1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_FLAT_SET_H_
#define BASE_CONTAINERS_FLAT_SET_H_
#include <algorithm>
#include <functional>
#include <utility>
#include <vector>
namespace base {
// Overview:
// This file implements flat_set container. It is an alternative to standard
// sorted containers that stores it's elements in contiguous memory (current
// version uses sorted std::vector).
// Discussion that preceded introduction of this container can be found here:
// https://groups.google.com/a/chromium.org/forum/#!searchin/chromium-dev/vector$20based/chromium-dev/4uQMma9vj9w/HaQ-WvMOAwAJ
//
// Motivation:
// Contiguous memory is very beneficial to iteration and copy speed at the cost
// of worse algorithmic complexity of insertion/erasure operations. They can
// be very fast for set operations and for small number of elements.
//
// Usage guidance:
// Prefer base::flat_set for:
// * Very small sets, something that is an easy fit for cache. Consider
// "very small" to be under a 100 32bit integers.
// * Sets that are built once (using flat_set::flat_set(first, last)). Consider
// collecting all data in a vector and then building flat_set out of it.
// TODO(dyaroshev): improve the interface to better support this pattern
// (crbug.com/682254).
// * Sets where mutating happens in big bulks: use erase(std::remove()) idiom
// for erasing many elements. Insertion is harder - consider set operations
// or building a new vector. Set operations can be slow if one of the sets
// is considerably bigger. Also be aware that beating performance of
// sort + unique (implementation of flat_set's constructor) is hard, clever
// merge of many sets might not win. Generally avoid inserting into flat set
// without benchmarks.
// * Copying and iterating.
// * Set operations (union/intersect etc).
//
// Prefer to build a new flat_set from a std::vector (or similar) instead of
// calling insert() repeatedly, which would have O(size^2) complexity.
//
// TODO(dyaroshev): develop standalone benchmarks to find performance boundaries
// for different types of sets crbug.com/682215.
//
// If you do write a benchmark that significantly depends on using sets please
// share your results at:
// https://groups.google.com/a/chromium.org/forum/#!searchin/chromium-dev/vector$20based/chromium-dev/4uQMma9vj9w/HaQ-WvMOAwAJ
//
// Important usability aspects:
// * flat_set implements std::set interface from C++11 where possible. It
// also has reserve(), capacity() and shrink_to_fit() from std::vector.
// * iteration invalidation rules differ:
// - all cases of std::vector::iterator invalidation also apply.
// - we ask (for now) to assume that move operations invalidate iterators.
// TODO(dyaroshev): Research the possibility of using a small buffer
// optimization crbug.com/682240.
// * Constructor sorts elements in a non-stable manner (unlike std::set). So
// among equivalent (with respect to provided compare) elements passed to
// the constructor it is unspecified with one will end up in the set.
// However insert()/emplace() methods are stable with respect to already
// inserted elements - an element that is already in the set will not be
// replaced.
// * allocator support is not implemented.
// * insert(first, last) and insert(std::initializer_list) are not
// implemented (see Notes section).
//
// Notes:
// Current implementation is based on boost::containers::flat_set,
// eastl::vector_set and folly::sorted_vector. All of these implementations do
// insert(first, last) as insertion one by one (some implementations with hints
// and/or reserve). Boost documentation claims this algorithm to be O(n*log(n))
// but it seems to be a quadratic algorithm. For now we do not implement this
// method.
// TODO(dyaroshev): research an algorithm for range insertion crbug.com/682249.
template <class Key, class Compare = std::less<Key>>
// Meets the requirements of Container, AssociativeContainer,
// ReversibleContainer.
// Requires: Key is Movable, Compare is a StrictWeakOrdering on Key.
class flat_set {
private:
using underlying_type = std::vector<Key>;
public:
// --------------------------------------------------------------------------
// Types.
//
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using pointer = typename underlying_type::pointer;
using const_pointer = typename underlying_type::const_pointer;
using reference = typename underlying_type::reference;
using const_reference = typename underlying_type::const_reference;
using size_type = typename underlying_type::size_type;
using difference_type = typename underlying_type::difference_type;
using iterator = typename underlying_type::iterator;
using const_iterator = typename underlying_type::const_iterator;
using reverse_iterator = typename underlying_type::reverse_iterator;
using const_reverse_iterator =
typename underlying_type::const_reverse_iterator;
// --------------------------------------------------------------------------
// Lifetime.
//
// Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
// and take O(N * log(N)) + O(N) if extra memory is available (N is a range
// length).
