summaryrefslogtreecommitdiff
path: root/chromium/net/disk_cache/mem_entry_impl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/net/disk_cache/mem_entry_impl.cc')
-rw-r--r--chromium/net/disk_cache/mem_entry_impl.cc631
1 files changed, 631 insertions, 0 deletions
diff --git a/chromium/net/disk_cache/mem_entry_impl.cc b/chromium/net/disk_cache/mem_entry_impl.cc
new file mode 100644
index 00000000000..7d0095898b4
--- /dev/null
+++ b/chromium/net/disk_cache/mem_entry_impl.cc
@@ -0,0 +1,631 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "net/disk_cache/mem_entry_impl.h"
+
+#include "base/bind.h"
+#include "base/logging.h"
+#include "base/strings/stringprintf.h"
+#include "base/values.h"
+#include "net/base/io_buffer.h"
+#include "net/base/net_errors.h"
+#include "net/disk_cache/mem_backend_impl.h"
+#include "net/disk_cache/net_log_parameters.h"
+
+using base::Time;
+
+namespace {
+
+const int kSparseData = 1;
+
+// Maximum size of a sparse entry is 2 to the power of this number.
+const int kMaxSparseEntryBits = 12;
+
+// Sparse entry has maximum size of 4KB.
+const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits;
+
+// Convert global offset to child index.
+inline int ToChildIndex(int64 offset) {
+ return static_cast<int>(offset >> kMaxSparseEntryBits);
+}
+
+// Convert global offset to offset in child entry.
+inline int ToChildOffset(int64 offset) {
+ return static_cast<int>(offset & (kMaxSparseEntrySize - 1));
+}
+
+// Returns a name for a child entry given the base_name of the parent and the
+// child_id. This name is only used for logging purposes.
+// If the entry is called entry_name, child entries will be named something
+// like Range_entry_name:YYY where YYY is the number of the particular child.
+std::string GenerateChildName(const std::string& base_name, int child_id) {
+ return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id);
+}
+
+// Returns NetLog parameters for the creation of a child MemEntryImpl. Separate
+// function needed because child entries don't suppport GetKey().
+base::Value* NetLogChildEntryCreationCallback(
+ const disk_cache::MemEntryImpl* parent,
+ int child_id,
+ net::NetLog::LogLevel /* log_level */) {
+ base::DictionaryValue* dict = new base::DictionaryValue();
+ dict->SetString("key", GenerateChildName(parent->GetKey(), child_id));
+ dict->SetBoolean("created", true);
+ return dict;
+}
+
+} // namespace
+
+namespace disk_cache {
+
+MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) {
+ doomed_ = false;
+ backend_ = backend;
+ ref_count_ = 0;
+ parent_ = NULL;
+ child_id_ = 0;
+ child_first_pos_ = 0;
+ next_ = NULL;
+ prev_ = NULL;
+ for (int i = 0; i < NUM_STREAMS; i++)
+ data_size_[i] = 0;
+}
+
+// ------------------------------------------------------------------------
+
+bool MemEntryImpl::CreateEntry(const std::string& key, net::NetLog* net_log) {
+ key_ = key;
+ Time current = Time::Now();
+ last_modified_ = current;
+ last_used_ = current;
+
+ net_log_ = net::BoundNetLog::Make(net_log,
+ net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
+ // Must be called after |key_| is set, so GetKey() works.
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
+ CreateNetLogEntryCreationCallback(this, true));
+
+ Open();
+ backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
+ return true;
+}
+
+void MemEntryImpl::InternalDoom() {
+ net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
+ doomed_ = true;
+ if (!ref_count_) {
+ if (type() == kParentEntry) {
+ // If this is a parent entry, we need to doom all the child entries.
+ if (children_.get()) {
+ EntryMap children;
+ children.swap(*children_);
+ for (EntryMap::iterator i = children.begin();
+ i != children.end(); ++i) {
+ // Since a pointer to this object is also saved in the map, avoid
+ // dooming it.
