summaryrefslogtreecommitdiff
path: root/chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp')
-rw-r--r--chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp257
1 files changed, 257 insertions, 0 deletions
diff --git a/chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp b/chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp
new file mode 100644
index 00000000000..84042e56899
--- /dev/null
+++ b/chromium/third_party/skia/samplecode/SampleFitCubicToCircle.cpp
@@ -0,0 +1,257 @@
+/*
+ * Copyright 2020 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "samplecode/Sample.h"
+
+#include "include/core/SkCanvas.h"
+#include "include/core/SkFont.h"
+#include "include/core/SkPaint.h"
+#include "include/core/SkPath.h"
+#include <tuple>
+
+// Math constants are not always defined.
+#ifndef M_PI
+#define M_PI 3.14159265358979323846264338327950288
+#endif
+
+#ifndef M_SQRT2
+#define M_SQRT2 1.41421356237309504880168872420969808
+#endif
+
+constexpr static int kCenterX = 300;
+constexpr static int kCenterY = 325;
+constexpr static int kRadius = 250;
+
+// This sample fits a cubic to the arc between two interactive points on a circle. It also finds the
+// T-coordinate of max error, and outputs it and its value in pixels. (It turns out that max error
+// always occurs at T=0.21132486540519.)
+//
+// Press 'E' to iteratively cut the arc in half and report the improvement in max error after each
+// halving. (It turns out that max error improves by exactly 64x on every halving.)
+class SampleFitCubicToCircle : public Sample {
+ SkString name() override { return SkString("FitCubicToCircle"); }
+ void onOnceBeforeDraw() override { this->fitCubic(); }
+ void fitCubic();
+ void onDrawContent(SkCanvas*) override;
+ Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override;
+ bool onClick(Sample::Click*) override;
+ bool onChar(SkUnichar) override;
+
+ // Coordinates of two points on the unit circle. These are the two endpoints of the arc we fit.
+ double fEndptsX[2] = {0, 1};
+ double fEndptsY[2] = {-1, 0};
+
+ // Fitted cubic and info, set by fitCubic().
+ double fControlLength; // Length of (p1 - p0) and/or (p3 - p2) in unit circle space.
+ double fMaxErrorT; // T value where the cubic diverges most from the true arc.
+ std::array<double, 4> fCubicX; // Screen space cubic control points.
+ std::array<double, 4> fCubicY;
+ double fMaxError; // Max error (in pixels) between the cubic and the screen-space arc.
+ double fTheta; // Angle of the arc. This is only used for informational purposes.
+ SkTArray<SkString> fInfoStrings;
+
+ class Click;
+};
+
+// Fits a cubic to an arc on the unit circle with endpoints (x0, y0) and (x1, y1). Using the
+// following 3 constraints, we arrive at the formula used in the method:
+//
+// 1) The endpoints and tangent directions at the endpoints must match the arc.
+// 2) The cubic must be symmetric (i.e., length(p1 - p0) == length(p3 - p2)).
+// 3) The height of the cubic must match the height of the arc.
+//
+// Returns the "control length", or length of (p1 - p0) and/or (p3 - p2).
+static float fit_cubic_to_unit_circle(double x0, double y0, double x1, double y1,
+ std::array<double, 4>* X, std::array<double, 4>* Y) {
+ constexpr static double kM = -4.0/3;
+ constexpr static double kA = 4*M_SQRT2/3;
+ double d = x0*x1 + y0*y1;
+ double c = (std::sqrt(1 + d) * kM + kA) / std::sqrt(1 - d);
+ *X = {x0, x0 - y0*c, x1 + y1*c, x1};
+ *Y = {y0, y0 + x0*c, y1 - x1*c, y1};
+ return c;
+}
+
+static double lerp(double x, double y, double T) {
+ return x + T*(y - x);
+}
+
+// Evaluates the cubic and 1st and 2nd derivatives at T.
+static std::tuple<double, double, double> eval_cubic(double x[], double T) {
+ // Use De Casteljau's algorithm for better accuracy and stability.