//
// Assume that move constructors invalidate iterators and references.
flat_set();
explicit flat_set(const Compare& comp);
template <class InputIterator>
flat_set(InputIterator first,
InputIterator last,
const Compare& comp = Compare());
flat_set(const flat_set&);
flat_set(flat_set&&);
flat_set(std::initializer_list<value_type> ilist,
const Compare& comp = Compare());
~flat_set();
// --------------------------------------------------------------------------
// Assignments.
//
// Assume that move assignment invalidates iterators and references.
flat_set& operator=(const flat_set&);
flat_set& operator=(flat_set&&);
flat_set& operator=(std::initializer_list<value_type> ilist);
// --------------------------------------------------------------------------
// Memory management.
//
// Beware that shrink_to_fit() simply forwards the request to the
// underlying_type and its implementation is free to optimize otherwise and
// leave capacity() to be greater that its size.
//
// reserve() and shrink_to_fit() invalidate iterators and references.
void reserve(size_type new_capacity);
size_type capacity() const;
void shrink_to_fit();
// --------------------------------------------------------------------------
// Size management.
//
// clear() leaves the capacity() of the flat_set unchanged.
void clear();
size_type size() const;
size_type max_size() const;
bool empty() const;
// --------------------------------------------------------------------------
// Iterators.
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;
// --------------------------------------------------------------------------
// Insert operations.
//
// Assume that every operation invalidates iterators and references.
// Insertion of one element can take O(size). See the Notes section in the
// class comments on why we do not currently implement range insertion.
// Capacity of flat_set grows in an implementation-defined manner.
//
// NOTE: Prefer to build a new flat_set from a std::vector (or similar)
// instead of calling insert() repeatedly.
std::pair<iterator, bool> insert(const value_type& val);
std::pair<iterator, bool> insert(value_type&& val);
iterator insert(const_iterator position_hint, const value_type& x);
iterator insert(const_iterator position_hint, value_type&& x);
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position_hint, Args&&... args);
// --------------------------------------------------------------------------
// Erase operations.
//
// Assume that every operation invalidates iterators and references.
//
// erase(position), erase(first, last) can take O(size).
// erase(key) may take O(size) + O(log(size)).
//
// Prefer the erase(std::remove(), end()) idiom for deleting multiple
// elements.
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
size_type erase(const key_type& key);
// --------------------------------------------------------------------------
// Comparators.
key_compare key_comp() const;
value_compare value_comp() const;
// --------------------------------------------------------------------------
// Search operations.
//
// Search operations have O(log(size)) complexity.
size_type count(const key_type& key) const;
iterator find(const key_type& key);
const_iterator find(const key_type& key) const;
std::pair<iterator, iterator> equal_range(const key_type& ket);
std::pair<const_iterator, const_iterator> equal_range(
const key_type& key) const;
iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;
iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;
// --------------------------------------------------------------------------
// General operations.
//
// Assume that swap invalidates iterators and references.
//
// As with std::set, equality and ordering operations for the whole flat_set
// are equivalent to using equal() and lexicographical_compare() on the key
// types, rather than using element-wise key_comp() as e.g. lower_bound()
// does. Implementation note: currently we use operator==() and operator<() on
// std::vector, because they have the same contract we need, so we use them
// directly for brevity and in case it is more optimal than calling equal()
// and lexicograhpical_compare(). If the underlying container type is changed,
// this code may need to be modified.
void swap(flat_set& other);
friend bool operator==(const flat_set& lhs, const flat_set& rhs) {
return lhs.impl_.body_ == rhs.impl_.body_;
}
friend bool operator!=(const flat_set& lhs, const flat_set& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const flat_set& lhs, const flat_set& rhs) {
return lhs.impl_.body_ < rhs.impl_.body_;
}
friend bool operator>(const flat_set& lhs, const flat_set& rhs) {
return rhs < lhs;
}
friend bool operator>=(const flat_set& lhs, const flat_set& rhs) {
return !(lhs < rhs);
}
friend bool operator<=(const flat_set& lhs, const flat_set& rhs) {
return !(lhs > rhs);
}
friend void swap(flat_set& lhs, flat_set& rhs) { lhs.swap(rhs); }
private:
const flat_set& as_const() { return *this; }
iterator const_cast_it(const_iterator c_it) {
auto distance = std::distance(cbegin(), c_it);
return std::next(begin(), distance);
}
void sort_and_unique() {
// std::set sorts elements preserving stability because it doesn't have any
// performance wins in not doing that. We do, so we use an unstable sort.