+ if (i->second != this)
+ i->second->Doom();
+ }
+ DCHECK(children_->empty());
+ }
+ } else {
+ // If this is a child entry, detach it from the parent.
+ parent_->DetachChild(child_id_);
+ }
+ delete this;
+ }
+}
+
+void MemEntryImpl::Open() {
+ // Only a parent entry can be opened.
+ // TODO(hclam): make sure it's correct to not apply the concept of ref
+ // counting to child entry.
+ DCHECK(type() == kParentEntry);
+ ref_count_++;
+ DCHECK_GE(ref_count_, 0);
+ DCHECK(!doomed_);
+}
+
+bool MemEntryImpl::InUse() {
+ if (type() == kParentEntry) {
+ return ref_count_ > 0;
+ } else {
+ // A child entry is always not in use. The consequence is that a child entry
+ // can always be evicted while the associated parent entry is currently in
+ // used (i.e. opened).
+ return false;
+ }
+}
+
+// ------------------------------------------------------------------------
+
+void MemEntryImpl::Doom() {
+ if (doomed_)
+ return;
+ if (type() == kParentEntry) {
+ // Perform internal doom from the backend if this is a parent entry.
+ backend_->InternalDoomEntry(this);
+ } else {
+ // Manually detach from the backend and perform internal doom.
+ backend_->RemoveFromRankingList(this);
+ InternalDoom();
+ }
+}
+
+void MemEntryImpl::Close() {
+ // Only a parent entry can be closed.
+ DCHECK(type() == kParentEntry);
+ ref_count_--;
+ DCHECK_GE(ref_count_, 0);
+ if (!ref_count_ && doomed_)
+ InternalDoom();
+}
+
+std::string MemEntryImpl::GetKey() const {
+ // A child entry doesn't have key so this method should not be called.
+ DCHECK(type() == kParentEntry);
+ return key_;
+}
+
+Time MemEntryImpl::GetLastUsed() const {
+ return last_used_;
+}
+
+Time MemEntryImpl::GetLastModified() const {
+ return last_modified_;
+}
+
+int32 MemEntryImpl::GetDataSize(int index) const {
+ if (index < 0 || index >= NUM_STREAMS)
+ return 0;
+ return data_size_[index];
+}
+
+int MemEntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
+ const CompletionCallback& callback) {
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_ENTRY_READ_DATA,
+ CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
+ }
+
+ int result = InternalReadData(index, offset, buf, buf_len);
+
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.EndEvent(
+ net::NetLog::TYPE_ENTRY_READ_DATA,
+ CreateNetLogReadWriteCompleteCallback(result));
+ }
+ return result;
+}
+
+int MemEntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
+ const CompletionCallback& callback, bool truncate) {
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_ENTRY_WRITE_DATA,
+ CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
+ }
+
+ int result = InternalWriteData(index, offset, buf, buf_len, truncate);
+
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.EndEvent(
+ net::NetLog::TYPE_ENTRY_WRITE_DATA,
+ CreateNetLogReadWriteCompleteCallback(result));
+ }
+ return result;
+}
+
+int MemEntryImpl::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
+ const CompletionCallback& callback) {
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_SPARSE_READ,
+ CreateNetLogSparseOperationCallback(offset, buf_len));
+ }
+ int result = InternalReadSparseData(offset, buf, buf_len);
+ if (net_log_.IsLoggingAllEvents())
+ net_log_.EndEvent(net::NetLog::TYPE_SPARSE_READ);
+ return result;
+}
+
+int MemEntryImpl::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
+ const CompletionCallback& callback) {
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_SPARSE_WRITE,
+ CreateNetLogSparseOperationCallback(offset, buf_len));
+ }
+ int result = InternalWriteSparseData(offset, buf, buf_len);
+ if (net_log_.IsLoggingAllEvents())
