Nice simple case where the mask-compare will + // determine definitely whether we have a match at this character + // position. + pos->mask = char_mask; + pos->value = c; + pos->determines_perfectly = true; + } + characters_filled_in++; + ASSERT(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } else { + QuickCheckDetails::Position* pos = + details->positions(characters_filled_in); + RegExpCharacterClass* tree = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = tree->ranges(zone()); + if (tree->is_negated()) { + // A quick check uses multi-character mask and compare. There is no + // useful way to incorporate a negative char class into this scheme + // so we just conservatively create a mask and value that will always + // succeed. + pos->mask = 0; + pos->value = 0; + } else { + int first_range = 0; + while (ranges->at(first_range).from() > char_mask) { + first_range++; + if (first_range == ranges->length()) { + details->set_cannot_match(); + pos->determines_perfectly = false; + return; + } + } + CharacterRange range = ranges->at(first_range); + uc16 from = range.from(); + uc16 to = range.to(); + if (to > char_mask) { + to = char_mask; + } + uint32_t differing_bits = (from ^ to); + // A mask and compare is only perfect if the differing bits form a + // number like 00011111 with one single block of trailing 1s. + if ((differing_bits & (differing_bits + 1)) == 0 && + from + differing_bits == to) { + pos->determines_perfectly = true; + } + uint32_t common_bits = ~SmearBitsRight(differing_bits); + uint32_t bits = (from & common_bits); + for (int i = first_range + 1; i < ranges->length(); i++) { + CharacterRange range = ranges->at(i); + uc16 from = range.from(); + uc16 to = range.to(); + if (from > char_mask) continue; + if (to > char_mask) to = char_mask; + // Here we are combining more ranges into the mask and compare + // value. With each new range the mask becomes more sparse and + // so the chances of a false positive rise. A character class + // with multiple ranges is assumed never to be equivalent to a + // mask and compare operation. + pos->determines_perfectly = false; + uint32_t new_common_bits = (from ^ to); + new_common_bits = ~SmearBitsRight(new_common_bits); + common_bits &= new_common_bits; + bits &= new_common_bits; + uint32_t differing_bits = (from & common_bits) ^ bits; + common_bits ^= differing_bits; + bits &= common_bits; + } + pos->mask = common_bits; + pos->value = bits; + } + characters_filled_in++; + ASSERT(characters_filled_in <= details->characters()); + if (characters_filled_in == details->characters()) { + return; + } + } + } + ASSERT(characters_filled_in != details->characters()); + if (!details->cannot_match()) { + on_success()-> GetQuickCheckDetails(details, + compiler, + characters_filled_in, + true); + } +} + + +void QuickCheckDetails::Clear() { + for (int i = 0; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ = 0; +} + + +void QuickCheckDetails::Advance(int by, bool ascii) { + ASSERT(by >= 0); + if (by >= characters_) { + Clear(); + return; + } + for (int i = 0; i < characters_ - by; i++) { + positions_[i] = positions_[by + i]; + } + for (int i = characters_ - by; i < characters_; i++) { + positions_[i].mask = 0; + positions_[i].value = 0; + positions_[i].determines_perfectly = false; + } + characters_ -= by; + // We could change mask_ and value_ here but we would never advance unless + // they had already been used in a check and they won't be used again because + // it would gain us nothing. So there's no point. +} + + +void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { + ASSERT(characters_ == other->characters_); + if (other->cannot_match_) { + return; + } + if (cannot_match_) { + *this = *other; + return; + } + for (int i = from_index; i < characters_; i++) { + QuickCheckDetails::Position* pos = positions(i); + QuickCheckDetails::Position* other_pos = other->positions(i); + if (pos->mask != other_pos->mask || + pos->value != other_pos->value || + !other_pos->determines_perfectly) { + // Our mask-compare operation will be approximate unless we have the + // exact same operation on both sides of the alternation. + pos->determines_perfectly = false; + } + pos->mask &= other_pos->mask; + pos->value &= pos->mask; + other_pos->value &= pos->mask; + uc16 differing_bits = (pos->value ^ other_pos->value); + pos->mask &= ~differing_bits; + pos->value &= pos->mask; + } +} + + +class VisitMarker { + public: + explicit VisitMarker(NodeInfo* info) : info_(info) { + ASSERT(!info->visited); + info->visited = true; + } + ~VisitMarker() { + info_->visited = false; + } + private: + NodeInfo* info_; +}; + + +RegExpNode* SeqRegExpNode::FilterASCII(int depth, bool ignore_case) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + ASSERT(!info()->visited); + VisitMarker marker(info()); + return FilterSuccessor(depth - 1, ignore_case); +} + + +RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) { + RegExpNode* next = on_success_->FilterASCII(depth - 1, ignore_case); + if (next == NULL) return set_replacement(NULL); + on_success_ = next; + return set_replacement(this); +} + + +// We need to check for the following characters: 0x39c 0x3bc 0x178. +static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { + // TODO(dcarney): this could be a lot more efficient. + return range.Contains(0x39c) || + range.Contains(0x3bc) || range.Contains(0x178); +} + + +static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { + for (int i = 0; i < ranges->length(); i++) { + // TODO(dcarney): this could be a lot more efficient. + if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; + } + return false; +} + + +RegExpNode* TextNode::FilterASCII(int depth, bool ignore_case) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + ASSERT(!info()->visited); + VisitMarker marker(info()); + int element_count = elms_->length(); + for (int i = 0; i < element_count; i++) { + TextElement elm = elms_->at(i); + if (elm.text_type == TextElement::ATOM) { + Vector<const uc16> quarks = elm.data.u_atom->data(); + for (int j = 0; j < quarks.length(); j++) { + uint16_t c = quarks[j]; + if (c <= String::kMaxOneByteCharCode) continue; + if (!ignore_case) return set_replacement(NULL); + // Here, we need to check for characters whose upper and lower cases + // are outside the Latin-1 range. + uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c); + // Character is outside Latin-1 completely + if (converted == 0) return set_replacement(NULL); + // Convert quark to Latin-1 in place. + uint16_t* copy = const_cast<uint16_t*>(quarks.start()); + copy[j] = converted; + } + } else { + ASSERT(elm.text_type == TextElement::CHAR_CLASS); + RegExpCharacterClass* cc = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = cc->ranges(zone()); + if (!CharacterRange::IsCanonical(ranges)) { + CharacterRange::Canonicalize(ranges); + } + // Now they are in order so we only need to look at the first. + int range_count = ranges->length(); + if (cc->is_negated()) { + if (range_count != 0 && + ranges->at(0).from() == 0 && + ranges->at(0).to() >= String::kMaxOneByteCharCode) { + // This will be handled in a later filter. + if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; + return set_replacement(NULL); + } + } else { + if (range_count == 0 || + ranges->at(0).from() > String::kMaxOneByteCharCode) { + // This will be handled in a later filter. + if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; + return set_replacement(NULL); + } + } + } + } + return FilterSuccessor(depth - 1, ignore_case); +} + + +RegExpNode* LoopChoiceNode::FilterASCII(int depth, bool ignore_case) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + { + VisitMarker marker(info()); + + RegExpNode* continue_replacement = + continue_node_->FilterASCII(depth - 1, ignore_case); + // If we can't continue after the loop then there is no sense in doing the + // loop. + if (continue_replacement == NULL) return set_replacement(NULL); + } + + return ChoiceNode::FilterASCII(depth - 1, ignore_case); +} + + +RegExpNode* ChoiceNode::FilterASCII(int depth, bool ignore_case) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + VisitMarker marker(info()); + int choice_count = alternatives_->length(); + + for (int i = 0; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + if (alternative.guards() != NULL && alternative.guards()->length() != 0) { + set_replacement(this); + return this; + } + } + + int surviving = 0; + RegExpNode* survivor = NULL; + for (int i = 0; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + RegExpNode* replacement = + alternative.node()->FilterASCII(depth - 1, ignore_case); + ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK. + if (replacement != NULL) { + alternatives_->at(i).set_node(replacement); + surviving++; + survivor = replacement; + } + } + if (surviving < 2) return set_replacement(survivor); + + set_replacement(this); + if (surviving == choice_count) { + return this; + } + // Only some of the nodes survived the filtering. We need to rebuild the + // alternatives list. + ZoneList<GuardedAlternative>* new_alternatives = + new(zone()) ZoneList<GuardedAlternative>(surviving, zone()); + for (int i = 0; i < choice_count; i++) { + RegExpNode* replacement = + alternatives_->at(i).node()->FilterASCII(depth - 1, ignore_case); + if (replacement != NULL) { + alternatives_->at(i).set_node(replacement); + new_alternatives->Add(alternatives_->at(i), zone()); + } + } + alternatives_ = new_alternatives; + return this; +} + + +RegExpNode* NegativeLookaheadChoiceNode::FilterASCII(int depth, + bool ignore_case) { + if (info()->replacement_calculated) return replacement(); + if (depth < 0) return this; + if (info()->visited) return this; + VisitMarker marker(info()); + // Alternative 0 is the negative lookahead, alternative 1 is what comes + // afterwards. + RegExpNode* node = alternatives_->at(1).node(); + RegExpNode* replacement = node->FilterASCII(depth - 1, ignore_case); + if (replacement == NULL) return set_replacement(NULL); + alternatives_->at(1).set_node(replacement); + + RegExpNode* neg_node = alternatives_->at(0).node(); + RegExpNode* neg_replacement = neg_node->FilterASCII(depth - 1, ignore_case); + // If the negative lookahead is always going to fail then + // we don't need to check it. + if (neg_replacement == NULL) return set_replacement(replacement); + alternatives_->at(0).set_node(neg_replacement); + return set_replacement(this); +} + + +void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + if (body_can_be_zero_length_ || info()->visited) return; + VisitMarker marker(info()); + return ChoiceNode::GetQuickCheckDetails(details, + compiler, + characters_filled_in, + not_at_start); +} + + +void LoopChoiceNode::FillInBMInfo(int offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + if (body_can_be_zero_length_ || budget <= 0) { + bm->SetRest(offset); + SaveBMInfo(bm, not_at_start, offset); + return; + } + ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start); + SaveBMInfo(bm, not_at_start, offset); +} + + +void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int characters_filled_in, + bool not_at_start) { + not_at_start = (not_at_start || not_at_start_); + int choice_count = alternatives_->length(); + ASSERT(choice_count > 0); + alternatives_->at(0).node()->GetQuickCheckDetails(details, + compiler, + characters_filled_in, + not_at_start); + for (int i = 1; i < choice_count; i++) { + QuickCheckDetails new_details(details->characters()); + RegExpNode* node = alternatives_->at(i).node(); + node->GetQuickCheckDetails(&new_details, compiler, + characters_filled_in, + not_at_start); + // Here we merge the quick match details of the two branches. + details->Merge(&new_details, characters_filled_in); + } +} + + +// Check for [0-9A-Z_a-z]. +static void EmitWordCheck(RegExpMacroAssembler* assembler, + Label* word, + Label* non_word, + bool fall_through_on_word) { + if (assembler->CheckSpecialCharacterClass( + fall_through_on_word ? 