summaryrefslogtreecommitdiff
path: root/chromium/base/fuchsia/async_dispatcher.cc
blob: 1dba86c75db03cc4ea5e30e3f47157f04319120f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/fuchsia/async_dispatcher.h"

#include <lib/async/task.h>
#include <lib/async/wait.h>
#include <zircon/syscalls.h>

#include "base/fuchsia/fuchsia_logging.h"

namespace base {

namespace {

template <typename T>
uintptr_t key_from_ptr(T* ptr) {
  return reinterpret_cast<uintptr_t>(ptr);
};

}  // namespace

class AsyncDispatcher::WaitState : public LinkNode<WaitState> {
 public:
  explicit WaitState(AsyncDispatcher* async_dispatcher) {
    async_dispatcher->wait_list_.Append(this);
  }
  ~WaitState() { RemoveFromList(); }

  async_wait_t* wait() {
    // WaitState objects are allocated in-place in the |state| field of an
    // enclosing async_wait_t, so async_wait_t address can be calculated by
    // subtracting state offset in async_wait_t from |this|.
    static_assert(std::is_standard_layout<async_wait_t>(),
                  "async_wait_t is expected to have standard layout.");
    return reinterpret_cast<async_wait_t*>(reinterpret_cast<uint8_t*>(this) -
                                           offsetof(async_wait_t, state));
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(WaitState);
};

class AsyncDispatcher::TaskState : public LinkNode<TaskState> {
 public:
  explicit TaskState(LinkNode<TaskState>* previous_task) {
    InsertAfter(previous_task);
  }
  ~TaskState() { RemoveFromList(); }

  async_task_t* task() {
    // TaskState objects are allocated in-place in the |state| field of an
    // enclosing async_task_t, so async_task_t address can be calculated by
    // subtracting state offset in async_task_t from |this|.
    static_assert(std::is_standard_layout<async_task_t>(),
                  "async_task_t is expected to have standard layout.");
    return reinterpret_cast<async_task_t*>(reinterpret_cast<uint8_t*>(this) -
                                           offsetof(async_task_t, state));
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(TaskState);
};

AsyncDispatcher::AsyncDispatcher() {
  zx_status_t status = zx_port_create(0u, port_.receive());
  ZX_DCHECK(status == ZX_OK, status);

  status = zx_timer_create(0u, ZX_CLOCK_MONOTONIC, timer_.receive());
  ZX_DCHECK(status == ZX_OK, status);
  status =
      zx_object_wait_async(timer_.get(), port_.get(), key_from_ptr(&timer_),
                           ZX_TIMER_SIGNALED, ZX_WAIT_ASYNC_REPEATING);
  ZX_DCHECK(status == ZX_OK, status);

  status = zx_event_create(0, stop_event_.receive());
  ZX_DCHECK(status == ZX_OK, status);
  status = zx_object_wait_async(stop_event_.get(), port_.get(),
                                key_from_ptr(&stop_event_), ZX_EVENT_SIGNALED,
                                ZX_WAIT_ASYNC_REPEATING);
  ZX_DCHECK(status == ZX_OK, status);

  static const async_ops_t async_ops_t_impl = {
      NowOp,        BeginWaitOp,   CancelWaitOp,       PostTaskOp,
      CancelTaskOp, QueuePacketOp, SetGuestBellTrapOp,
  };
  ops = &async_ops_t_impl;

  DCHECK(!async_get_default());
  async_set_default(this);
}

AsyncDispatcher::~AsyncDispatcher() {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
  DCHECK_EQ(async_get_default(), this);

  // Some waits and tasks may be canceled while the dispatcher is being
  // destroyed, so pop-from-head until none remain.

  while (!wait_list_.empty()) {
    WaitState* state = wait_list_.head()->value();
    async_wait_t* wait = state->wait();
    state->~WaitState();
    wait->handler(this, wait, ZX_ERR_CANCELED, nullptr);
  }

  while (!task_list_.empty()) {
    TaskState* state = task_list_.head()->value();
    async_task_t* task = state->task();
    state->~TaskState();
    task->handler(this, task, ZX_ERR_CANCELED);
  }

  async_set_default(nullptr);
}

zx_status_t AsyncDispatcher::DispatchOrWaitUntil(zx_time_t deadline) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);

  zx_port_packet_t packet = {};
  zx_status_t status = zx_port_wait(port_.get(), deadline, &packet, 0);
  if (status != ZX_OK)
    return status;

  if (packet.type == ZX_PKT_TYPE_SIGNAL_ONE ||
      packet.type == ZX_PKT_TYPE_SIGNAL_REP) {
    if (packet.key == key_from_ptr(&timer_)) {
      // |timer_| has expired.
      DCHECK(packet.signal.observed & ZX_TIMER_SIGNALED);
      DispatchTasks();
      return ZX_OK;
    } else if (packet.key == key_from_ptr(&stop_event_)) {
      // Stop() was called.
      DCHECK(packet.signal.observed & ZX_EVENT_SIGNALED);
      status = zx_object_signal(stop_event_.get(), ZX_EVENT_SIGNALED, 0);
      ZX_DCHECK(status == ZX_OK, status);
      return ZX_ERR_CANCELED;
    } else {
      DCHECK_EQ(packet.type, ZX_PKT_TYPE_SIGNAL_ONE);
      async_wait_t* wait = reinterpret_cast<async_wait_t*>(packet.key);

