summaryrefslogtreecommitdiff
path: root/chromium/media/filters/wsola_internals.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/media/filters/wsola_internals.cc')
-rw-r--r--chromium/media/filters/wsola_internals.cc264
1 files changed, 264 insertions, 0 deletions
diff --git a/chromium/media/filters/wsola_internals.cc b/chromium/media/filters/wsola_internals.cc
new file mode 100644
index 00000000000..45cdd8ffad5
--- /dev/null
+++ b/chromium/media/filters/wsola_internals.cc
@@ -0,0 +1,264 @@
+// Copyright 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// MSVC++ requires this to be set before any other includes to get M_PI.
+#define _USE_MATH_DEFINES
+
+#include "media/filters/wsola_internals.h"
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+
+#include "base/logging.h"
+#include "base/memory/scoped_ptr.h"
+#include "media/base/audio_bus.h"
+
+namespace media {
+
+namespace internal {
+
+bool InInterval(int n, Interval q) {
+ return n >= q.first && n <= q.second;
+}
+
+float MultiChannelSimilarityMeasure(const float* dot_prod_a_b,
+ const float* energy_a,
+ const float* energy_b,
+ int channels) {
+ const float kEpsilon = 1e-12f;
+ float similarity_measure = 0.0f;
+ for (int n = 0; n < channels; ++n) {
+ similarity_measure += dot_prod_a_b[n] / sqrt(energy_a[n] * energy_b[n] +
+ kEpsilon);
+ }
+ return similarity_measure;
+}
+
+void MultiChannelDotProduct(const AudioBus* a,
+ int frame_offset_a,
+ const AudioBus* b,
+ int frame_offset_b,
+ int num_frames,
+ float* dot_product) {
+ DCHECK_EQ(a->channels(), b->channels());
+ DCHECK_GE(frame_offset_a, 0);
+ DCHECK_GE(frame_offset_b, 0);
+ DCHECK_LE(frame_offset_a + num_frames, a->frames());
+ DCHECK_LE(frame_offset_b + num_frames, b->frames());
+
+ memset(dot_product, 0, sizeof(*dot_product) * a->channels());
+ for (int k = 0; k < a->channels(); ++k) {
+ const float* ch_a = a->channel(k) + frame_offset_a;
+ const float* ch_b = b->channel(k) + frame_offset_b;
+ for (int n = 0; n < num_frames; ++n) {
+ dot_product[k] += *ch_a++ * *ch_b++;
+ }
+ }
+}
+
+void MultiChannelMovingBlockEnergies(const AudioBus* input,
+ int frames_per_block,
+ float* energy) {
+ int num_blocks = input->frames() - (frames_per_block - 1);
+ int channels = input->channels();
+
+ for (int k = 0; k < input->channels(); ++k) {
+ const float* input_channel = input->channel(k);
+
+ energy[k] = 0;
+
+ // First block of channel |k|.
+ for (int m = 0; m < frames_per_block; ++m) {
+ energy[k] += input_channel[m] * input_channel[m];
+ }
+
+ const float* slide_out = input_channel;
+ const float* slide_in = input_channel + frames_per_block;
+ for (int n = 1; n < num_blocks; ++n, ++slide_in, ++slide_out) {
+ energy[k + n * channels] = energy[k + (n - 1) * channels] - *slide_out *
+ *slide_out + *slide_in * *slide_in;
+ }
+ }
+}
+
+// Fit the curve f(x) = a * x^2 + b * x + c such that
+// f(-1) = |y[0]|
+// f(0) = |y[1]|
+// f(1) = |y[2]|.
+void CubicInterpolation(const float* y_values,
+ float* extremum,
+ float* extremum_value) {
+ float a = 0.5f * (y_values[2] + y_values[0]) - y_values[1];
+ float b = 0.5f * (y_values[2] - y_values[0]);
+ float c = y_values[1];
+
+ DCHECK_NE(a, 0);
+ *extremum = -b / (2.f * a);
+ *extremum_value = a * (*extremum) * (*extremum) + b * (*extremum) + c;
+}
+
+int DecimatedSearch(int decimation,
+ Interval exclude_interval,
+ const AudioBus* target_block,
+ const AudioBus* search_segment,
+ const float* energy_target_block,
+ const float* energy_candidate_blocks) {
+ int channels = search_segment->channels();
+ int block_size = target_block->frames();
+ int num_candidate_blocks = search_segment->frames() - (block_size - 1);
+ scoped_ptr<float[]> dot_prod(new float[channels]);
+ float similarity[3]; // Three elements for cubic interpolation.
+
+ int n = 0;
+ MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
+ dot_prod.get());
+ similarity[0] = MultiChannelSimilarityMeasure(
+ dot_prod.get(), energy_target_block,
+ &energy_candidate_blocks[n * channels], channels);
+
+ // Set the starting point as optimal point.