'w' : 'W', + fall_through_on_word ? non_word : word)) { + // Optimized implementation available. + return; + } + assembler->CheckCharacterGT('z', non_word); + assembler->CheckCharacterLT('0', non_word); + assembler->CheckCharacterGT('a' - 1, word); + assembler->CheckCharacterLT('9' + 1, word); + assembler->CheckCharacterLT('A', non_word); + assembler->CheckCharacterLT('Z' + 1, word); + if (fall_through_on_word) { + assembler->CheckNotCharacter('_', non_word); + } else { + assembler->CheckCharacter('_', word); + } +} + + +// Emit the code to check for a ^ in multiline mode (1-character lookbehind +// that matches newline or the start of input). +static void EmitHat(RegExpCompiler* compiler, + RegExpNode* on_success, + Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + // We will be loading the previous character into the current character + // register. + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + Label ok; + if (new_trace.cp_offset() == 0) { + // The start of input counts as a newline in this context, so skip to + // ok if we are at the start. + assembler->CheckAtStart(&ok); + } + // We already checked that we are not at the start of input so it must be + // OK to load the previous character. + assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, + new_trace.backtrack(), + false); + if (!assembler->CheckSpecialCharacterClass('n', + new_trace.backtrack())) { + // Newline means \n, \r, 0x2028 or 0x2029. + if (!compiler->ascii()) { + assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); + } + assembler->CheckCharacter('\n', &ok); + assembler->CheckNotCharacter('\r', new_trace.backtrack()); + } + assembler->Bind(&ok); + on_success->Emit(compiler, &new_trace); +} + + +// Emit the code to handle \b and \B (word-boundary or non-word-boundary). +void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Trace::TriBool next_is_word_character = Trace::UNKNOWN; + bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); + BoyerMooreLookahead* lookahead = bm_info(not_at_start); + if (lookahead == NULL) { + int eats_at_least = + Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, + kRecursionBudget, + not_at_start)); + if (eats_at_least >= 1) { + BoyerMooreLookahead* bm = + new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); + FillInBMInfo(0, kRecursionBudget, bm, not_at_start); + if (bm->at(0)->is_non_word()) + next_is_word_character = Trace::FALSE_VALUE; + if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; + } + } else { + if (lookahead->at(0)->is_non_word()) + next_is_word_character = Trace::FALSE_VALUE; + if (lookahead->at(0)->is_word()) + next_is_word_character = Trace::TRUE_VALUE; + } + bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); + if (next_is_word_character == Trace::UNKNOWN) { + Label before_non_word; + Label before_word; + if (trace->characters_preloaded() != 1) { + assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); + } + // Fall through on non-word. + EmitWordCheck(assembler, &before_word, &before_non_word, false); + // Next character is not a word character. + assembler->Bind(&before_non_word); + Label ok; + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); + assembler->GoTo(&ok); + + assembler->Bind(&before_word); + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); + assembler->Bind(&ok); + } else if (next_is_word_character == Trace::TRUE_VALUE) { + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); + } else { + ASSERT(next_is_word_character == Trace::FALSE_VALUE); + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); + } +} + + +void AssertionNode::BacktrackIfPrevious( + RegExpCompiler* compiler, + Trace* trace, + AssertionNode::IfPrevious backtrack_if_previous) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + Trace new_trace(*trace); + new_trace.InvalidateCurrentCharacter(); + + Label fall_through, dummy; + + Label* non_word = backtrack_if_previous == kIsNonWord ? + new_trace.backtrack() : + &fall_through; + Label* word = backtrack_if_previous == kIsNonWord ? + &fall_through : + new_trace.backtrack(); + + if (new_trace.cp_offset() == 0) { + // The start of input counts as a non-word character, so the question is + // decided if we are at the start. + assembler->CheckAtStart(non_word); + } + // We already checked that we are not at the start of input so it must be + // OK to load the previous character. + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); + EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); + + assembler->Bind(&fall_through); + on_success()->Emit(compiler, &new_trace); +} + + +void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, + RegExpCompiler* compiler, + int filled_in, + bool not_at_start) { + if (assertion_type_ == AT_START && not_at_start) { + details->set_cannot_match(); + return; + } + return on_success()->GetQuickCheckDetails(details, + compiler, + filled_in, + not_at_start); +} + + +void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + switch (assertion_type_) { + case AT_END: { + Label ok; + assembler->CheckPosition(trace->cp_offset(), &ok); + assembler->GoTo(trace->backtrack()); + assembler->Bind(&ok); + break; + } + case AT_START: { + if (trace->at_start() == Trace::FALSE_VALUE) { + assembler->GoTo(trace->backtrack()); + return; + } + if (trace->at_start() == Trace::UNKNOWN) { + assembler->CheckNotAtStart(trace->backtrack()); + Trace at_start_trace = *trace; + at_start_trace.set_at_start(true); + on_success()->Emit(compiler, &at_start_trace); + return; + } + } + break; + case AFTER_NEWLINE: + EmitHat(compiler, on_success(), trace); + return; + case AT_BOUNDARY: + case AT_NON_BOUNDARY: { + EmitBoundaryCheck(compiler, trace); + return; + } + } + on_success()->Emit(compiler, trace); +} + + +static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { + if (quick_check == NULL) return false; + if (offset >= quick_check->characters()) return false; + return quick_check->positions(offset)->determines_perfectly; +} + + +static void UpdateBoundsCheck(int index, int* checked_up_to) { + if (index > *checked_up_to) { + *checked_up_to = index; + } +} + + +// We call this repeatedly to generate code for each pass over the text node. +// The passes are in increasing order of difficulty because we hope one +// of the first passes will fail in which case we are saved the work of the +// later passes. for example for the case independent regexp /%[asdfghjkl]a/ +// we will check the '%' in the first pass, the case independent 'a' in the +// second pass and the character class in the last pass. +// +// The passes are done from right to left, so for example to test for /bar/ +// we will first test for an 'r' with offset 2, then an 'a' with offset 1 +// and then a 'b' with offset 0. This means we can avoid the end-of-input +// bounds check most of the time. In the example we only need to check for +// end-of-input when loading the putative 'r'. +// +// A slight complication involves the fact that the first character may already +// be fetched into a register by the previous node. In this case we want to +// do the test for that character first. We do this in separate passes. The +// 'preloaded' argument indicates that we are doing such a 'pass'. If such a +// pass has been performed then subsequent passes will have true in +// first_element_checked to indicate that that character does not need to be +// checked again. +// +// In addition to all this we are passed a Trace, which can +// contain an AlternativeGeneration object. In this AlternativeGeneration +// object we can see details of any quick check that was already passed in +// order to get to the code we are now generating. The quick check can involve +// loading characters, which means we do not need to recheck the bounds +// up to the limit the quick check already checked. In addition the quick +// check can have involved a mask and compare operation which may simplify +// or obviate the need for further checks at some character positions. +void TextNode::TextEmitPass(RegExpCompiler* compiler, + TextEmitPassType pass, + bool preloaded, + Trace* trace, + bool first_element_checked, + int* checked_up_to) { + Isolate* isolate = Isolate::Current(); + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + bool ascii = compiler->ascii(); + Label* backtrack = trace->backtrack(); + QuickCheckDetails* quick_check = trace->quick_check_performed(); + int element_count = elms_->length(); + for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { + TextElement elm = elms_->at(i); + int cp_offset = trace->cp_offset() + elm.cp_offset; + if (elm.text_type == TextElement::ATOM) { + Vector<const uc16> quarks = elm.data.u_atom->data(); + for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { + if (first_element_checked && i == 0 && j == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue; + EmitCharacterFunction* emit_function = NULL; + switch (pass) { + case NON_ASCII_MATCH: + ASSERT(ascii); + if (quarks[j] > String::kMaxOneByteCharCode) { + assembler->GoTo(backtrack); + return; + } + break; + case NON_LETTER_CHARACTER_MATCH: + emit_function = &EmitAtomNonLetter; + break; + case SIMPLE_CHARACTER_MATCH: + emit_function = &EmitSimpleCharacter; + break; + case CASE_CHARACTER_MATCH: + emit_function = &EmitAtomLetter; + break; + default: + break; + } + if (emit_function != NULL) { + bool bound_checked = emit_function(isolate, + compiler, + quarks[j], + backtrack, + cp_offset + j, + *checked_up_to < cp_offset + j, + preloaded); + if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); + } + } + } else { + ASSERT_EQ(elm.text_type, TextElement::CHAR_CLASS); + if (pass == CHARACTER_CLASS_MATCH) { + if (first_element_checked && i == 0) continue; + if (DeterminedAlready(quick_check, elm.cp_offset)) continue; + RegExpCharacterClass* cc = elm.data.u_char_class; + EmitCharClass(assembler, + cc, + ascii, + backtrack, + cp_offset, + *checked_up_to < cp_offset, + preloaded, + zone()); + UpdateBoundsCheck(cp_offset, checked_up_to); + } + } + } +} + + +int TextNode::Length() { + TextElement elm = elms_->last(); + ASSERT(elm.cp_offset >= 0); + if (elm.text_type == TextElement::ATOM) { + return elm.cp_offset + elm.data.u_atom->data().length(); + } else { + return elm.cp_offset + 1; + } +} + + +bool TextNode::SkipPass(int int_pass, bool ignore_case) { + TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); + if (ignore_case) { + return pass == SIMPLE_CHARACTER_MATCH; + } else { + return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; + } +} + + +// This generates the code to match a text node. A text node can contain +// straight character sequences (possibly to be matched in a case-independent +// way) and character classes. For efficiency we do not do this in a single +// pass from left to right. Instead we pass over the text node several times, +// emitting code for some character positions every time. See the comment on +// TextEmitPass for details. +void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + return; + } + + if (compiler->ascii()) { + int dummy = 0; + TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy); + } + + bool first_elt_done = false; + int bound_checked_to = trace->cp_offset() - 1; + bound_checked_to += trace->bound_checked_up_to(); + + // If a character is preloaded into the current character register then + // check that now. + if (trace->characters_preloaded() == 1) { + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + if (!SkipPass(pass, compiler->ignore_case())) { + TextEmitPass(compiler, + static_cast<TextEmitPassType>(pass), + true, + trace, + false, + &bound_checked_to); + } + } + first_elt_done = true; + } + + for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { + if (!SkipPass(pass, compiler->ignore_case())) { + TextEmitPass(compiler, + static_cast<TextEmitPassType>(pass), + false, + trace, + first_elt_done, + &bound_checked_to); + } + } + + Trace successor_trace(*trace); + successor_trace.set_at_start(false); + successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler); + RecursionCheck rc(compiler); + on_success()->Emit(compiler, &successor_trace); +} + + +void Trace::InvalidateCurrentCharacter() { + characters_preloaded_ = 0; +} + + +void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { + ASSERT(by > 0); + // We don't have an instruction for shifting the current character register + // down or for using a shifted value for anything so lets just forget that + // we preloaded any characters into it. + characters_preloaded_ = 0; + // Adjust the offsets of the quick check performed information. This + // information is used to find out what we already determined about the + // characters by means of mask and compare. + quick_check_performed_.Advance(by, compiler->ascii()); + cp_offset_ += by; + if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { + compiler->SetRegExpTooBig(); + cp_offset_ = 0; + } + bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); +} + + +void TextNode::MakeCaseIndependent(bool is_ascii) { + int element_count = elms_->length(); + for (int i = 0; i < element_count; i++) { + TextElement elm = elms_->at(i); + if (elm.text_type == TextElement::CHAR_CLASS) { + RegExpCharacterClass* cc = elm.data.u_char_class; + // None of the standard character classes is different in the case + // independent case and it slows us down if we don't know that. + if (cc->is_standard(zone())) continue; + ZoneList<CharacterRange>* ranges = cc->ranges(zone()); + int range_count = ranges->length(); + for (int j = 0; j < range_count; j++) { + ranges->at(j).AddCaseEquivalents(ranges, is_ascii, zone()); + } + } + } +} + + +int TextNode::GreedyLoopTextLength() { + TextElement elm = elms_->at(elms_->length() - 1); + if (elm.text_type == TextElement::CHAR_CLASS) { + return elm.cp_offset + 1; + } else { + return elm.cp_offset + elm.data.u_atom->data().length(); + } +} + + +RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( + RegExpCompiler* compiler) { + if (elms_->length() != 1) return NULL; + TextElement elm = elms_->at(0); + if (elm.text_type != TextElement::CHAR_CLASS) return NULL; + RegExpCharacterClass* node = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = node->ranges(zone()); + if (!CharacterRange::IsCanonical(ranges)) { + CharacterRange::Canonicalize(ranges); + } + if (node->is_negated()) { + return ranges->length() == 0 ? on_success() : NULL; + } + if (ranges->length() != 1) return NULL; + uint32_t max_char; + if (compiler->ascii()) { + max_char = String::kMaxOneByteCharCode; + } else { + max_char = String::kMaxUtf16CodeUnit; + } + return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; +} + + +// Finds the fixed match length of a sequence of nodes that goes from +// this alternative and back to this