std::sort(begin(), end(), value_comp());
erase(std::unique(begin(), end(),
[this](const value_type& lhs, const value_type& rhs) {
// lhs is already <= rhs due to sort, therefore
// !(lhs < rhs) <=> lhs == rhs.
return !value_comp()(lhs, rhs);
}),
end());
}
// To support comparators that may not be possible to default-construct, we
// have to store an instance of Compare. Using this to store all internal
// state of flat_set and using private inheritance to store compare lets us
// take advantage of an empty base class optimization to avoid extra space in
// the common case when Compare has no state.
struct Impl : private Compare {
Impl() = default;
template <class Cmp, class... Body>
explicit Impl(Cmp&& compare_arg, Body&&... underlying_type_args)
: Compare(std::forward<Cmp>(compare_arg)),
body_(std::forward<Body>(underlying_type_args)...) {}
Compare compare() const { return *this; }
underlying_type body_;
} impl_;
};
// ----------------------------------------------------------------------------
// Lifetime.
template <class Key, class Compare>
flat_set<Key, Compare>::flat_set() = default;
template <class Key, class Compare>
flat_set<Key, Compare>::flat_set(const Compare& comp) : impl_(comp) {}
template <class Key, class Compare>
template <class InputIterator>
flat_set<Key, Compare>::flat_set(InputIterator first,
InputIterator last,
const Compare& comp)
: impl_(comp, first, last) {
sort_and_unique();
}
template <class Key, class Compare>
flat_set<Key, Compare>::flat_set(const flat_set&) = default;
template <class Key, class Compare>
flat_set<Key, Compare>::flat_set(flat_set&&) = default;
template <class Key, class Compare>
flat_set<Key, Compare>::flat_set(std::initializer_list<value_type> ilist,
const Compare& comp)
: flat_set(std::begin(ilist), std::end(ilist), comp) {}
template <class Key, class Compare>
flat_set<Key, Compare>::~flat_set() = default;
// ----------------------------------------------------------------------------
// Assignments.
template <class Key, class Compare>
auto flat_set<Key, Compare>::operator=(const flat_set&) -> flat_set& = default;
template <class Key, class Compare>
auto flat_set<Key, Compare>::operator=(flat_set &&) -> flat_set& = default;
template <class Key, class Compare>
auto flat_set<Key, Compare>::operator=(std::initializer_list<value_type> ilist)
-> flat_set& {
impl_.body_ = ilist;
sort_and_unique();
return *this;
}
// ----------------------------------------------------------------------------
// Memory management.
template <class Key, class Compare>
void flat_set<Key, Compare>::reserve(size_type new_capacity) {
impl_.body_.reserve(new_capacity);
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::capacity() const -> size_type {
return impl_.body_.capacity();
}
template <class Key, class Compare>
void flat_set<Key, Compare>::shrink_to_fit() {
impl_.body_.shrink_to_fit();
}
// ----------------------------------------------------------------------------
// Size management.
template <class Key, class Compare>
void flat_set<Key, Compare>::clear() {
impl_.body_.clear();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::size() const -> size_type {
return impl_.body_.size();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::max_size() const -> size_type {
return impl_.body_.max_size();
}
template <class Key, class Compare>
bool flat_set<Key, Compare>::empty() const {
return impl_.body_.empty();
}
// ----------------------------------------------------------------------------
// Iterators.
template <class Key, class Compare>
auto flat_set<Key, Compare>::begin() -> iterator {
return impl_.body_.begin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::begin() const -> const_iterator {
return impl_.body_.begin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::cbegin() const -> const_iterator {
return impl_.body_.cbegin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::end() -> iterator {
return impl_.body_.end();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::end() const -> const_iterator {
return impl_.body_.end();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::cend() const -> const_iterator {
return impl_.body_.cend();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::rbegin() -> reverse_iterator {
return impl_.body_.rbegin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::rbegin() const -> const_reverse_iterator {
return impl_.body_.rbegin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::crbegin() const -> const_reverse_iterator {
return impl_.body_.crbegin();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::rend() -> reverse_iterator {
return impl_.body_.rend();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::rend() const -> const_reverse_iterator {
return impl_.body_.rend();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::crend() const -> const_reverse_iterator {
return impl_.body_.crend();
}
// ----------------------------------------------------------------------------
// Insert operations.