+ net_log_.EndEvent(net::NetLog::TYPE_SPARSE_WRITE);
+ return result;
+}
+
+int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
+ const CompletionCallback& callback) {
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_SPARSE_GET_RANGE,
+ CreateNetLogSparseOperationCallback(offset, len));
+ }
+ int result = GetAvailableRange(offset, len, start);
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.EndEvent(
+ net::NetLog::TYPE_SPARSE_GET_RANGE,
+ CreateNetLogGetAvailableRangeResultCallback(*start, result));
+ }
+ return result;
+}
+
+bool MemEntryImpl::CouldBeSparse() const {
+ DCHECK_EQ(kParentEntry, type());
+ return (children_.get() != NULL);
+}
+
+int MemEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
+ return net::OK;
+}
+
+// ------------------------------------------------------------------------
+
+MemEntryImpl::~MemEntryImpl() {
+ for (int i = 0; i < NUM_STREAMS; i++)
+ backend_->ModifyStorageSize(data_size_[i], 0);
+ backend_->ModifyStorageSize(static_cast<int32>(key_.size()), 0);
+ net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL);
+}
+
+int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf,
+ int buf_len) {
+ DCHECK(type() == kParentEntry || index == kSparseData);
+
+ if (index < 0 || index >= NUM_STREAMS)
+ return net::ERR_INVALID_ARGUMENT;
+
+ int entry_size = GetDataSize(index);
+ if (offset >= entry_size || offset < 0 || !buf_len)
+ return 0;
+
+ if (buf_len < 0)
+ return net::ERR_INVALID_ARGUMENT;
+
+ if (offset + buf_len > entry_size)
+ buf_len = entry_size - offset;
+
+ UpdateRank(false);
+
+ memcpy(buf->data(), &(data_[index])[offset], buf_len);
+ return buf_len;
+}
+
+int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf,
+ int buf_len, bool truncate) {
+ DCHECK(type() == kParentEntry || index == kSparseData);
+
+ if (index < 0 || index >= NUM_STREAMS)
+ return net::ERR_INVALID_ARGUMENT;
+
+ if (offset < 0 || buf_len < 0)
+ return net::ERR_INVALID_ARGUMENT;
+
+ int max_file_size = backend_->MaxFileSize();
+
+ // offset of buf_len could be negative numbers.
+ if (offset > max_file_size || buf_len > max_file_size ||
+ offset + buf_len > max_file_size) {
+ return net::ERR_FAILED;
+ }
+
+ // Read the size at this point.
+ int entry_size = GetDataSize(index);
+
+ PrepareTarget(index, offset, buf_len);
+
+ if (entry_size < offset + buf_len) {
+ backend_->ModifyStorageSize(entry_size, offset + buf_len);
+ data_size_[index] = offset + buf_len;
+ } else if (truncate) {
+ if (entry_size > offset + buf_len) {
+ backend_->ModifyStorageSize(entry_size, offset + buf_len);
+ data_size_[index] = offset + buf_len;
+ }
+ }
+
+ UpdateRank(true);
+
+ if (!buf_len)
+ return 0;
+
+ memcpy(&(data_[index])[offset], buf->data(), buf_len);
+ return buf_len;
+}
+
+int MemEntryImpl::InternalReadSparseData(int64 offset, IOBuffer* buf,
+ int buf_len) {
+ DCHECK(type() == kParentEntry);
+
+ if (!InitSparseInfo())
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (offset < 0 || buf_len < 0)
+ return net::ERR_INVALID_ARGUMENT;
+
+ // We will keep using this buffer and adjust the offset in this buffer.
+ scoped_refptr<net::DrainableIOBuffer> io_buf(
+ new net::DrainableIOBuffer(buf, buf_len));
+
+ // Iterate until we have read enough.
+ while (io_buf->BytesRemaining()) {
+ MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), false);
+
+ // No child present for that offset.
+ if (!child)
+ break;
+
+ // We then need to prepare the child offset and len.
+ int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());
+
+ // If we are trying to read from a position that the child entry has no data
+ // we should stop.