choice node. If there are variable +// length nodes or other complications in the way then return a sentinel +// value indicating that a greedy loop cannot be constructed. +int ChoiceNode::GreedyLoopTextLengthForAlternative( + GuardedAlternative* alternative) { + int length = 0; + RegExpNode* node = alternative->node(); + // Later we will generate code for all these text nodes using recursion + // so we have to limit the max number. + int recursion_depth = 0; + while (node != this) { + if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { + return kNodeIsTooComplexForGreedyLoops; + } + int node_length = node->GreedyLoopTextLength(); + if (node_length == kNodeIsTooComplexForGreedyLoops) { + return kNodeIsTooComplexForGreedyLoops; + } + length += node_length; + SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); + node = seq_node->on_success(); + } + return length; +} + + +void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { + ASSERT_EQ(loop_node_, NULL); + AddAlternative(alt); + loop_node_ = alt.node(); +} + + +void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { + ASSERT_EQ(continue_node_, NULL); + AddAlternative(alt); + continue_node_ = alt.node(); +} + + +void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + if (trace->stop_node() == this) { + int text_length = + GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); + ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); + // Update the counter-based backtracking info on the stack. This is an + // optimization for greedy loops (see below). + ASSERT(trace->cp_offset() == text_length); + macro_assembler->AdvanceCurrentPosition(text_length); + macro_assembler->GoTo(trace->loop_label()); + return; + } + ASSERT(trace->stop_node() == NULL); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + ChoiceNode::Emit(compiler, trace); +} + + +int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, + int eats_at_least) { + int preload_characters = Min(4, eats_at_least); + if (compiler->macro_assembler()->CanReadUnaligned()) { + bool ascii = compiler->ascii(); + if (ascii) { + if (preload_characters > 4) preload_characters = 4; + // We can't preload 3 characters because there is no machine instruction + // to do that. We can't just load 4 because we could be reading + // beyond the end of the string, which could cause a memory fault. + if (preload_characters == 3) preload_characters = 2; + } else { + if (preload_characters > 2) preload_characters = 2; + } + } else { + if (preload_characters > 1) preload_characters = 1; + } + return preload_characters; +} + + +// This class is used when generating the alternatives in a choice node. It +// records the way the alternative is being code generated. +class AlternativeGeneration: public Malloced { + public: + AlternativeGeneration() + : possible_success(), + expects_preload(false), + after(), + quick_check_details() { } + Label possible_success; + bool expects_preload; + Label after; + QuickCheckDetails quick_check_details; +}; + + +// Creates a list of AlternativeGenerations. If the list has a reasonable +// size then it is on the stack, otherwise the excess is on the heap. +class AlternativeGenerationList { + public: + AlternativeGenerationList(int count, Zone* zone) + : alt_gens_(count, zone) { + for (int i = 0; i < count && i < kAFew; i++) { + alt_gens_.Add(a_few_alt_gens_ + i, zone); + } + for (int i = kAFew; i < count; i++) { + alt_gens_.Add(new AlternativeGeneration(), zone); + } + } + ~AlternativeGenerationList() { + for (int i = kAFew; i < alt_gens_.length(); i++) { + delete alt_gens_[i]; + alt_gens_[i] = NULL; + } + } + + AlternativeGeneration* at(int i) { + return alt_gens_[i]; + } + + private: + static const int kAFew = 10; + ZoneList<AlternativeGeneration*> alt_gens_; + AlternativeGeneration a_few_alt_gens_[kAFew]; +}; + + +// The '2' variant is has inclusive from and exclusive to. +static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, + 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, 0x2028, 0x202A, + 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, 0x10000 }; +static const int kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); + +static const int kWordRanges[] = { + '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; +static const int kWordRangeCount = ARRAY_SIZE(kWordRanges); +static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 }; +static const int kDigitRangeCount = ARRAY_SIZE(kDigitRanges); +static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; +static const int kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges); +static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, + 0x2028, 0x202A, 0x10000 }; +static const int kLineTerminatorRangeCount = ARRAY_SIZE(kLineTerminatorRanges); + + +void BoyerMoorePositionInfo::Set(int character) { + SetInterval(Interval(character, character)); +} + + +void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { + s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); + w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); + d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); + surrogate_ = + AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); + if (interval.to() - interval.from() >= kMapSize - 1) { + if (map_count_ != kMapSize) { + map_count_ = kMapSize; + for (int i = 0; i < kMapSize; i++) map_->at(i) = true; + } + return; + } + for (int i = interval.from(); i <= interval.to(); i++) { + int mod_character = (i & kMask); + if (!map_->at(mod_character)) { + map_count_++; + map_->at(mod_character) = true; + } + if (map_count_ == kMapSize) return; + } +} + + +void BoyerMoorePositionInfo::SetAll() { + s_ = w_ = d_ = kLatticeUnknown; + if (map_count_ != kMapSize) { + map_count_ = kMapSize; + for (int i = 0; i < kMapSize; i++) map_->at(i) = true; + } +} + + +BoyerMooreLookahead::BoyerMooreLookahead( + int length, RegExpCompiler* compiler, Zone* zone) + : length_(length), + compiler_(compiler) { + if (compiler->ascii()) { + max_char_ = String::kMaxOneByteCharCode; + } else { + max_char_ = String::kMaxUtf16CodeUnit; + } + bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); + for (int i = 0; i < length; i++) { + bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone); + } +} + + +// Find the longest range of lookahead that has the fewest number of different +// characters that can occur at a given position. Since we are optimizing two +// different parameters at once this is a tradeoff. +bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { + int biggest_points = 0; + // If more than 32 characters out of 128 can occur it is unlikely that we can + // be lucky enough to step forwards much of the time. + const int kMaxMax = 32; + for (int max_number_of_chars = 4; + max_number_of_chars < kMaxMax; + max_number_of_chars *= 2) { + biggest_points = + FindBestInterval(max_number_of_chars, biggest_points, from, to); + } + if (biggest_points == 0) return false; + return true; +} + + +// Find the highest-points range between 0 and length_ where the character +// information is not too vague. 'Too vague' means that there are more than +// max_number_of_chars that can occur at this position. Calculates the number +// of points as the product of width-of-the-range and +// probability-of-finding-one-of-the-characters, where the probability is +// calculated using the frequency distribution of the sample subject string. +int BoyerMooreLookahead::FindBestInterval( + int max_number_of_chars, int old_biggest_points, int* from, int* to) { + int biggest_points = old_biggest_points; + static const int kSize = RegExpMacroAssembler::kTableSize; + for (int i = 0; i < length_; ) { + while (i < length_ && Count(i) > max_number_of_chars) i++; + if (i == length_) break; + int remembered_from = i; + bool union_map[kSize]; + for (int j = 0; j < kSize; j++) union_map[j] = false; + while (i < length_ && Count(i) <= max_number_of_chars) { + BoyerMoorePositionInfo* map = bitmaps_->at(i); + for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); + i++; + } + int frequency = 0; + for (int j = 0; j < kSize; j++) { + if (union_map[j]) { + // Add 1 to the frequency to give a small per-character boost for + // the cases where our sampling is not good enough and many + // characters have a frequency of zero. This means the frequency + // can theoretically be up to 2*kSize though we treat it mostly as + // a fraction of kSize. + frequency += compiler_->frequency_collator()->Frequency(j) + 1; + } + } + // We use the probability of skipping times the distance we are skipping to + // judge the effectiveness of this. Actually we have a cut-off: By + // dividing by 2 we switch off the skipping if the probability of skipping + // is less than 50%. This is because the multibyte mask-and-compare + // skipping in quickcheck is more likely to do well on this case. + bool in_quickcheck_range = ((i - remembered_from < 4) || + (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2)); + // Called 'probability' but it is only a rough estimate and can actually + // be outside the 0-kSize range. + int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; + int points = (i - remembered_from) * probability; + if (points > biggest_points) { + *from = remembered_from; + *to = i - 1; + biggest_points = points; + } + } + return biggest_points; +} + + +// Take all the characters that will not prevent a successful match if they +// occur in the subject string in the range between min_lookahead and +// max_lookahead (inclusive) measured from the current position. If the +// character at max_lookahead offset is not one of these characters, then we +// can safely skip forwards by the number of characters in the range. +int BoyerMooreLookahead::GetSkipTable(int min_lookahead, + int max_lookahead, + Handle<ByteArray> boolean_skip_table) { + const int kSize = RegExpMacroAssembler::kTableSize; + + const int kSkipArrayEntry = 0; + const int kDontSkipArrayEntry = 1; + + for (int i = 0; i < kSize; i++) { + boolean_skip_table->set(i, kSkipArrayEntry); + } + int skip = max_lookahead + 1 - min_lookahead; + + for (int i = max_lookahead; i >= min_lookahead; i--) { + BoyerMoorePositionInfo* map = bitmaps_->at(i); + for (int j = 0; j < kSize; j++) { + if (map->at(j)) { + boolean_skip_table->set(j, kDontSkipArrayEntry); + } + } + } + + return skip; +} + + +// See comment above on the implementation of GetSkipTable. +bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { + const int kSize = RegExpMacroAssembler::kTableSize; + + int min_lookahead = 0; + int max_lookahead = 0; + + if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false; + + bool found_single_character = false; + int single_character = 0; + for (int i = max_lookahead; i >= min_lookahead; i--) { + BoyerMoorePositionInfo* map = bitmaps_->at(i); + if (map->map_count() > 1 || + (found_single_character && map->map_count() != 0)) { + found_single_character = false; + break; + } + for (int j = 0; j < kSize; j++) { + if (map->at(j)) { + found_single_character = true; + single_character = j; + break; + } + } + } + + int lookahead_width = max_lookahead + 1 - min_lookahead; + + if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { + // The mask-compare can probably handle this better. + return false; + } + + if (found_single_character) { + Label cont, again; + masm->Bind(&again); + masm->LoadCurrentCharacter(max_lookahead, &cont, true); + if (max_char_ > kSize) { + masm->CheckCharacterAfterAnd(single_character, + RegExpMacroAssembler::kTableMask, + &cont); + } else { + masm->CheckCharacter(single_character, &cont); + } + masm->AdvanceCurrentPosition(lookahead_width); + masm->GoTo(&again); + masm->Bind(&cont); + return true; + } + + Factory* factory = Isolate::Current()->factory(); + Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED); + int skip_distance = GetSkipTable( + min_lookahead, max_lookahead, boolean_skip_table); + ASSERT(skip_distance != 0); + + Label cont, again; + masm->Bind(&again); + masm->LoadCurrentCharacter(max_lookahead, &cont, true); + masm->CheckBitInTable(boolean_skip_table, &cont); + masm->AdvanceCurrentPosition(skip_distance); + masm->GoTo(&again); + masm->Bind(&cont); + + return true; +} + + +/* Code generation for choice nodes. + * + * We generate quick checks that do a mask and compare to eliminate a + * choice. If the quick check succeeds then it jumps to the continuation to + * do slow checks and check subsequent nodes. If it fails (the common case) + * it falls through to the next choice. + * + * Here is the desired flow graph. Nodes directly below each other imply + * fallthrough. Alternatives 1 and 2 have quick checks. Alternative + * 3 doesn't have a quick check so we have to call the slow check. + * Nodes are marked Qn for quick checks and Sn for slow checks. The entire + * regexp continuation is generated directly after the Sn node, up to the + * next GoTo if we decide to reuse some already generated code. Some + * nodes expect preload_characters to be preloaded into the current + * character register. R nodes do this preloading. Vertices are marked + * F for failures and S for success (possible success in the case of quick + * nodes). L, V, < and > are used as arrow heads. + * + * ----------> R + * | + * V + * Q1 -----> S1 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * Q2 -----> S2 + * | S / + * F| / + * | F/ + * | / + * | R + * | / + * V L + * S3 + * | + * F| + * | + * R + * | + * backtrack V + * <----------Q4 + * \ F | + * \ |S + * \ F V + * \-----S4 + * + * For greedy loops we reverse our expectation and expect to match rather + * than fail. Therefore we want the loop code to look like this (U is the + * unwind code that steps back in the greedy loop). The following alternatives + * look the same as above. + * _____ + * / \ + * V | + * ----------> S1 | + * /| | + * / |S | + * F/ \_____/ + * / + * |<----------- + * | \ + * V \ + * Q2 ---> S2 \ + * | S / | + * F| / | + * | F/ | + * | / | + * | R | + * | / | + * F VL | + * <------U | + * back |S | + * \______________/ + */ + +void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + int choice_count = alternatives_->length(); +#ifdef DEBUG + for (int i = 0; i < choice_count - 1; i++) { + GuardedAlternative alternative = alternatives_->at(i); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + for (int j = 0; j < guard_count; j++) { + ASSERT(!trace->mentions_reg(guards->at(j)->reg())); + } + } +#endif + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + int new_flush_budget = trace->flush_budget() / choice_count; + if (trace->flush_budget() == 0 && trace->actions() != NULL) { + trace->Flush(compiler, this); + return; + } + + RecursionCheck rc(compiler); + + Trace* current_trace = trace; + + int text_length = GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); + bool greedy_loop = false; + Label greedy_loop_label; + Trace counter_backtrack_trace; + counter_backtrack_trace.set_backtrack(&greedy_loop_label); + if (not_at_start()) counter_backtrack_trace.set_at_start(false); + + if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { + // Here we have special handling for greedy loops containing only text nodes + // and other simple nodes. These are handled by pushing the current + // position on the stack and then incrementing the current position each + // time around the switch. On backtrack we decrement the current position + // and check it against the pushed value. This avoids pushing backtrack + // information for each iteration of the loop, which could take up a lot of + // space. + greedy_loop = true; + ASSERT(trace->stop_node() == NULL); + macro_assembler->PushCurrentPosition(); + current_trace = &counter_backtrack_trace; + Label greedy_match_failed; + Trace greedy_match_trace; + if (not_at_start()) greedy_match_trace.set_at_start(false); + greedy_match_trace.set_backtrack(&greedy_match_failed); + Label loop_label; + macro_assembler->Bind(&loop_label); + greedy_match_trace.set_stop_node(this); + greedy_match_trace.set_loop_label(&loop_label); + alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); + macro_assembler->Bind(&greedy_match_failed); + } + + Label second_choice; // For use in greedy matches. + macro_assembler->Bind(&second_choice); + + int first_normal_choice = greedy_loop ? 1 : 0; + + bool not_at_start = current_trace->at_start() == Trace::FALSE_VALUE; + const int kEatsAtLeastNotYetInitialized = -1; + int eats_at_least = kEatsAtLeastNotYetInitialized; + + bool skip_was_emitted = false; + + if (!greedy_loop && choice_count == 2) { + GuardedAlternative alt1 = alternatives_->at(1); + if (alt1.guards() == NULL || alt1.guards()->length() == 0) { + RegExpNode* eats_anything_node = alt1.node(); + if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) == + this) { + // At this point we know that we are at a non-greedy loop that will eat + // any character one at a time. Any non-anchored regexp has such a + // loop prepended to it in order to find where it starts. We look for + // a pattern of the form ...abc... where we can look 6 characters ahead + // and step forwards 3 if the character is not one of abc. Abc need + // not be atoms, they can be any reasonably limited character class or + // small alternation. + ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes. + BoyerMooreLookahead* lookahead = bm_info(not_at_start); + if (lookahead == NULL) { + eats_at_least = Min(kMaxLookaheadForBoyerMoore, + EatsAtLeast(kMaxLookaheadForBoyerMoore, + kRecursionBudget, + not_at_start)); + if (eats_at_least >= 1) { + BoyerMooreLookahead* bm = + new(zone()) BoyerMooreLookahead(eats_at_least, + compiler, + zone()); + GuardedAlternative alt0 = alternatives_->at(0); + alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, not_at_start); + skip_was_emitted = bm->EmitSkipInstructions(macro_assembler); + } + } else { + skip_was_emitted = lookahead->EmitSkipInstructions(macro_assembler); + } + } + } + } + + if (eats_at_least == kEatsAtLeastNotYetInitialized) { + // Save some time by looking at most one machine word ahead. + eats_at_least = + EatsAtLeast(compiler->ascii() ? 4 : 2, kRecursionBudget, not_at_start); + } + int preload_characters = CalculatePreloadCharacters(compiler, eats_at_least); + + bool preload_is_current = !skip_was_emitted && + (current_trace->characters_preloaded() == preload_characters); + bool preload_has_checked_bounds = preload_is_current; + + AlternativeGenerationList alt_gens(choice_count, zone()); + + // For now we just call all choices one after the other. The idea ultimately + // is to use the Dispatch table to try only the relevant ones. + for (int i = first_normal_choice; i < choice_count; i++) { + GuardedAlternative alternative = alternatives_->at(i); + AlternativeGeneration* alt_gen = alt_gens.at(i); + alt_gen->quick_check_details.set_characters(preload_characters); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + Trace new_trace(*current_trace); + new_trace.set_characters_preloaded(preload_is_current ? + preload_characters : + 0); + if (preload_has_checked_bounds) { + new_trace.set_bound_checked_up_to(preload_characters); + } + new_trace.quick_check_performed()->Clear(); + if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); + alt_gen->expects_preload = preload_is_current; + bool generate_full_check_inline = false; + if (FLAG_regexp_optimization && + try_to_emit_quick_check_for_alternative(i) && + alternative.node()->EmitQuickCheck(compiler, + &new_trace, + preload_has_checked_bounds, + &alt_gen->possible_success, + &alt_gen->quick_check_details, + i < choice_count - 1)) { + // Quick check was generated for this choice. + preload_is_current = true; + preload_has_checked_bounds = true; + // On the last choice in the ChoiceNode we generated the quick + // check to fall through on possible success. So now we need to + // generate the full check inline. + if (i == choice_count - 1) { + macro_assembler->Bind(&alt_gen->possible_success); + new_trace.set_quick_check_performed(&alt_gen->quick_check_details); + new_trace.set_characters_preloaded(preload_characters); + new_trace.set_bound_checked_up_to(preload_characters); + generate_full_check_inline = true; + } + } else if (alt_gen->quick_check_details.cannot_match()) { + if (i == choice_count - 1 && !greedy_loop) { + macro_assembler->GoTo(trace->backtrack()); + } + continue; + } else { + // No quick check was generated. Put the full code here. + // If this is not the first choice then there could be slow checks from + // previous cases that go here when they fail. There's no reason to + // insist that they preload characters since the slow check we are about + // to generate probably can't use it. + if (i != first_normal_choice) { + alt_gen->expects_preload = false; + new_trace.InvalidateCurrentCharacter(); + } + if (i < choice_count - 1) { + new_trace.set_backtrack(&alt_gen->after); + } + generate_full_check_inline = true; + } + if (generate_full_check_inline) { + if (new_trace.actions() != NULL) { + new_trace.set_flush_budget(new_flush_budget); + } + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &new_trace); + } + alternative.node()->Emit(compiler, &new_trace); + preload_is_current = false; + } + macro_assembler->Bind(&alt_gen->after); + } + if (greedy_loop) { + macro_assembler->Bind(&greedy_loop_label); + // If we have unwound to the bottom then backtrack. + macro_assembler->CheckGreedyLoop(trace->backtrack()); + // Otherwise try the second priority at an earlier position. + macro_assembler->AdvanceCurrentPosition(-text_length); + macro_assembler->GoTo(&second_choice); + } + + // At this point we need to generate slow checks for the alternatives where + // the quick check was inlined. We can recognize these because the associated + // label was bound. + for (int i = first_normal_choice; i < choice_count - 1; i++) { + AlternativeGeneration* alt_gen = alt_gens.at(i); + Trace new_trace(*current_trace); + // If there are actions to be flushed we have to limit how many times + // they are flushed. Take the budget of the parent trace and distribute + // it fairly amongst the children. + if (new_trace.actions() != NULL) { + new_trace.set_flush_budget(new_flush_budget); + } + EmitOutOfLineContinuation(compiler, + &new_trace, + alternatives_->at(i), + alt_gen, + preload_characters, + alt_gens.at(i + 1)->expects_preload); + } +} + + +void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, + Trace* trace, + GuardedAlternative alternative, + AlternativeGeneration* alt_gen, + int preload_characters, + bool next_expects_preload) { + if (!alt_gen->possible_success.is_linked()) return; + + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); + macro_assembler->Bind(&alt_gen->possible_success); + Trace out_of_line_trace(*trace); + out_of_line_trace.set_characters_preloaded(preload_characters); + out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); + if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); + ZoneList<Guard*>* guards = alternative.guards(); + int guard_count = (guards == NULL) ? 0 : guards->length(); + if (next_expects_preload) { + Label reload_current_char; + out_of_line_trace.set_backtrack(&reload_current_char); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + macro_assembler->Bind(&reload_current_char); + // Reload the current character, since the next quick check expects that. + // We don't need to check bounds here because we only get into this + // code through a quick check which already did the checked load. + macro_assembler->LoadCurrentCharacter(trace->cp_offset(), + NULL, + false, + preload_characters); + macro_assembler->GoTo(&(alt_gen->after)); + } else { + out_of_line_trace.set_backtrack(&(alt_gen->after)); + for (int j = 0; j < guard_count; j++) { + GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); + } + alternative.node()->Emit(compiler, &out_of_line_trace); + } +} + + +void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + switch (action_type_) { + case STORE_POSITION: { + Trace::DeferredCapture + new_capture(data_.u_position_register.reg, + data_.u_position_register.is_capture, + trace); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case INCREMENT_REGISTER: { + Trace::DeferredIncrementRegister + new_increment(data_.u_increment_register.reg); + Trace new_trace = *trace; + new_trace.add_action(&new_increment); + on_success()->Emit(compiler, &new_trace); + break; + } + case SET_REGISTER: { + Trace::DeferredSetRegister + new_set(data_.u_store_register.reg, data_.u_store_register.value); + Trace new_trace = *trace; + new_trace.add_action(&new_set); + on_success()->Emit(compiler, &new_trace); + break; + } + case CLEAR_CAPTURES: { + Trace::DeferredClearCaptures + new_capture(Interval(data_.u_clear_captures.range_from, + data_.u_clear_captures.range_to)); + Trace new_trace = *trace; + new_trace.add_action(&new_capture); + on_success()->Emit(compiler, &new_trace); + break; + } + case BEGIN_SUBMATCH: + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + assembler->WriteCurrentPositionToRegister( + data_.u_submatch.current_position_register, 0); + assembler->WriteStackPointerToRegister( + data_.u_submatch.stack_pointer_register); + on_success()->Emit(compiler, trace); + } + break; + case EMPTY_MATCH_CHECK: { + int start_pos_reg = data_.u_empty_match_check.start_register; + int stored_pos = 0; + int rep_reg = data_.u_empty_match_check.repetition_register; + bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); + bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); + if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { + // If we know we haven't advanced and there is no minimum we + // can just backtrack immediately. + assembler->GoTo(trace->backtrack()); + } else if (know_dist && stored_pos < trace->cp_offset()) { + // If we know we've advanced we can generate the continuation + // immediately. + on_success()->Emit(compiler, trace); + } else if (!trace->is_trivial()) { + trace->Flush(compiler, this); + } else { + Label skip_empty_check; + // If we have a minimum number of repetitions we check the current + // number first and skip the empty check if it's not enough. + if (has_minimum) { + int limit = data_.u_empty_match_check.repetition_limit; + assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); + } + // If the match is empty we bail out, otherwise we fall through + // to the on-success continuation. + assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, + trace->backtrack()); + assembler->Bind(&skip_empty_check); + on_success()->Emit(compiler, trace); + } + break; + } + case POSITIVE_SUBMATCH_SUCCESS: { + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + assembler->ReadCurrentPositionFromRegister( + data_.u_submatch.current_position_register); + assembler->ReadStackPointerFromRegister( + data_.u_submatch.stack_pointer_register); + int