+ double ab = lerp(x[0], x[1], T);
+ double bc = lerp(x[1], x[2], T);
+ double cd = lerp(x[2], x[3], T);
+ double abc = lerp(ab, bc, T);
+ double bcd = lerp(bc, cd, T);
+ double abcd = lerp(abc, bcd, T);
+ return {abcd, 3 * (bcd - abc) /*1st derivative.*/, 6 * (cd - 2*bc + ab) /*2nd derivative.*/};
+}
+
+// Uses newton-raphson convergence to find the point where the provided cubic diverges most from the
+// unit circle. i.e., the point where the derivative of error == 0. For error we use:
+//
+// error = x^2 + y^2 - 1
+// error' = 2xx' + 2yy'
+// error'' = 2xx'' + 2yy'' + 2x'^2 + 2y'^2
+//
+double find_max_error_T(double cubicX[4], double cubicY[4]) {
+ constexpr static double kInitialT = .25;
+ double T = kInitialT;
+ for (int i = 0; i < 64; ++i) {
+ auto [x, dx, ddx] = eval_cubic(cubicX, T);
+ auto [y, dy, ddy] = eval_cubic(cubicY, T);
+ double dError = 2*(x*dx + y*dy);
+ double ddError = 2*(x*ddx + y*ddy + dx*dx + dy*dy);
+ T -= dError / ddError;
+ }
+ return T;
+}
+
+void SampleFitCubicToCircle::fitCubic() {
+ fInfoStrings.reset();
+
+ std::array<double, 4> X, Y;
+ // "Control length" is the length of (p1 - p0) and/or (p3 - p2) in unit circle space.
+ fControlLength = fit_cubic_to_unit_circle(fEndptsX[0], fEndptsY[0], fEndptsX[1], fEndptsY[1],
+ &X, &Y);
+ fInfoStrings.push_back().printf("control length=%0.14f", fControlLength);
+
+ fMaxErrorT = find_max_error_T(X.data(), Y.data());
+ fInfoStrings.push_back().printf("max error T=%0.14f", fMaxErrorT);
+
+ for (int i = 0; i < 4; ++i) {
+ fCubicX[i] = X[i] * kRadius + kCenterX;
+ fCubicY[i] = Y[i] * kRadius + kCenterY;
+ }
+ double errX = std::get<0>(eval_cubic(fCubicX.data(), fMaxErrorT)) - kCenterX;
+ double errY = std::get<0>(eval_cubic(fCubicY.data(), fMaxErrorT)) - kCenterY;
+ fMaxError = std::sqrt(errX*errX + errY*errY) - kRadius;
+ fInfoStrings.push_back().printf("max error=%.5gpx", fMaxError);
+
+ fTheta = std::atan2(fEndptsY[1], fEndptsX[1]) - std::atan2(fEndptsY[0], fEndptsX[0]);
+ fTheta = std::abs(fTheta * 180/M_PI);
+ if (fTheta > 180) {
+ fTheta = 360 - fTheta;
+ }
+ fInfoStrings.push_back().printf("(theta=%.2f)", fTheta);
+
+ SkDebugf("\n");
+ for (const SkString& infoString : fInfoStrings) {
+ SkDebugf("%s\n", infoString.c_str());
+ }
+}
+
+void SampleFitCubicToCircle::onDrawContent(SkCanvas* canvas) {
+ canvas->clear(SK_ColorBLACK);
+
+ SkPaint circlePaint;
+ circlePaint.setColor(0x80ffffff);
+ circlePaint.setStyle(SkPaint::kStroke_Style);
+ circlePaint.setStrokeWidth(0);
+ circlePaint.setAntiAlias(true);
+ canvas->drawArc(SkRect::MakeXYWH(kCenterX - kRadius, kCenterY - kRadius, kRadius * 2,
+ kRadius * 2), 0, 360, false, circlePaint);
+
+ SkPaint cubicPaint;
+ cubicPaint.setColor(SK_ColorGREEN);
+ cubicPaint.setStyle(SkPaint::kStroke_Style);
+ cubicPaint.setStrokeWidth(10);
+ cubicPaint.setAntiAlias(true);
+ SkPath cubicPath;
+ cubicPath.moveTo(fCubicX[0], fCubicY[0]);