+ if (child_offset < child->child_first_pos_)
+ break;
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
+ CreateNetLogSparseReadWriteCallback(child->net_log().source(),
+ io_buf->BytesRemaining()));
+ }
+ int ret = child->ReadData(kSparseData, child_offset, io_buf.get(),
+ io_buf->BytesRemaining(), CompletionCallback());
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.EndEventWithNetErrorCode(
+ net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret);
+ }
+
+ // If we encounter an error in one entry, return immediately.
+ if (ret < 0)
+ return ret;
+ else if (ret == 0)
+ break;
+
+ // Increment the counter by number of bytes read in the child entry.
+ io_buf->DidConsume(ret);
+ }
+
+ UpdateRank(false);
+
+ return io_buf->BytesConsumed();
+}
+
+int MemEntryImpl::InternalWriteSparseData(int64 offset, IOBuffer* buf,
+ int buf_len) {
+ DCHECK(type() == kParentEntry);
+
+ if (!InitSparseInfo())
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (offset < 0 || buf_len < 0)
+ return net::ERR_INVALID_ARGUMENT;
+
+ scoped_refptr<net::DrainableIOBuffer> io_buf(
+ new net::DrainableIOBuffer(buf, buf_len));
+
+ // This loop walks through child entries continuously starting from |offset|
+ // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each
+ // child entry until all |buf_len| bytes are written. The write operation can
+ // start in the middle of an entry.
+ while (io_buf->BytesRemaining()) {
+ MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), true);
+ int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());
+
+ // Find the right amount to write, this evaluates the remaining bytes to
+ // write and remaining capacity of this child entry.
+ int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()),
+ kMaxSparseEntrySize - child_offset);
+
+ // Keep a record of the last byte position (exclusive) in the child.
+ int data_size = child->GetDataSize(kSparseData);
+
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
+ CreateNetLogSparseReadWriteCallback(child->net_log().source(),
+ write_len));
+ }
+
+ // Always writes to the child entry. This operation may overwrite data
+ // previously written.
+ // TODO(hclam): if there is data in the entry and this write is not
+ // continuous we may want to discard this write.
+ int ret = child->WriteData(kSparseData, child_offset, io_buf.get(),
+ write_len, CompletionCallback(), true);
+ if (net_log_.IsLoggingAllEvents()) {
+ net_log_.EndEventWithNetErrorCode(
+ net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret);
+ }
+ if (ret < 0)
+ return ret;
+ else if (ret == 0)
+ break;
+
+ // Keep a record of the first byte position in the child if the write was
+ // not aligned nor continuous. This is to enable witting to the middle
+ // of an entry and still keep track of data off the aligned edge.
+ if (data_size != child_offset)
+ child->child_first_pos_ = child_offset;
+
+ // Adjust the offset in the IO buffer.
+ io_buf->DidConsume(ret);
+ }
+
+ UpdateRank(true);
+
+ return io_buf->BytesConsumed();
+}
+
+int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start) {
+ DCHECK(type() == kParentEntry);
+ DCHECK(start);
+
+ if (!InitSparseInfo())
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
+
+ if (offset < 0 || len < 0 || !start)
+ return net::ERR_INVALID_ARGUMENT;
+
+ MemEntryImpl* current_child = NULL;
+
+ // Find the first child and record the number of empty bytes.
+ int empty = FindNextChild(offset, len, &current_child);
+ if (current_child) {
+ *start = offset + empty;
+ len -= empty;
+
+ // Counts the number of continuous bytes.
+ int continuous = 0;
+
+ // This loop scan for continuous bytes.
+ while (len && current_child) {
+ // Number of bytes available in this child.
+ int data_size = current_child->GetDataSize(kSparseData) -
+ ToChildOffset(*start + continuous);
+ if (data_size > len)
+ data_size = len;
+
+ // We have found more continuous bytes so increment the count. Also
+ // decrement the length we should scan.
+ continuous += data_size;
+ len -= data_size;
+
+ // If the next child is discontinuous, break the loop.