clear_register_count = data_.u_submatch.clear_register_count; + if (clear_register_count == 0) { + on_success()->Emit(compiler, trace); + return; + } + int clear_registers_from = data_.u_submatch.clear_register_from; + Label clear_registers_backtrack; + Trace new_trace = *trace; + new_trace.set_backtrack(&clear_registers_backtrack); + on_success()->Emit(compiler, &new_trace); + + assembler->Bind(&clear_registers_backtrack); + int clear_registers_to = clear_registers_from + clear_register_count - 1; + assembler->ClearRegisters(clear_registers_from, clear_registers_to); + + ASSERT(trace->backtrack() == NULL); + assembler->Backtrack(); + return; + } + default: + UNREACHABLE(); + } +} + + +void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { + RegExpMacroAssembler* assembler = compiler->macro_assembler(); + if (!trace->is_trivial()) { + trace->Flush(compiler, this); + return; + } + + LimitResult limit_result = LimitVersions(compiler, trace); + if (limit_result == DONE) return; + ASSERT(limit_result == CONTINUE); + + RecursionCheck rc(compiler); + + ASSERT_EQ(start_reg_ + 1, end_reg_); + if (compiler->ignore_case()) { + assembler->CheckNotBackReferenceIgnoreCase(start_reg_, + trace->backtrack()); + } else { + assembler->CheckNotBackReference(start_reg_, trace->backtrack()); + } + on_success()->Emit(compiler, trace); +} + + +// ------------------------------------------------------------------- +// Dot/dotty output + + +#ifdef DEBUG + + +class DotPrinter: public NodeVisitor { + public: + explicit DotPrinter(bool ignore_case) + : ignore_case_(ignore_case), + stream_(&alloc_) { } + void PrintNode(const char* label, RegExpNode* node); + void Visit(RegExpNode* node); + void PrintAttributes(RegExpNode* from); + StringStream* stream() { return &stream_; } + void PrintOnFailure(RegExpNode* from, RegExpNode* to); +#define DECLARE_VISIT(Type) \ + virtual void Visit##Type(Type##Node* that); +FOR_EACH_NODE_TYPE(DECLARE_VISIT) +#undef DECLARE_VISIT + private: + bool ignore_case_; + HeapStringAllocator alloc_; + StringStream stream_; +}; + + +void DotPrinter::PrintNode(const char* label, RegExpNode* node) { + stream()->Add("digraph G {\n graph [label=\""); + for (int i = 0; label[i]; i++) { + switch (label[i]) { + case '\\': + stream()->Add("\\\\"); + break; + case '"': + stream()->Add("\""); + break; + default: + stream()->Put(label[i]); + break; + } + } + stream()->Add("\"];\n"); + Visit(node); + stream()->Add("}\n"); + printf("%s", *(stream()->ToCString())); +} + + +void DotPrinter::Visit(RegExpNode* node) { + if (node->info()->visited) return; + node->info()->visited = true; + node->Accept(this); +} + + +void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { + stream()->Add(" n%p -> n%p [style=dotted];\n", from, on_failure); + Visit(on_failure); +} + + +class TableEntryBodyPrinter { + public: + TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice) + : stream_(stream), choice_(choice) { } + void Call(uc16 from, DispatchTable::Entry entry) { + OutSet* out_set = entry.out_set(); + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (out_set->Get(i)) { + stream()->Add(" n%p:s%io%i -> n%p;\n", + choice(), + from, + i, + choice()->alternatives()->at(i).node()); + } + } + } + private: + StringStream* stream() { return stream_; } + ChoiceNode* choice() { return choice_; } + StringStream* stream_; + ChoiceNode* choice_; +}; + + +class TableEntryHeaderPrinter { + public: + explicit TableEntryHeaderPrinter(StringStream* stream) + : first_(true), stream_(stream) { } + void Call(uc16 from, DispatchTable::Entry entry) { + if (first_) { + first_ = false; + } else { + stream()->Add("|"); + } + stream()->Add("{\\%k-\\%k|{", from, entry.to()); + OutSet* out_set = entry.out_set(); + int priority = 0; + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (out_set->Get(i)) { + if (priority > 0) stream()->Add("|"); + stream()->Add("<s%io%i> %i", from, i, priority); + priority++; + } + } + stream()->Add("}}"); + } + + private: + bool first_; + StringStream* stream() { return stream_; } + StringStream* stream_; +}; + + +class AttributePrinter { + public: + explicit AttributePrinter(DotPrinter* out) + : out_(out), first_(true) { } + void PrintSeparator() { + if (first_) { + first_ = false; + } else { + out_->stream()->Add("|"); + } + } + void PrintBit(const char* name, bool value) { + if (!value) return; + PrintSeparator(); + out_->stream()->Add("{%s}", name); + } + void PrintPositive(const char* name, int value) { + if (value < 0) return; + PrintSeparator(); + out_->stream()->Add("{%s|%x}", name, value); + } + private: + DotPrinter* out_; + bool first_; +}; + + +void DotPrinter::PrintAttributes(RegExpNode* that) { + stream()->Add(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " + "margin=0.1, fontsize=10, label=\"{", + that); + AttributePrinter printer(this); + NodeInfo* info = that->info(); + printer.PrintBit("NI", info->follows_newline_interest); + printer.PrintBit("WI", info->follows_word_interest); + printer.PrintBit("SI", info->follows_start_interest); + Label* label = that->label(); + if (label->is_bound()) + printer.PrintPositive("@", label->pos()); + stream()->Add("}\"];\n"); + stream()->Add(" a%p -> n%p [style=dashed, color=grey, " + "arrowhead=none];\n", that, that); +} + + +static const bool kPrintDispatchTable = false; +void DotPrinter::VisitChoice(ChoiceNode* that) { + if (kPrintDispatchTable) { + stream()->Add(" n%p [shape=Mrecord, label=\"", that); + TableEntryHeaderPrinter header_printer(stream()); + that->GetTable(ignore_case_)->ForEach(&header_printer); + stream()->Add("\"]\n", that); + PrintAttributes(that); + TableEntryBodyPrinter body_printer(stream(), that); + that->GetTable(ignore_case_)->ForEach(&body_printer); + } else { + stream()->Add(" n%p [shape=Mrecord, label=\"?\"];\n", that); + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + stream()->Add(" n%p -> n%p;\n", that, alt.node()); + } + } + for (int i = 0; i < that->alternatives()->length(); i++) { + GuardedAlternative alt = that->alternatives()->at(i); + alt.node()->Accept(this); + } +} + + +void DotPrinter::VisitText(TextNode* that) { + Zone* zone = that->zone(); + stream()->Add(" n%p [label=\"", that); + for (int i = 0; i < that->elements()->length(); i++) { + if (i > 0) stream()->Add(" "); + TextElement elm = that->elements()->at(i); + switch (elm.text_type) { + case TextElement::ATOM: { + stream()->Add("'%w'", elm.data.u_atom->data()); + break; + } + case TextElement::CHAR_CLASS: { + RegExpCharacterClass* node = elm.data.u_char_class; + stream()->Add("["); + if (node->is_negated()) + stream()->Add("^"); + for (int j = 0; j < node->ranges(zone)->length(); j++) { + CharacterRange range = node->ranges(zone)->at(j); + stream()->Add("%k-%k", range.from(), range.to()); + } + stream()->Add("]"); + break; + } + default: + UNREACHABLE(); + } + } + stream()->Add("\", shape=box, peripheries=2];\n"); + PrintAttributes(that); + stream()->Add(" n%p -> n%p;\n", that, that->on_success()); + Visit(that->on_success()); +} + + +void DotPrinter::VisitBackReference(BackReferenceNode* that) { + stream()->Add(" n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n", + that, + that->start_register(), + that->end_register()); + PrintAttributes(that); + stream()->Add(" n%p -> n%p;\n", that, that->on_success()); + Visit(that->on_success()); +} + + +void DotPrinter::VisitEnd(EndNode* that) { + stream()->Add(" n%p [style=bold, shape=point];\n", that); + PrintAttributes(that); +} + + +void DotPrinter::VisitAssertion(AssertionNode* that) { + stream()->Add(" n%p [", that); + switch (that->assertion_type()) { + case AssertionNode::AT_END: + stream()->Add("label=\"$\", shape=septagon"); + break; + case AssertionNode::AT_START: + stream()->Add("label=\"^\", shape=septagon"); + break; + case AssertionNode::AT_BOUNDARY: + stream()->Add("label=\"\\b\", shape=septagon"); + break; + case AssertionNode::AT_NON_BOUNDARY: + stream()->Add("label=\"\\B\", shape=septagon"); + break; + case AssertionNode::AFTER_NEWLINE: + stream()->Add("label=\"(?<=\\n)\", shape=septagon"); + break; + } + stream()->Add("];\n"); + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + stream()->Add(" n%p -> n%p;\n", that, successor); + Visit(successor); +} + + +void DotPrinter::VisitAction(ActionNode* that) { + stream()->Add(" n%p [", that); + switch (that->action_type_) { + case ActionNode::SET_REGISTER: + stream()->Add("label=\"$%i:=%i\", shape=octagon", + that->data_.u_store_register.reg, + that->data_.u_store_register.value); + break; + case ActionNode::INCREMENT_REGISTER: + stream()->Add("label=\"$%i++\", shape=octagon", + that->data_.u_increment_register.reg); + break; + case ActionNode::STORE_POSITION: + stream()->Add("label=\"$%i:=$pos\", shape=octagon", + that->data_.u_position_register.reg); + break; + case ActionNode::BEGIN_SUBMATCH: + stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon", + that->data_.u_submatch.current_position_register); + break; + case ActionNode::POSITIVE_SUBMATCH_SUCCESS: + stream()->Add("label=\"escape\", shape=septagon"); + break; + case ActionNode::EMPTY_MATCH_CHECK: + stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon", + that->data_.u_empty_match_check.start_register, + that->data_.u_empty_match_check.repetition_register, + that->data_.u_empty_match_check.repetition_limit); + break; + case ActionNode::CLEAR_CAPTURES: { + stream()->Add("label=\"clear $%i to $%i\", shape=septagon", + that->data_.u_clear_captures.range_from, + that->data_.u_clear_captures.range_to); + break; + } + } + stream()->Add("];\n"); + PrintAttributes(that); + RegExpNode* successor = that->on_success(); + stream()->Add(" n%p -> n%p;\n", that, successor); + Visit(successor); +} + + +class DispatchTableDumper { + public: + explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { } + void Call(uc16 key, DispatchTable::Entry entry); + StringStream* stream() { return stream_; } + private: + StringStream* stream_; +}; + + +void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { + stream()->Add("[%k-%k]: {", key, entry.to()); + OutSet* set = entry.out_set(); + bool first = true; + for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { + if (set->Get(i)) { + if (first) { + first = false; + } else { + stream()->Add(", "); + } + stream()->Add("%i", i); + } + } + stream()->Add("}\n"); +} + + +void DispatchTable::Dump() { + HeapStringAllocator alloc; + StringStream stream(&alloc); + DispatchTableDumper dumper(&stream); + tree()->ForEach(&dumper); + OS::PrintError("%s", *stream.ToCString()); +} + + +void RegExpEngine::DotPrint(const char* label, + RegExpNode* node, + bool ignore_case) { + DotPrinter printer(ignore_case); + printer.PrintNode(label, node); +} + + +#endif // DEBUG + + +// ------------------------------------------------------------------- +// Tree to graph conversion + +RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<TextElement>* elms = + new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); + elms->Add(TextElement::Atom(this), compiler->zone()); + return new(compiler->zone()) TextNode(elms, on_success); +} + + +RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new(compiler->zone()) TextNode(elements(), on_success); +} + + +static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, + const int* special_class, + int length) { + length--; // Remove final 0x10000. + ASSERT(special_class[length] == 0x10000); + ASSERT(ranges->length() != 0); + ASSERT(length != 0); + ASSERT(special_class[0] != 0); + if (ranges->length() != (length >> 1) + 1) { + return false; + } + CharacterRange range = ranges->at(0); + if (range.from() != 0) { + return false; + } + for (int i = 0; i < length; i += 2) { + if (special_class[i] != (range.to() + 1)) { + return false; + } + range = ranges->at((i >> 1) + 1); + if (special_class[i+1] != range.from()) { + return false; + } + } + if (range.to() != 0xffff) { + return false; + } + return true; +} + + +static bool CompareRanges(ZoneList<CharacterRange>* ranges, + const int* special_class, + int length) { + length--; // Remove final 0x10000. + ASSERT(special_class[length] == 0x10000); + if (ranges->length() * 2 != length) { + return false; + } + for (int i = 0; i < length; i += 2) { + CharacterRange range = ranges->at(i >> 1); + if (range.from() != special_class[i] || + range.to() != special_class[i + 1] - 1) { + return false; + } + } + return true; +} + + +bool RegExpCharacterClass::is_standard(Zone* zone) { + // TODO(lrn): Remove need for this function, by not throwing away information + // along the way. + if (is_negated_) { + return false; + } + if (set_.is_standard()) { + return true; + } + if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('s'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { + set_.set_standard_set_type('S'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), + kLineTerminatorRanges, + kLineTerminatorRangeCount)) { + set_.set_standard_set_type('.'); + return true; + } + if (CompareRanges(set_.ranges(zone), + kLineTerminatorRanges, + kLineTerminatorRangeCount)) { + set_.set_standard_set_type('n'); + return true; + } + if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { + set_.set_standard_set_type('w'); + return true; + } + if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { + set_.set_standard_set_type('W'); + return true; + } + return false; +} + + +RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new(compiler->zone()) TextNode(this, on_success); +} + + +RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* alternatives = this->alternatives(); + int length = alternatives->length(); + ChoiceNode* result = + new(compiler->zone()) ChoiceNode(length, compiler->zone()); + for (int i = 0; i < length; i++) { + GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, + on_success)); + result->AddAlternative(alternative); + } + return result; +} + + +RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(min(), + max(), + is_greedy(), + body(), + compiler, + on_success); +} + + +// Scoped object to keep track of how much we unroll quantifier loops in the +// regexp graph generator. +class RegExpExpansionLimiter { + public: + static const int kMaxExpansionFactor = 6; + RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) + : compiler_(compiler), + saved_expansion_factor_(compiler->current_expansion_factor()), + ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { + ASSERT(factor > 0); + if (ok_to_expand_) { + if (factor > kMaxExpansionFactor) { + // Avoid integer overflow of the current expansion factor. + ok_to_expand_ = false; + compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); + } else { + int new_factor = saved_expansion_factor_ * factor; + ok_to_expand_ = (new_factor <= kMaxExpansionFactor); + compiler->set_current_expansion_factor(new_factor); + } + } + } + + ~RegExpExpansionLimiter() { + compiler_->set_current_expansion_factor(saved_expansion_factor_); + } + + bool ok_to_expand() { return ok_to_expand_; } + + private: + RegExpCompiler* compiler_; + int saved_expansion_factor_; + bool ok_to_expand_; + + DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); +}; + + +RegExpNode* RegExpQuantifier::ToNode(int min, + int max, + bool is_greedy, + RegExpTree* body, + RegExpCompiler* compiler, + RegExpNode* on_success, + bool not_at_start) { + // x{f, t} becomes this: + // + // (r++)<-. + // | ` + // | (x) + // v ^ + // (r=0)-->(?)---/ [if r < t] + // | + // [if r >= f] \----> ... + // + + // 15.10.2.5 RepeatMatcher algorithm. + // The parser has already eliminated the case where max is 0. In the case + // where max_match is zero the parser has removed the quantifier if min was + // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. + + // If we know that we cannot match zero length then things are a little + // simpler since we don't need to make the special zero length match check + // from step 2.1. If the min and max are small we can unroll a little in + // this case. + static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} + static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} + if (max == 0) return on_success; // This can happen due to recursion. + bool body_can_be_empty = (body->min_match() == 0); + int body_start_reg = RegExpCompiler::kNoRegister; + Interval capture_registers = body->CaptureRegisters(); + bool needs_capture_clearing = !capture_registers.is_empty(); + Zone* zone = compiler->zone(); + + if (body_can_be_empty) { + body_start_reg = compiler->AllocateRegister(); + } else if (FLAG_regexp_optimization && !needs_capture_clearing) { + // Only unroll if there are no captures and the body can't be + // empty. + { + RegExpExpansionLimiter limiter( + compiler, min + ((max != min) ? 1 : 0)); + if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { + int new_max = (max == kInfinity) ? max : max - min; + // Recurse once to get the loop or optional matches after the fixed + // ones. + RegExpNode* answer = ToNode( + 0, new_max, is_greedy, body, compiler, on_success, true); + // Unroll the forced matches from 0 to min. This can cause chains of + // TextNodes (which the parser does not generate). These should be + // combined if it turns out they hinder good code generation. + for (int i = 0; i < min; i++) { + answer = body->ToNode(compiler, answer); + } + return answer; + } + } + if (max <= kMaxUnrolledMaxMatches && min == 0) { + ASSERT(max > 0); // Due to the 'if' above. + RegExpExpansionLimiter limiter(compiler, max); + if (limiter.ok_to_expand()) { + // Unroll the optional matches up to max. + RegExpNode* answer = on_success; + for (int i = 0; i < max; i++) { + ChoiceNode* alternation = new(zone) ChoiceNode(2, zone); + if (is_greedy) { + alternation->AddAlternative( + GuardedAlternative(body->ToNode(compiler, answer))); + alternation->AddAlternative(GuardedAlternative(on_success)); + } else { + alternation->AddAlternative(GuardedAlternative(on_success)); + alternation->AddAlternative( + GuardedAlternative(body->ToNode(compiler, answer))); + } + answer = alternation; + if (not_at_start) alternation->set_not_at_start(); + } + return answer; + } + } + } + bool has_min = min > 0; + bool has_max = max < RegExpTree::kInfinity; + bool needs_counter = has_min || has_max; + int reg_ctr = needs_counter + ? compiler->AllocateRegister() + : RegExpCompiler::kNoRegister; + LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0, + zone); + if (not_at_start) center->set_not_at_start(); + RegExpNode* loop_return = needs_counter + ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) + : static_cast<RegExpNode*>(center); + if (body_can_be_empty) { + // If the body can be empty we need to check if it was and then + // backtrack. + loop_return = ActionNode::EmptyMatchCheck(body_start_reg, + reg_ctr, + min, + loop_return); + } + RegExpNode* body_node = body->ToNode(compiler, loop_return); + if (body_can_be_empty) { + // If the body can be empty we need to store the start position + // so we can bail out if it was empty. + body_node = ActionNode::StorePosition(body_start_reg, false, body_node); + } + if (needs_capture_clearing) { + // Before entering the body of this loop we need to clear captures. + body_node = ActionNode::ClearCaptures(capture_registers, body_node); + } + GuardedAlternative body_alt(body_node); + if (has_max) { + Guard* body_guard = + new(zone) Guard(reg_ctr, Guard::LT, max); + body_alt.AddGuard(body_guard, zone); + } + GuardedAlternative rest_alt(on_success); + if (has_min) { + Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); + rest_alt.AddGuard(rest_guard, zone); + } + if (is_greedy) { + center->AddLoopAlternative(body_alt); + center->AddContinueAlternative(rest_alt); + } else { + center->AddContinueAlternative(rest_alt); + center->AddLoopAlternative(body_alt); + } + if (needs_counter) { + return ActionNode::SetRegister(reg_ctr, 0, center); + } else { + return center; + } +} + + +RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + NodeInfo info; + Zone* zone = compiler->zone(); + + switch (assertion_type()) { + case START_OF_LINE: + return AssertionNode::AfterNewline(on_success); + case START_OF_INPUT: + return AssertionNode::AtStart(on_success); + case BOUNDARY: + return AssertionNode::AtBoundary(on_success); + case NON_BOUNDARY: + return AssertionNode::AtNonBoundary(on_success); + case END_OF_INPUT: + return AssertionNode::AtEnd(on_success); + case END_OF_LINE: { + // Compile $ in multiline regexps as an alternation with a positive + // lookahead in one side and an end-of-input on the other side. + // We need two registers for the lookahead. + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + // The ChoiceNode to distinguish between a newline and end-of-input. + ChoiceNode* result = new(zone) ChoiceNode(2, zone); + // Create a newline atom. + ZoneList<CharacterRange>* newline_ranges = + new(zone) ZoneList<CharacterRange>(3, zone); + CharacterRange::AddClassEscape('n', newline_ranges, zone); + RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n'); + TextNode* newline_matcher = new(zone) TextNode( + newline_atom, + ActionNode::PositiveSubmatchSuccess(stack_pointer_register, + position_register, + 0, // No captures inside. + -1, // Ignored if no captures. + on_success)); + // Create an end-of-input matcher. + RegExpNode* end_of_line = ActionNode::BeginSubmatch( + stack_pointer_register, + position_register, + newline_matcher); + // Add the two alternatives to the ChoiceNode. + GuardedAlternative eol_alternative(end_of_line); + result->AddAlternative(eol_alternative); + GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); + result->AddAlternative(end_alternative); + return result; + } + default: + UNREACHABLE(); + } + return on_success; +} + + +RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return new(compiler->zone()) + BackReferenceNode(RegExpCapture::StartRegister(index()), + RegExpCapture::EndRegister(index()), + on_success); +} + + +RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return on_success; +} + + +RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + int stack_pointer_register = compiler->AllocateRegister(); + int position_register = compiler->AllocateRegister(); + + const int registers_per_capture = 2; + const int register_of_first_capture = 2; + int register_count = capture_count_ * registers_per_capture; + int register_start = + register_of_first_capture + capture_from_ * registers_per_capture; + + RegExpNode* success; + if (is_positive()) { + RegExpNode* node = ActionNode::BeginSubmatch( + stack_pointer_register, + position_register, + body()->ToNode( + compiler, + ActionNode::PositiveSubmatchSuccess(stack_pointer_register, + position_register, + register_count, + register_start, + on_success))); + return node; + } else { + // We use a ChoiceNode for a negative lookahead because it has most of + // the characteristics we need. It has the body of the lookahead as its + // first alternative and the expression after the lookahead of the second + // alternative. If the first alternative succeeds then the + // NegativeSubmatchSuccess will unwind the stack including everything the + // choice node set up and backtrack. If the first alternative fails then + // the second alternative is tried, which is exactly the desired result + // for a negative lookahead. The NegativeLookaheadChoiceNode is a special + // ChoiceNode that knows to ignore the first exit when calculating quick + // checks. + Zone* zone = compiler->zone(); + + GuardedAlternative body_alt( + body()->ToNode( + compiler, + success = new(zone) NegativeSubmatchSuccess(stack_pointer_register, + position_register, + register_count, + register_start, + zone))); + ChoiceNode* choice_node = + new(zone) NegativeLookaheadChoiceNode(body_alt, + GuardedAlternative(on_success), + zone); + return ActionNode::BeginSubmatch(stack_pointer_register, + position_register, + choice_node); + } +} + + +RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + return ToNode(body(), index(), compiler, on_success); +} + + +RegExpNode* RegExpCapture::ToNode(RegExpTree* body, + int index, + RegExpCompiler* compiler, + RegExpNode* on_success) { + int start_reg = RegExpCapture::StartRegister(index); + int end_reg = RegExpCapture::EndRegister(index); + RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); + RegExpNode* body_node = body->ToNode(compiler, store_end); + return ActionNode::StorePosition(start_reg, true, body_node); +} + + +RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, + RegExpNode* on_success) { + ZoneList<RegExpTree*>* children = nodes(); + RegExpNode* current = on_success; + for (int i = children->length() - 1; i >= 0; i--) { + current = children->at(i)->ToNode(compiler, current); + } + return current; +} + + +static void AddClass(const int* elmv, + int elmc, + ZoneList<CharacterRange>* ranges, + Zone* zone) { + elmc--; + ASSERT(elmv[elmc] == 0x10000); + for (int i = 0; i < elmc; i += 2) { + ASSERT(elmv[i] < elmv[i + 1]); + ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone); + } +} + + +static void AddClassNegated(const int *elmv, + int elmc, + ZoneList<CharacterRange>* ranges, + Zone* zone) { + elmc--; + ASSERT(elmv[elmc] == 0x10000); + ASSERT(elmv[0] != 0x0000); + ASSERT(elmv[elmc-1] != String::kMaxUtf16CodeUnit); + uc16 last = 0x0000; + for (int i = 0; i < elmc; i += 2) { + ASSERT(last <= elmv[i] - 1); + ASSERT(elmv[i] < elmv[i + 1]); + ranges->Add(CharacterRange(last, elmv[i] - 1), zone); + last = elmv[i + 1]; + } + ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone); +} + + +void CharacterRange::AddClassEscape(uc16 type, + ZoneList<CharacterRange>* ranges, + Zone* zone) { + switch (type) { + case 's': + AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); + break; + case 'S': + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); + break; + case 'w': + AddClass(kWordRanges, kWordRangeCount, ranges, zone); + break; + case 'W': + AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); + break; + case 'd': + AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); + break; + case 'D': + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); + break; + case '.': + AddClassNegated(kLineTerminatorRanges, + kLineTerminatorRangeCount, + ranges, + zone); + break; + // This is not a character range as defined by the spec but a + // convenient shorthand for a character class that matches any + // character. + case '*': + ranges->Add(CharacterRange::Everything(), zone); + break; + // This is the set of characters matched by the $ and ^ symbols + // in multiline mode. + case 'n': + AddClass(kLineTerminatorRanges, + kLineTerminatorRangeCount, + ranges, + zone); + break; + default: + UNREACHABLE(); + } +} + + +Vector<const int> CharacterRange::GetWordBounds() { + return Vector<const int>(kWordRanges, kWordRangeCount - 1); +} + + +class CharacterRangeSplitter { + public: + CharacterRangeSplitter(ZoneList<CharacterRange>** included, + ZoneList<CharacterRange>** excluded, + Zone* zone) + : included_(included), + excluded_(excluded), + zone_(zone) { } + void Call(uc16 from, DispatchTable::Entry entry); + + static const int kInBase = 0; + static const int kInOverlay = 1; + + private: + ZoneList<CharacterRange>** included_; + ZoneList<CharacterRange>** excluded_; + Zone* zone_; +}; + + +void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) { + if (!entry.out_set()->Get(kInBase)) return; + ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay) + ? included_ + : excluded_; + if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_); + (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_); +} + + +void CharacterRange::Split(ZoneList<CharacterRange>* base, + Vector<const int> overlay, + ZoneList<CharacterRange>** included, + ZoneList<CharacterRange>** excluded, + Zone* zone) { + ASSERT_EQ(NULL, *included); + ASSERT_EQ(NULL, *excluded); + DispatchTable table(zone); + for (int i = 0; i < base->length(); i++) + table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone); + for (int i = 0; i < overlay.length(); i += 2) { + table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1), + CharacterRangeSplitter::kInOverlay, zone); + } + CharacterRangeSplitter callback(included, excluded, zone); + table.ForEach(&callback); +} + + +void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges, + bool is_ascii, + Zone* zone) { + Isolate* isolate = Isolate::Current(); + uc16 bottom = from(); + uc16 top = to(); + if (is_ascii && !RangeContainsLatin1Equivalents(*this)) { + if (bottom > String::kMaxOneByteCharCode) return; + if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; + } + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + if (top == bottom) { + // If this is a singleton we just expand the one character. + int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); + for (int i = 0; i < length; i++) { + uc32 chr = chars[i]; + if (chr != bottom) { + ranges->Add(CharacterRange::Singleton(chars[i]), zone); + } + } + } else { + // If this is a range we expand the characters block by block, + // expanding contiguous subranges (blocks) one at a time. + // The approach is as follows. For a given start character we + // look up the remainder of the block that contains it (represented + // by the end point), for instance we find 'z' if the character + // is 'c'. A block is characterized by the property + // that all characters uncanonicalize in the same way, except that + // each entry in the result is incremented by the distance from the first + // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and + // the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. + // Once we've found the end point we look up its uncanonicalization + // and produce a range for each element. For instance for [c-f] + // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only + // add a range if it is not already contained in the input, so [c-f] + // will be skipped but [C-F] will be added. If this range is not + // completely contained in a block we do this for all the blocks + // covered by the range (handling characters that is not in a block + // as a "singleton block"). + unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int pos = bottom; + while (pos <= top) { + int length = isolate->jsregexp_canonrange()->get(pos, '\0', range); + uc16 block_end; + if (length == 0) { + block_end = pos; + } else { + ASSERT_EQ(1, length); + block_end = range[0]; + } + int end = (block_end > top) ? top : block_end; + length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range); + for (int i = 0; i < length; i++) { + uc32 c = range[i]; + uc16 range_from = c - (block_end - pos); + uc16 range_to = c - (block_end - end); + if (!(bottom <= range_from && range_to <= top)) { + ranges->Add(CharacterRange(range_from, range_to), zone); + } + } + pos = end + 1; + } + } +} + + +bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { + ASSERT_NOT_NULL(ranges); + int n = ranges->length(); + if (n <= 1) return true; + int max = ranges->at(0).to(); + for (int i = 1; i < n; i++) { + CharacterRange next_range = ranges->at(i); + if (next_range.from() <= max + 1) return false; + max = next_range.to(); + } + return true; +} + + +ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { + if (ranges_ == NULL) { + ranges_ = new(zone) ZoneList<CharacterRange>(2, zone); + CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone); + } + return ranges_; +} + + +// Move a number of elements in a zonelist to another position +// in the same list. Handles overlapping source and target areas. +static void MoveRanges(ZoneList<CharacterRange>* list, + int from, + int to, + int count) { + // Ranges are potentially overlapping. + if (from < to) { + for (int i = count - 1; i >= 0; i--) { + list->at(to + i) = list->at(from + i); + } + } else { + for (int i = 0; i < count; i++) { + list->at(to + i) = list->at(from + i); + } + } +} + + +static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, + int count, + CharacterRange insert) { + // Inserts a range into list[0..count[, which must be sorted + // by from value and non-overlapping and non-adjacent, using at most + // list[0..count] for the result. Returns the number of resulting + // canonicalized ranges. Inserting a range may collapse existing ranges into + // fewer ranges, so the return value can be anything in the range 1..count+1. + uc16 from = insert.from(); + uc16 to = insert.to(); + int start_pos = 0; + int end_pos = count; + for (int i = count - 1; i >= 0; i--) { + CharacterRange current = list->at(i); + if (current.from() > to + 1) { + end_pos = i; + } else if (current.to() + 1 < from) { + start_pos = i + 1; + break; + } + } + + // Inserted range overlaps, or is adjacent to, ranges at positions + // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are + // not affected by the insertion. + // If start_pos == end_pos, the range must be inserted before start_pos. + // if start_pos < end_pos, the entire range from start_pos to end_pos + // must be merged with the insert range. + + if (start_pos == end_pos) { + // Insert between existing ranges at position start_pos. + if (start_pos < count) { + MoveRanges(list, start_pos, start_pos + 1, count - start_pos); + } + list->at(start_pos) = insert; + return count + 1; + } + if (start_pos + 1 == end_pos) { + // Replace single existing range at position start_pos. + CharacterRange to_replace = list->at(start_pos); + int new_from = Min(to_replace.from(), from); + int new_to = Max(to_replace.to(), to); + list->at(start_pos) = CharacterRange(new_from, new_to); + return count; + } + // Replace a number of existing ranges from start_pos to end_pos - 1. + // Move the remaining ranges down. + + int new_from = Min(list->at(start_pos).from(), from); + int new_to = Max(list->at(end_pos - 1).to(), to); + if (end_pos < count) { + MoveRanges(list, end_pos, start_pos + 1, count - end_pos); + } + list->at(start_pos) = CharacterRange(new_from, new_to); + return count - (end_pos - start_pos) + 1; +} + + +void CharacterSet::Canonicalize() { + // Special/default classes are always considered canonical. The result + // of calling ranges() will be sorted. + if (ranges_ == NULL) return; + CharacterRange::Canonicalize(ranges_); +} + + +void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { + if (character_ranges->length() <= 1) return; + // Check whether ranges are already canonical (increasing, non-overlapping, + // non-adjacent). + int n = character_ranges->length(); + int max = character_ranges->at(0).to(); + int i = 1; + while (i < n) { + CharacterRange current = character_ranges->at(i); + if (current.from() <= max + 1) { + break; + } + max = current.to(); + i++; + } + // Canonical until the i'th range. If that's all of them, we are done. + if (i == n) return; + + // The ranges at index i and forward are not canonicalized. Make them so by + // doing the equivalent of insertion sort (inserting each into the previous + // list, in order). + // Notice that inserting a range can reduce the number of ranges in the + // result due to combining of adjacent and overlapping ranges. + int read = i; // Range to insert. + int num_canonical = i; // Length of canonicalized part of list. + do { + num_canonical = InsertRangeInCanonicalList(character_ranges, + num_canonical, + character_ranges->at(read)); + read++; + } while (read < n); + character_ranges->Rewind(num_canonical); + + ASSERT(CharacterRange::IsCanonical(character_ranges)); +} + + +void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, + ZoneList<CharacterRange>* negated_ranges, + Zone* zone) { + ASSERT(CharacterRange::IsCanonical(ranges)); + ASSERT_EQ(0, negated_ranges->length()); + int range_count = ranges->length(); + uc16 from = 0; + int i = 0; + if (range_count > 0 && ranges->at(0).from() == 0) { + from = ranges->at(0).to(); + i = 1; + } + while (i < range_count) { + CharacterRange range = ranges->at(i); + negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone); + from = range.to(); + i++; + } + if (from < String::kMaxUtf16CodeUnit) { + negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit), + zone); + } +} + + +// ------------------------------------------------------------------- +// Splay tree + + +OutSet* OutSet::Extend(unsigned value, Zone* zone) { + if (Get(value)) + return this; + if (successors(zone) != NULL) { + for (int i = 0; i < successors(zone)->length(); i++) { + OutSet* successor = successors(zone)->at(i); + if (successor->Get(value)) + return successor; + } + } else { + successors_ = new(zone) ZoneList<OutSet*>(2, zone); + } + OutSet* result = new(zone) OutSet(first_, remaining_); + result->Set(value, zone); + successors(zone)->Add(result, zone); + return result; +} + + +void OutSet::Set(unsigned value, Zone *zone) { + if (value < kFirstLimit) { + first_ |= (1 << value); + } else { + if (remaining_ == NULL) + remaining_ = new(zone) ZoneList<unsigned>(1, zone); + if (remaining_->is_empty() || !remaining_->Contains(value)) + remaining_->Add(value, zone); + } +} + + +bool OutSet::Get(unsigned value) { + if (value < kFirstLimit) { + return (first_ & (1 << value)) != 0; + } else if (remaining_ == NULL) { + return false; + } else { + return remaining_->Contains(value); + } +} + + +const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; + + +void DispatchTable::AddRange(CharacterRange full_range, int value, + Zone* zone) { + CharacterRange current = full_range; + if (tree()->is_empty()) { + // If this is the first range we just insert into the table. + ZoneSplayTree<Config>::Locator loc; + ASSERT_RESULT(tree()->Insert(current.from(), &loc)); + loc.set_value(Entry(current.from(), current.to(), + empty()->Extend(value, zone))); + return; + } + // First see if there is a range to the left of this one that + // overlaps. + ZoneSplayTree<Config>::Locator loc; + if (tree()->FindGreatestLessThan(current.from(), &loc)) { + Entry* entry = &loc.value(); + // If we've found a range that overlaps with this one, and it + // starts strictly to the left of this one, we have to fix it + // because the following code only handles ranges that start on + // or after the start point of the range we're adding. + if (entry->from() < current.from() && entry->to() >= current.from()) { + // Snap the overlapping range in half around the start point of + // the range we're adding. + CharacterRange left(entry->from(), current.from() - 1); + CharacterRange right(current.from(), entry->to()); + // The left part of the overlapping range doesn't overlap. + // Truncate the whole entry to be just the left part. + entry->set_to(left.to()); + // The right part is the one that overlaps. We add this part + // to the map and let the next step deal with merging it with + // the range we're adding. + ZoneSplayTree<Config>::Locator loc; + ASSERT_RESULT(tree()->Insert(right.from(), &loc)); + loc.set_value(Entry(right.from(), + right.to(), + entry->out_set())); + } + } + while (current.is_valid()) { + if (tree()->FindLeastGreaterThan(current.from(), &loc) && + (loc.value().from() <= current.to()) && + (loc.value().to() >= current.from())) { + Entry* entry = &loc.value(); + // We have overlap. If there is space between the start point of + // the range we're adding and where the overlapping range starts + // then we have to add a range covering just that space. + if (current.from() < entry->from()) { + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.from(), &ins)); + ins.set_value(Entry(current.from(), + entry->from() - 1, + empty()->Extend(value, zone))); + current.set_from(entry->from()); + } + ASSERT_EQ(current.from(), entry->from()); + // If the overlapping range extends beyond the one we want to add + // we have to snap the right part off and add it separately. + if (entry->to() > current.to()) { + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins)); + ins.set_value(Entry(current.to() + 1, + entry->to(), + entry->out_set())); + entry->set_to(current.to()); + } + ASSERT(entry->to() <= current.to()); + // The overlapping range is now completely contained by