1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/animation/keyframe_model.h"
#include <cmath>
#include "base/memory/ptr_util.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
#include "cc/animation/animation_curve.h"
#include "cc/trees/target_property.h"
namespace {
// This should match the RunState enum.
static const char* const s_runStateNames[] = {"WAITING_FOR_TARGET_AVAILABILITY",
"WAITING_FOR_DELETION",
"STARTING",
"RUNNING",
"PAUSED",
"FINISHED",
"ABORTED",
"ABORTED_BUT_NEEDS_COMPLETION"};
static_assert(static_cast<int>(cc::KeyframeModel::LAST_RUN_STATE) + 1 ==
base::size(s_runStateNames),
"RunStateEnumSize should equal the number of elements in "
"s_runStateNames");
static const char* const s_curveTypeNames[] = {
"COLOR", "FLOAT", "TRANSFORM", "FILTER", "SCROLL_OFFSET", "SIZE"};
static_assert(static_cast<int>(cc::AnimationCurve::LAST_CURVE_TYPE) + 1 ==
base::size(s_curveTypeNames),
"CurveType enum should equal the number of elements in "
"s_runStateNames");
} // namespace
namespace cc {
std::string KeyframeModel::ToString(RunState state) {
return s_runStateNames[state];
}
std::unique_ptr<KeyframeModel> KeyframeModel::Create(
std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int group_id,
int target_property_id,
const std::string& custom_property_name) {
return base::WrapUnique(new KeyframeModel(std::move(curve), keyframe_model_id,
group_id, target_property_id,
custom_property_name));
}
std::unique_ptr<KeyframeModel> KeyframeModel::CreateImplInstance(
RunState initial_run_state) const {
// Should never clone a model that is the controlling instance as it ends up
// creating multiple controlling instances.
DCHECK(!is_controlling_instance_);
std::unique_ptr<KeyframeModel> to_return(
new KeyframeModel(curve_->Clone(), id_, group_, target_property_id_,
custom_property_name_));
to_return->element_id_ = element_id_;
to_return->run_state_ = initial_run_state;
to_return->iterations_ = iterations_;
to_return->iteration_start_ = iteration_start_;
to_return->start_time_ = start_time_;
to_return->pause_time_ = pause_time_;
to_return->total_paused_duration_ = total_paused_duration_;
to_return->time_offset_ = time_offset_;
to_return->direction_ = direction_;
to_return->playback_rate_ = playback_rate_;
to_return->fill_mode_ = fill_mode_;
DCHECK(!to_return->is_controlling_instance_);
to_return->is_controlling_instance_ = true;
return to_return;
}
KeyframeModel::KeyframeModel(std::unique_ptr<AnimationCurve> curve,
int keyframe_model_id,
int group_id,
int target_property_id,
const std::string& custom_property_name)
: curve_(std::move(curve)),
id_(keyframe_model_id),
group_(group_id),
target_property_id_(target_property_id),
run_state_(WAITING_FOR_TARGET_AVAILABILITY),
iterations_(1),
iteration_start_(0),
direction_(Direction::NORMAL),
playback_rate_(1),
fill_mode_(FillMode::BOTH),
needs_synchronized_start_time_(false),
received_finished_event_(false),
is_controlling_instance_(false),
is_impl_only_(false),
affects_active_elements_(true),
affects_pending_elements_(true),
custom_property_name_(custom_property_name) {
DCHECK(custom_property_name_.empty() ||
target_property_id_ == TargetProperty::CSS_CUSTOM_PROPERTY);
}
KeyframeModel::~KeyframeModel() {
if (run_state_ == RUNNING || run_state_ == PAUSED)
SetRunState(ABORTED, base::TimeTicks());
}
void KeyframeModel::SetRunState(RunState run_state,
base::TimeTicks monotonic_time) {
char name_buffer[256];
base::snprintf(name_buffer, sizeof(name_buffer), "%s-%d-%d",
s_curveTypeNames[curve_->Type()], target_property_id_, group_);
bool is_waiting_to_start =
run_state_ == WAITING_FOR_TARGET_AVAILABILITY || run_state_ == STARTING;
if (is_controlling_instance_ && is_waiting_to_start && run_state == RUNNING) {
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1("cc", "KeyframeModel",
TRACE_ID_LOCAL(this), "Name",
TRACE_STR_COPY(name_buffer));
}
bool was_finished = is_finished();
const char* old_run_state_name = s_runStateNames[run_state_];
if (run_state == RUNNING && run_state_ == PAUSED)
total_paused_duration_ += (monotonic_time - pause_time_);
else if (run_state == PAUSED)
pause_time_ = monotonic_time;
run_state_ = run_state;
const char* new_run_state_name = s_runStateNames[run_state];
if (is_controlling_instance_ && !was_finished && is_finished()) {
TRACE_EVENT_NESTABLE_ASYNC_END0("cc", "KeyframeModel",
TRACE_ID_LOCAL(this));
}
char state_buffer[256];
base::snprintf(state_buffer, sizeof(state_buffer), "%s->%s",
old_run_state_name, new_run_state_name);
TRACE_EVENT_INSTANT2(
"cc", "ElementAnimations::SetRunState", TRACE_EVENT_SCOPE_THREAD, "Name",
TRACE_STR_COPY(name_buffer), "State", TRACE_STR_COPY(state_buffer));
}
void KeyframeModel::Pause(base::TimeDelta pause_offset) {
// Convert pause offset which is in local time to monotonic time.