+ if (FindNextChild(*start + continuous, len, &current_child))
+ break;
+ }
+ return continuous;
+ }
+ *start = offset;
+ return 0;
+}
+
+void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) {
+ int entry_size = GetDataSize(index);
+
+ if (entry_size >= offset + buf_len)
+ return; // Not growing the stored data.
+
+ if (static_cast<int>(data_[index].size()) < offset + buf_len)
+ data_[index].resize(offset + buf_len);
+
+ if (offset <= entry_size)
+ return; // There is no "hole" on the stored data.
+
+ // Cleanup the hole not written by the user. The point is to avoid returning
+ // random stuff later on.
+ memset(&(data_[index])[entry_size], 0, offset - entry_size);
+}
+
+void MemEntryImpl::UpdateRank(bool modified) {
+ Time current = Time::Now();
+ last_used_ = current;
+
+ if (modified)
+ last_modified_ = current;
+
+ if (!doomed_)
+ backend_->UpdateRank(this);
+}
+
+bool MemEntryImpl::InitSparseInfo() {
+ DCHECK(type() == kParentEntry);
+
+ if (!children_.get()) {
+ // If we already have some data in sparse stream but we are being
+ // initialized as a sparse entry, we should fail.
+ if (GetDataSize(kSparseData))
+ return false;
+ children_.reset(new EntryMap());
+
+ // The parent entry stores data for the first block, so save this object to
+ // index 0.
+ (*children_)[0] = this;
+ }
+ return true;
+}
+
+bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id,
+ net::NetLog* net_log) {
+ DCHECK(!parent_);
+ DCHECK(!child_id_);
+
+ net_log_ = net::BoundNetLog::Make(net_log,
+ net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
+ net_log_.BeginEvent(
+ net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
+ base::Bind(&NetLogChildEntryCreationCallback, parent, child_id_));
+
+ parent_ = parent;
+ child_id_ = child_id;
+ Time current = Time::Now();
+ last_modified_ = current;
+ last_used_ = current;
+ // Insert this to the backend's ranking list.
+ backend_->InsertIntoRankingList(this);
+ return true;
+}
+
+MemEntryImpl* MemEntryImpl::OpenChild(int64 offset, bool create) {
+ DCHECK(type() == kParentEntry);
+ int index = ToChildIndex(offset);
+ EntryMap::iterator i = children_->find(index);
+ if (i != children_->end()) {
+ return i->second;
+ } else if (create) {
+ MemEntryImpl* child = new MemEntryImpl(backend_);
+ child->InitChildEntry(this, index, net_log_.net_log());
+ (*children_)[index] = child;
+ return child;
+ }
+ return NULL;
+}
+
+int MemEntryImpl::FindNextChild(int64 offset, int len, MemEntryImpl** child) {
+ DCHECK(child);
+ *child = NULL;
+ int scanned_len = 0;
+
+ // This loop tries to find the first existing child.
+ while (scanned_len < len) {
+ // This points to the current offset in the child.
+ int current_child_offset = ToChildOffset(offset + scanned_len);
+ MemEntryImpl* current_child = OpenChild(offset + scanned_len, false);
+ if (current_child) {
+ int child_first_pos = current_child->child_first_pos_;
+
+ // This points to the first byte that we should be reading from, we need
+ // to take care of the filled region and the current offset in the child.
+ int first_pos = std::max(current_child_offset, child_first_pos);
+
+ // If the first byte position we should read from doesn't exceed the
+ // filled region, we have found the first child.
+ if (first_pos < current_child->GetDataSize(kSparseData)) {
+ *child = current_child;
+
+ // We need to advance the scanned length.
+ scanned_len += first_pos - current_child_offset;
+ break;
+ }
+ }
+ scanned_len += kMaxSparseEntrySize - current_child_offset;
+ }
+ return scanned_len;
+}
+
+void MemEntryImpl::DetachChild(int child_id) {
+ children_->erase(child_id);
+}
+
+} // namespace disk_cache