the range + // we're adding so we can just update it and move the start point + // of the range we're adding just past it. + entry->AddValue(value, zone); + // Bail out if the last interval ended at 0xFFFF since otherwise + // adding 1 will wrap around to 0. + if (entry->to() == String::kMaxUtf16CodeUnit) + break; + ASSERT(entry->to() + 1 > current.from()); + current.set_from(entry->to() + 1); + } else { + // There is no overlap so we can just add the range + ZoneSplayTree<Config>::Locator ins; + ASSERT_RESULT(tree()->Insert(current.from(), &ins)); + ins.set_value(Entry(current.from(), + current.to(), + empty()->Extend(value, zone))); + break; + } + } +} + + +OutSet* DispatchTable::Get(uc16 value) { + ZoneSplayTree<Config>::Locator loc; + if (!tree()->FindGreatestLessThan(value, &loc)) + return empty(); + Entry* entry = &loc.value(); + if (value <= entry->to()) + return entry->out_set(); + else + return empty(); +} + + +// ------------------------------------------------------------------- +// Analysis + + +void Analysis::EnsureAnalyzed(RegExpNode* that) { + StackLimitCheck check(Isolate::Current()); + if (check.HasOverflowed()) { + fail("Stack overflow"); + return; + } + if (that->info()->been_analyzed || that->info()->being_analyzed) + return; + that->info()->being_analyzed = true; + that->Accept(this); + that->info()->being_analyzed = false; + that->info()->been_analyzed = true; +} + + +void Analysis::VisitEnd(EndNode* that) { + // nothing to do +} + + +void TextNode::CalculateOffsets() { + int element_count = elements()->length(); + // Set up the offsets of the elements relative to the start. This is a fixed + // quantity since a TextNode can only contain fixed-width things. + int cp_offset = 0; + for (int i = 0; i < element_count; i++) { + TextElement& elm = elements()->at(i); + elm.cp_offset = cp_offset; + if (elm.text_type == TextElement::ATOM) { + cp_offset += elm.data.u_atom->data().length(); + } else { + cp_offset++; + } + } +} + + +void Analysis::VisitText(TextNode* that) { + if (ignore_case_) { + that->MakeCaseIndependent(is_ascii_); + } + EnsureAnalyzed(that->on_success()); + if (!has_failed()) { + that->CalculateOffsets(); + } +} + + +void Analysis::VisitAction(ActionNode* that) { + RegExpNode* target = that->on_success(); + EnsureAnalyzed(target); + if (!has_failed()) { + // If the next node is interested in what it follows then this node + // has to be interested too so it can pass the information on. + that->info()->AddFromFollowing(target->info()); + } +} + + +void Analysis::VisitChoice(ChoiceNode* that) { + NodeInfo* info = that->info(); + for (int i = 0; i < that->alternatives()->length(); i++) { + RegExpNode* node = that->alternatives()->at(i).node(); + EnsureAnalyzed(node); + if (has_failed()) return; + // Anything the following nodes need to know has to be known by + // this node also, so it can pass it on. + info->AddFromFollowing(node->info()); + } +} + + +void Analysis::VisitLoopChoice(LoopChoiceNode* that) { + NodeInfo* info = that->info(); + for (int i = 0; i < that->alternatives()->length(); i++) { + RegExpNode* node = that->alternatives()->at(i).node(); + if (node != that->loop_node()) { + EnsureAnalyzed(node); + if (has_failed()) return; + info->AddFromFollowing(node->info()); + } + } + // Check the loop last since it may need the value of this node + // to get a correct result. + EnsureAnalyzed(that->loop_node()); + if (!has_failed()) { + info->AddFromFollowing(that->loop_node()->info()); + } +} + + +void Analysis::VisitBackReference(BackReferenceNode* that) { + EnsureAnalyzed(that->on_success()); +} + + +void Analysis::VisitAssertion(AssertionNode* that) { + EnsureAnalyzed(that->on_success()); +} + + +void BackReferenceNode::FillInBMInfo(int offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + // Working out the set of characters that a backreference can match is too + // hard, so we just say that any character can match. + bm->SetRest(offset); + SaveBMInfo(bm, not_at_start, offset); +} + + +STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == + RegExpMacroAssembler::kTableSize); + + +void ChoiceNode::FillInBMInfo(int offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + ZoneList<GuardedAlternative>* alts = alternatives(); + budget = (budget - 1) / alts->length(); + for (int i = 0; i < alts->length(); i++) { + GuardedAlternative& alt = alts->at(i); + if (alt.guards() != NULL && alt.guards()->length() != 0) { + bm->SetRest(offset); // Give up trying to fill in info. + SaveBMInfo(bm, not_at_start, offset); + return; + } + alt.node()->FillInBMInfo(offset, budget, bm, not_at_start); + } + SaveBMInfo(bm, not_at_start, offset); +} + + +void TextNode::FillInBMInfo(int initial_offset, + int budget, + BoyerMooreLookahead* bm, + bool not_at_start) { + if (initial_offset >= bm->length()) return; + int offset = initial_offset; + int max_char = bm->max_char(); + for (int i = 0; i < elements()->length(); i++) { + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + TextElement text = elements()->at(i); + if (text.text_type == TextElement::ATOM) { + RegExpAtom* atom = text.data.u_atom; + for (int j = 0; j < atom->length(); j++, offset++) { + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + uc16 character = atom->data()[j]; + if (bm->compiler()->ignore_case()) { + unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; + int length = GetCaseIndependentLetters( + ISOLATE, + character, + bm->max_char() == String::kMaxOneByteCharCode, + chars); + for (int j = 0; j < length; j++) { + bm->Set(offset, chars[j]); + } + } else { + if (character <= max_char) bm->Set(offset, character); + } + } + } else { + ASSERT(text.text_type == TextElement::CHAR_CLASS); + RegExpCharacterClass* char_class = text.data.u_char_class; + ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); + if (char_class->is_negated()) { + bm->SetAll(offset); + } else { + for (int k = 0; k < ranges->length(); k++) { + CharacterRange& range = ranges->at(k); + if (range.from() > max_char) continue; + int to = Min(max_char, static_cast<int>(range.to())); + bm->SetInterval(offset, Interval(range.from(), to)); + } + } + offset++; + } + } + if (offset >= bm->length()) { + if (initial_offset == 0) set_bm_info(not_at_start, bm); + return; + } + on_success()->FillInBMInfo(offset, + budget - 1, + bm, + true); // Not at start after a text node. + if (initial_offset == 0) set_bm_info(not_at_start, bm); +} + + +// ------------------------------------------------------------------- +// Dispatch table construction + + +void DispatchTableConstructor::VisitEnd(EndNode* that) { + AddRange(CharacterRange::Everything()); +} + + +void DispatchTableConstructor::BuildTable(ChoiceNode* node) { + node->set_being_calculated(true); + ZoneList<GuardedAlternative>* alternatives = node->alternatives(); + for (int i = 0; i < alternatives->length(); i++) { + set_choice_index(i); + alternatives->at(i).node()->Accept(this); + } + node->set_being_calculated(false); +} + + +class AddDispatchRange { + public: + explicit AddDispatchRange(DispatchTableConstructor* constructor) + : constructor_(constructor) { } + void Call(uc32 from, DispatchTable::Entry entry); + private: + DispatchTableConstructor* constructor_; +}; + + +void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { + CharacterRange range(from, entry.to()); + constructor_->AddRange(range); +} + + +void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { + if (node->being_calculated()) + return; + DispatchTable* table = node->GetTable(ignore_case_); + AddDispatchRange adder(this); + table->ForEach(&adder); +} + + +void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { + // TODO(160): Find the node that we refer back to and propagate its start + // set back to here. For now we just accept anything. + AddRange(CharacterRange::Everything()); +} + + +void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { + RegExpNode* target = that->on_success(); + target->Accept(this); +} + + +static int CompareRangeByFrom(const CharacterRange* a, + const CharacterRange* b) { + return Compare<uc16>(a->from(), b->from()); +} + + +void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { + ranges->Sort(CompareRangeByFrom); + uc16 last = 0; + for (int i = 0; i < ranges->length(); i++) { + CharacterRange range = ranges->at(i); + if (last < range.from()) + AddRange(CharacterRange(last, range.from() - 1)); + if (range.to() >= last) { + if (range.to() == String::kMaxUtf16CodeUnit) { + return; + } else { + last = range.to() + 1; + } + } + } + AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit)); +} + + +void DispatchTableConstructor::VisitText(TextNode* that) { + TextElement elm = that->elements()->at(0); + switch (elm.text_type) { + case TextElement::ATOM: { + uc16 c = elm.data.u_atom->data()[0]; + AddRange(CharacterRange(c, c)); + break; + } + case TextElement::CHAR_CLASS: { + RegExpCharacterClass* tree = elm.data.u_char_class; + ZoneList<CharacterRange>* ranges = tree->ranges(that->zone()); + if (tree->is_negated()) { + AddInverse(ranges); + } else { + for (int i = 0; i < ranges->length(); i++) + AddRange(ranges->at(i)); + } + break; + } + default: { + UNIMPLEMENTED(); + } + } +} + + +void DispatchTableConstructor::VisitAction(ActionNode* that) { + RegExpNode* target = that->on_success(); + target->Accept(this); +} + + +RegExpEngine::CompilationResult RegExpEngine::Compile( + RegExpCompileData* data, + bool ignore_case, + bool is_global, + bool is_multiline, + Handle<String> pattern, + Handle<String> sample_subject, + bool is_ascii, + Zone* zone) { + if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { + return IrregexpRegExpTooBig(); + } + RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii, zone); + + // Sample some characters from the middle of the string. + static const int kSampleSize = 128; + + FlattenString(sample_subject); + int chars_sampled = 0; + int half_way = (sample_subject->length() - kSampleSize) / 2; + for (int i = Max(0, half_way); + i < sample_subject->length() && chars_sampled < kSampleSize; + i++, chars_sampled++) { + compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); + } + + // Wrap the body of the regexp in capture #0. + RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, + 0, + &compiler, + compiler.accept()); + RegExpNode* node = captured_body; + bool is_end_anchored = data->tree->IsAnchoredAtEnd(); + bool is_start_anchored = data->tree->IsAnchoredAtStart(); + int max_length = data->tree->max_match(); + if (!is_start_anchored) { + // Add a .*? at the beginning, outside the body capture, unless + // this expression is anchored at the beginning. + RegExpNode* loop_node = + RegExpQuantifier::ToNode(0, + RegExpTree::kInfinity, + false, + new(zone) RegExpCharacterClass('*'), + &compiler, + captured_body, + data->contains_anchor); + + if (data->contains_anchor) { + // Unroll loop once, to take care of the case that might start + // at the start of input. + ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone); + first_step_node->AddAlternative(GuardedAlternative(captured_body)); + first_step_node->AddAlternative(GuardedAlternative( + new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node))); + node = first_step_node; + } else { + node = loop_node; + } + } + if (is_ascii) { + node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case); + // Do it again to propagate the new nodes to places where they were not + // put because they had not been calculated yet. + if (node != NULL) { + node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case); + } + } + + if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone); + data->node = node; + Analysis analysis(ignore_case, is_ascii); + analysis.EnsureAnalyzed(node); + if (analysis.has_failed()) { + const char* error_message = analysis.error_message(); + return CompilationResult(error_message); + } + + // Create the correct assembler for the architecture. +#ifndef V8_INTERPRETED_REGEXP + // Native regexp implementation. + + NativeRegExpMacroAssembler::Mode mode = + is_ascii ? NativeRegExpMacroAssembler::ASCII + : NativeRegExpMacroAssembler::UC16; + +#if V8_TARGET_ARCH_IA32 + RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2, + zone); +#elif V8_TARGET_ARCH_X64 + RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2, + zone); +#elif V8_TARGET_ARCH_ARM + RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2, + zone); +#elif V8_TARGET_ARCH_MIPS + RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2, + zone); +#endif + +#else // V8_INTERPRETED_REGEXP + // Interpreted regexp implementation. + EmbeddedVector<byte, 1024> codes; + RegExpMacroAssemblerIrregexp macro_assembler(codes, zone); +#endif // V8_INTERPRETED_REGEXP + + // Inserted here, instead of in Assembler, because it depends on information + // in the AST that isn't replicated in the Node structure. + static const int kMaxBacksearchLimit = 1024; + if (is_end_anchored && + !is_start_anchored && + max_length < kMaxBacksearchLimit) { + macro_assembler.SetCurrentPositionFromEnd(max_length); + } + + if (is_global) { + macro_assembler.set_global_mode( + (data->tree->min_match() > 0) + ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK + : RegExpMacroAssembler::GLOBAL); + } + + return compiler.Assemble(¯o_assembler, + node, + data->capture_count, + pattern); +} + + +}} // namespace v8::internal |