      // Clean the state before invoking the handler: it may destroy the wait.
      WaitState* state = reinterpret_cast<WaitState*>(&wait->state);
      state->~WaitState();

      wait->handler(this, wait, packet.status, &packet.signal);

      return ZX_OK;
    }
  }

  NOTREACHED();
  return ZX_ERR_INTERNAL;
}

void AsyncDispatcher::Stop() {
  // Can be called on any thread.
  zx_status_t status =
      zx_object_signal(stop_event_.get(), 0, ZX_EVENT_SIGNALED);
  ZX_DCHECK(status == ZX_OK, status);
}

zx_time_t AsyncDispatcher::NowOp(async_t* async) {
  DCHECK(async);
  return zx_clock_get(ZX_CLOCK_MONOTONIC);
}

zx_status_t AsyncDispatcher::BeginWaitOp(async_t* async, async_wait_t* wait) {
  return static_cast<AsyncDispatcher*>(async)->BeginWait(wait);
}

zx_status_t AsyncDispatcher::CancelWaitOp(async_t* async, async_wait_t* wait) {
  return static_cast<AsyncDispatcher*>(async)->CancelWait(wait);
}

zx_status_t AsyncDispatcher::PostTaskOp(async_t* async, async_task_t* task) {
  return static_cast<AsyncDispatcher*>(async)->PostTask(task);
}

zx_status_t AsyncDispatcher::CancelTaskOp(async_t* async, async_task_t* task) {
  return static_cast<AsyncDispatcher*>(async)->CancelTask(task);
}

zx_status_t AsyncDispatcher::QueuePacketOp(async_t* async,
                                           async_receiver_t* receiver,
                                           const zx_packet_user_t* data) {
  return ZX_ERR_NOT_SUPPORTED;
}

zx_status_t AsyncDispatcher::SetGuestBellTrapOp(async_t* async,
                                                async_guest_bell_trap_t* trap,
                                                zx_handle_t guest,
                                                zx_vaddr_t addr,
                                                size_t length) {
  return ZX_ERR_NOT_SUPPORTED;
}

zx_status_t AsyncDispatcher::BeginWait(async_wait_t* wait) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);

  static_assert(sizeof(AsyncDispatcher::WaitState) <= sizeof(async_state_t),
                "WaitState is too big");
  WaitState* state = new (&wait->state) WaitState(this);
  zx_status_t status = zx_object_wait_async(wait->object, port_.get(),
                                            reinterpret_cast<uintptr_t>(wait),
                                            wait->trigger, ZX_WAIT_ASYNC_ONCE);

  if (status != ZX_OK)
    state->~WaitState();

  return status;
}

zx_status_t AsyncDispatcher::CancelWait(async_wait_t* wait) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);

  zx_status_t status =
      zx_port_cancel(port_.get(), wait->object, (uintptr_t)wait);
  if (status == ZX_OK) {
    WaitState* state = reinterpret_cast<WaitState*>(&(wait->state));
    state->~WaitState();
  }

  return status;
}

zx_status_t AsyncDispatcher::PostTask(async_task_t* task) {
  // Can be called on any thread.
  AutoLock lock(lock_);

  // Find correct position for the new task in |task_list_| to keep the list
  // sorted by deadline. This implementation has O(N) complexity, but it's
  // acceptable - async task are not expected to be used frequently.
  // TODO(sergeyu): Consider using a more efficient data structure if tasks
  // performance becomes important.
  LinkNode<TaskState>* node;
  for (node = task_list_.head(); node != task_list_.end();
       node = node->previous()) {
    if (task->deadline >= node->value()->task()->deadline)
      break;
  }

  static_assert(sizeof(AsyncDispatcher::TaskState) <= sizeof(async_state_t),
                "TaskState is too big");

  // Will insert new task after |node|.
  new (&task->state) TaskState(node);

  if (reinterpret_cast<TaskState*>(&task->state) == task_list_.head()) {
    // Task inserted at head. Earliest deadline changed.
    RestartTimerLocked();
  }

  return ZX_OK;
}

zx_status_t AsyncDispatcher::CancelTask(async_task_t* task) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);

  AutoLock lock(lock_);

  if (!task->state.reserved[0])
    return ZX_ERR_NOT_FOUND;

  TaskState* state = reinterpret_cast<TaskState*>(&task->state);
  state->~TaskState();

  return ZX_OK;
}

void AsyncDispatcher::DispatchTasks() {
  // Snapshot now value to set implicit bound for the tasks that will run before
  // DispatchTasks() returns. This also helps to avoid calling zx_clock_get()
  // more than necessary.
  zx_time_t now = zx_clock_get(ZX_CLOCK_MONOTONIC);

  while (true) {
    async_task_t* task;
    {
      AutoLock lock(lock_);
      if (task_list_.empty())
        break;

      TaskState* task_state = task_list_.head()->value();
      task = task_state->task();

      if (task->deadline > now) {
        RestartTimerLocked();
        break;
      }

      task_state->~TaskState();

      // ~TaskState() is expected to reset the state to 0. The destructor
      // removes the task from the |task_list_| and LinkNode::RemoveFromList()
      // sets both its fields to nullptr, which is equivalent to resetting the
      // state to 0.
      DCHECK_EQ(task->state.reserved[0], 0u);
    }

    // The handler is responsible for freeing the |task| or it may reuse it.
    task->handler(this, task, ZX_OK);
  }
}

void AsyncDispatcher::RestartTimerLocked() {
  lock_.AssertAcquired();

  if (task_list_.empty())
    return;
  zx_time_t deadline = task_list_.head()->value()->task()->deadline;
  zx_status_t status = zx_timer_set(timer_.get(), deadline, 0);
  ZX_DCHECK(status == ZX_OK, status);
}

}  // namespace base