+ cubicPath.cubicTo(fCubicX[1], fCubicY[1], fCubicX[2], fCubicY[2], fCubicX[3], fCubicY[3]);
+ canvas->drawPath(cubicPath, cubicPaint);
+
+ SkPaint endpointsPaint;
+ endpointsPaint.setColor(SK_ColorBLUE);
+ endpointsPaint.setStrokeWidth(8);
+ endpointsPaint.setAntiAlias(true);
+ SkPoint points[2] = {{(float)fCubicX[0], (float)fCubicY[0]},
+ {(float)fCubicX[3], (float)fCubicY[3]}};
+ canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, points, endpointsPaint);
+
+ SkPaint textPaint;
+ textPaint.setColor(SK_ColorWHITE);
+ constexpr static float kInfoTextSize = 16;
+ SkFont font(nullptr, kInfoTextSize);
+ int infoY = 10 + kInfoTextSize;
+ for (const SkString& infoString : fInfoStrings) {
+ canvas->drawString(infoString.c_str(), 10, infoY, font, textPaint);
+ infoY += kInfoTextSize * 3/2;
+ }
+}
+
+class SampleFitCubicToCircle::Click : public Sample::Click {
+public:
+ Click(int ptIdx) : fPtIdx(ptIdx) {}
+
+ void doClick(SampleFitCubicToCircle* that) {
+ double dx = fCurr.fX - kCenterX;
+ double dy = fCurr.fY - kCenterY;
+ double l = std::sqrt(dx*dx + dy*dy);
+ that->fEndptsX[fPtIdx] = dx/l;
+ that->fEndptsY[fPtIdx] = dy/l;
+ if (that->fEndptsX[0] * that->fEndptsY[1] - that->fEndptsY[0] * that->fEndptsX[1] < 0) {
+ std::swap(that->fEndptsX[0], that->fEndptsX[1]);
+ std::swap(that->fEndptsY[0], that->fEndptsY[1]);
+ fPtIdx = 1 - fPtIdx;
+ }
+ that->fitCubic();
+ }
+
+private:
+ int fPtIdx;
+};
+
+Sample::Click* SampleFitCubicToCircle::onFindClickHandler(SkScalar x, SkScalar y,
+ skui::ModifierKey) {
+ double dx0 = x - fCubicX[0];
+ double dy0 = y - fCubicY[0];
+ double dx3 = x - fCubicX[3];
+ double dy3 = y - fCubicY[3];
+ if (dx0*dx0 + dy0*dy0 < dx3*dx3 + dy3*dy3) {
+ return new Click(0);
+ } else {
+ return new Click(1);
+ }
+}
+
+bool SampleFitCubicToCircle::onClick(Sample::Click* click) {
+ Click* myClick = (Click*)click;
+ myClick->doClick(this);
+ return true;
+}
+
+bool SampleFitCubicToCircle::onChar(SkUnichar unichar) {
+ if (unichar == 'E') {
+ constexpr static double kMaxErrorT = 0.21132486540519; // Always the same.
+ // Split the arc in half until error =~0, and report the improvement after each halving.
+ double lastError = -1;
+ for (double theta = fTheta; lastError != 0; theta /= 2) {
+ double rads = theta * M_PI/180;
+ std::array<double, 4> X, Y;
+ fit_cubic_to_unit_circle(1, 0, std::cos(rads), std::sin(rads), &X, &Y);
+ auto [x, dx, ddx] = eval_cubic(X.data(), kMaxErrorT);
+ auto [y, dy, ddy] = eval_cubic(Y.data(), kMaxErrorT);
+ double error = std::sqrt(x*x + y*y) * kRadius - kRadius;
+ if ((float)error <= 0) {
+ error = 0;
+ }
+ SkDebugf("%6.2f degrees: error= %10.5gpx", theta, error);
+ if (lastError > 0) {
+ SkDebugf(" (%17.14fx improvement)", lastError / error);
+ }
+ SkDebugf("\n");
+ lastError = error;
+ }
+ return true;
+ }
+ return false;
+}
+
+DEF_SAMPLE(return new SampleFitCubicToCircle;)