//
// Currently we use position_hint the same way as eastl or boost:
// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
//
// We duplicate code between copy and move version so that we can avoid
// creating a temporary value.
template <class Key, class Compare>
auto flat_set<Key, Compare>::insert(const value_type& val)
-> std::pair<iterator, bool> {
auto position = lower_bound(val);
if (position == end() || value_comp()(val, *position))
return {impl_.body_.insert(position, val), true};
return {position, false};
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::insert(value_type&& val)
-> std::pair<iterator, bool> {
auto position = lower_bound(val);
if (position == end() || value_comp()(val, *position))
return {impl_.body_.insert(position, std::move(val)), true};
return {position, false};
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::insert(const_iterator position_hint,
const value_type& val) -> iterator {
if (position_hint == end() || value_comp()(val, *position_hint)) {
if (position_hint == begin() || value_comp()(*(position_hint - 1), val))
// We have to cast away const because of crbug.com/677044.
return impl_.body_.insert(const_cast_it(position_hint), val);
}
return insert(val).first;
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::insert(const_iterator position_hint,
value_type&& val) -> iterator {
if (position_hint == end() || value_comp()(val, *position_hint)) {
if (position_hint == begin() || value_comp()(*(position_hint - 1), val))
// We have to cast away const because of crbug.com/677044.
return impl_.body_.insert(const_cast_it(position_hint), std::move(val));
}
return insert(std::move(val)).first;
}
template <class Key, class Compare>
template <class... Args>
auto flat_set<Key, Compare>::emplace(Args&&... args)
-> std::pair<iterator, bool> {
return insert(value_type(std::forward<Args>(args)...));
}
template <class Key, class Compare>
template <class... Args>
auto flat_set<Key, Compare>::emplace_hint(const_iterator position_hint,
Args&&... args) -> iterator {
return insert(position_hint, value_type(std::forward<Args>(args)...));
}
// ----------------------------------------------------------------------------
// Erase operations.
template <class Key, class Compare>
auto flat_set<Key, Compare>::erase(const_iterator position) -> iterator {
// We have to cast away const because of crbug.com/677044.
return impl_.body_.erase(const_cast_it(position));
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::erase(const key_type& val) -> size_type {
auto eq_range = equal_range(val);
auto res = std::distance(eq_range.first, eq_range.second);
// We have to cast away const because of crbug.com/677044.
erase(const_cast_it(eq_range.first), const_cast_it(eq_range.second));
return res;
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::erase(const_iterator first, const_iterator last)
-> iterator {
// We have to cast away const because of crbug.com/677044.
return impl_.body_.erase(const_cast_it(first), const_cast_it(last));
}
// ----------------------------------------------------------------------------
// Comparators.
template <class Key, class Compare>
auto flat_set<Key, Compare>::key_comp() const -> key_compare {
return impl_.compare();
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::value_comp() const -> value_compare {
return impl_.compare();
}
// ----------------------------------------------------------------------------
// Search operations.
template <class Key, class Compare>
auto flat_set<Key, Compare>::count(const key_type& key) const -> size_type {
auto eq_range = equal_range(key);
return std::distance(eq_range.first, eq_range.second);
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::find(const key_type& key) -> iterator {
return const_cast_it(as_const().find(key));
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::find(const key_type& key) const -> const_iterator {
auto eq_range = equal_range(key);
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::equal_range(const key_type& key)
-> std::pair<iterator, iterator> {
auto res = as_const().equal_range(key);
return {const_cast_it(res.first), const_cast_it(res.second)};
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::equal_range(const key_type& key) const
-> std::pair<const_iterator, const_iterator> {
auto lower = lower_bound(key);
if (lower == end() || key_comp()(key, *lower))
return {lower, lower};
return {lower, std::next(lower)};
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::lower_bound(const key_type& key) -> iterator {
return const_cast_it(as_const().lower_bound(key));
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::lower_bound(const key_type& key) const
-> const_iterator {
return std::lower_bound(begin(), end(), key, key_comp());
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::upper_bound(const key_type& key) -> iterator {
return const_cast_it(as_const().upper_bound(key));
}
template <class Key, class Compare>
auto flat_set<Key, Compare>::upper_bound(const key_type& key) const
-> const_iterator {
return std::upper_bound(begin(), end(), key, key_comp());
}
// ----------------------------------------------------------------------------
// General operations.
template <class Key, class Compare>
void flat_set<Key, Compare>::swap(flat_set& other) {
std::swap(impl_, other.impl_);
}
} // namespace base
#endif // BASE_CONTAINERS_FLAT_SET_H_
|