+ float best_similarity = similarity[0];
+ int optimal_index = 0;
+
+ n += decimation;
+ if (n >= num_candidate_blocks) {
+ return 0;
+ }
+
+ MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
+ dot_prod.get());
+ similarity[1] = MultiChannelSimilarityMeasure(
+ dot_prod.get(), energy_target_block,
+ &energy_candidate_blocks[n * channels], channels);
+
+ n += decimation;
+ if (n >= num_candidate_blocks) {
+ // We cannot do any more sampling. Compare these two values and return the
+ // optimal index.
+ return similarity[1] > similarity[0] ? decimation : 0;
+ }
+
+ for (; n < num_candidate_blocks; n += decimation) {
+ MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
+ dot_prod.get());
+
+ similarity[2] = MultiChannelSimilarityMeasure(
+ dot_prod.get(), energy_target_block,
+ &energy_candidate_blocks[n * channels], channels);
+
+ if ((similarity[1] > similarity[0] && similarity[1] >= similarity[2]) ||
+ (similarity[1] >= similarity[0] && similarity[1] > similarity[2])) {
+ // A local maximum is found. Do a cubic interpolation for a better
+ // estimate of candidate maximum.
+ float normalized_candidate_index;
+ float candidate_similarity;
+ CubicInterpolation(similarity, &normalized_candidate_index,
+ &candidate_similarity);
+
+ int candidate_index = n - decimation + static_cast<int>(
+ normalized_candidate_index * decimation + 0.5f);
+ if (candidate_similarity > best_similarity &&
+ !InInterval(candidate_index, exclude_interval)) {
+ optimal_index = candidate_index;
+ best_similarity = candidate_similarity;
+ }
+ } else if (n + decimation >= num_candidate_blocks &&
+ similarity[2] > best_similarity &&
+ !InInterval(n, exclude_interval)) {
+ // If this is the end-point and has a better similarity-measure than
+ // optimal, then we accept it as optimal point.
+ optimal_index = n;
+ best_similarity = similarity[2];
+ }
+ memmove(similarity, &similarity[1], 2 * sizeof(*similarity));
+ }
+ return optimal_index;
+}
+
+int FullSearch(int low_limit,
+ int high_limit,
+ Interval exclude_interval,
+ const AudioBus* target_block,
+ const AudioBus* search_block,
+ const float* energy_target_block,
+ const float* energy_candidate_blocks) {
+ int channels = search_block->channels();
+ int block_size = target_block->frames();
+ scoped_ptr<float[]> dot_prod(new float[channels]);
+
+ float best_similarity = std::numeric_limits<float>::min();
+ int optimal_index = 0;
+
+ for (int n = low_limit; n <= high_limit; ++n) {
+ if (InInterval(n, exclude_interval)) {
+ continue;
+ }
+ MultiChannelDotProduct(target_block, 0, search_block, n, block_size,
+ dot_prod.get());
+
+ float similarity = MultiChannelSimilarityMeasure(
+ dot_prod.get(), energy_target_block,
+ &energy_candidate_blocks[n * channels], channels);
+
+ if (similarity > best_similarity) {
+ best_similarity = similarity;
+ optimal_index = n;
+ }
+ }
+
+ return optimal_index;
+}
+
+int OptimalIndex(const AudioBus* search_block,
+ const AudioBus* target_block,
+ Interval exclude_interval) {
+ int channels = search_block->channels();
+ DCHECK_EQ(channels, target_block->channels());
+ int target_size = target_block->frames();
+ int num_candidate_blocks = search_block->frames() - (target_size - 1);
+
+ // This is a compromise between complexity reduction and search accuracy. I
+ // don't have a proof that down sample of order 5 is optimal. One can compute
+ // a decimation factor that minimizes complexity given the size of
+ // |search_block| and |target_block|. However, my experiments show the rate of
+ // missing the optimal index is significant. This value is chosen
+ // heuristically based on experiments.
+ const int kSearchDecimation = 5;
+
+ scoped_ptr<float[]> energy_target_block(new float[channels]);
+ scoped_ptr<float[]> energy_candidate_blocks(
+ new float[channels * num_candidate_blocks]);
+
+ // Energy of all candid frames.
+ MultiChannelMovingBlockEnergies(search_block, target_size,
+ energy_candidate_blocks.get());
+
+ // Energy of target frame.
+ MultiChannelDotProduct(target_block, 0, target_block, 0,
+ target_size, energy_target_block.get());
+
+ int optimal_index = DecimatedSearch(kSearchDecimation,
+ exclude_interval, target_block,
+ search_block, energy_target_block.get(),
+ energy_candidate_blocks.get());
+
+ int lim_low = std::max(0, optimal_index - kSearchDecimation);
+ int lim_high = std::min(num_candidate_blocks - 1,
+ optimal_index + kSearchDecimation);
+ return FullSearch(lim_low, lim_high, exclude_interval, target_block,
+ search_block, energy_target_block.get(),
+ energy_candidate_blocks.get());
+}
+
+void GetSymmetricHanningWindow(int window_length, float* window) {
+ const float scale = 2.0f * M_PI / window_length;
+ for (int n = 0; n < window_length; ++n)
+ window[n] = 0.5f * (1.0f - cosf(n * scale));
+}
+
+} // namespace internal
+
+} // namespace media
+