// TODO(crbug.com/912407): This should be scaled by playbackrate.
base::TimeTicks monotonic_time =
pause_offset + start_time_ + total_paused_duration_;
SetRunState(PAUSED, monotonic_time);
}
bool KeyframeModel::IsFinishedAt(base::TimeTicks monotonic_time) const {
if (is_finished())
return true;
if (needs_synchronized_start_time_)
return false;
if (playback_rate_ == 0)
return false;
return run_state_ == RUNNING && std::isfinite(iterations_) &&
(curve_->Duration() * (iterations_ / std::abs(playback_rate_))) <=
(ConvertMonotonicTimeToLocalTime(monotonic_time) + time_offset_);
}
KeyframeModel::Phase KeyframeModel::CalculatePhaseForTesting(
base::TimeDelta local_time) const {
return CalculatePhase(local_time);
}
KeyframeModel::Phase KeyframeModel::CalculatePhase(
base::TimeDelta local_time) const {
base::TimeDelta opposite_time_offset = time_offset_ == base::TimeDelta::Min()
? base::TimeDelta::Max()
: -time_offset_;
base::TimeDelta before_active_boundary_time =
std::max(opposite_time_offset, base::TimeDelta());
if (local_time < before_active_boundary_time ||
(local_time == before_active_boundary_time && playback_rate_ < 0)) {
return KeyframeModel::Phase::BEFORE;
}
// Scaling the duration is against spec but needed to comply with the cc
// implementation. By spec (in blink) the playback rate is an Animation level
// concept but in cc it's per KeyframeModel. We grab the active time
// calculated here and later scale it with the playback rate in order to get a
// proper progress. Therefore we need to un-scale it here. This can be fixed
// once we scale the local time by playback rate. See
// https://crbug.com/912407.
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
// TODO(crbug.com/909794): By spec end time = max(start delay + duration +
// end delay, 0). The logic should be updated once "end delay" is supported.
base::TimeDelta active_after_boundary_time =
std::isfinite(iterations_)
? std::max(opposite_time_offset + active_duration, base::TimeDelta())
: base::TimeDelta::Max();
if (local_time > active_after_boundary_time ||
(local_time == active_after_boundary_time && playback_rate_ > 0)) {
return KeyframeModel::Phase::AFTER;
}
return KeyframeModel::Phase::ACTIVE;
}
base::Optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
base::TimeTicks monotonic_time) const {
base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
KeyframeModel::Phase phase = CalculatePhase(local_time);
DCHECK(playback_rate_);
switch (phase) {
case KeyframeModel::Phase::BEFORE:
if (fill_mode_ == FillMode::BACKWARDS || fill_mode_ == FillMode::BOTH)
return std::max(local_time + time_offset_, base::TimeDelta());
return base::nullopt;
case KeyframeModel::Phase::ACTIVE:
return local_time + time_offset_;
case KeyframeModel::Phase::AFTER:
if (fill_mode_ == FillMode::FORWARDS || fill_mode_ == FillMode::BOTH) {
DCHECK_NE(iterations_, std::numeric_limits<double>::infinity());
base::TimeDelta active_duration =
curve_->Duration() * iterations_ / std::abs(playback_rate_);
return std::max(std::min(local_time + time_offset_, active_duration),
base::TimeDelta());
}
return base::nullopt;
default:
NOTREACHED();
return base::nullopt;
}
}
bool KeyframeModel::InEffect(base::TimeTicks monotonic_time) const {
return CalculateActiveTime(monotonic_time).has_value();
}
// TODO(crbug.com/912407): Local time should be scaled by playback rate by spec.
base::TimeDelta KeyframeModel::ConvertMonotonicTimeToLocalTime(
base::TimeTicks monotonic_time) const {
// When waiting on receiving a start time, then our global clock is 'stuck' at
// the initial state.
if ((run_state_ == STARTING && !has_set_start_time()) ||
needs_synchronized_start_time())
return base::TimeDelta();
// If we're paused, time is 'stuck' at the pause time.
base::TimeTicks time = (run_state_ == PAUSED) ? pause_time_ : monotonic_time;
return time - start_time_ - total_paused_duration_;
}
base::TimeDelta KeyframeModel::TrimTimeToCurrentIteration(
base::TimeTicks monotonic_time) const {
DCHECK(playback_rate_);
DCHECK_GE(iteration_start_, 0);
DCHECK(InEffect(monotonic_time));
base::TimeDelta active_time = CalculateActiveTime(monotonic_time).value();
base::TimeDelta start_offset = curve_->Duration() * iteration_start_;
// Return start offset if we are before the start of the keyframe model
if (active_time < base::TimeDelta())
return start_offset;
// Always return zero if we have no iterations.
if (!iterations_)
return base::TimeDelta();
// Don't attempt to trim if we have no duration.
if (curve_->Duration() <= base::TimeDelta())
return base::TimeDelta();
base::TimeDelta repeated_duration = curve_->Duration() * iterations_;
base::TimeDelta active_duration =
repeated_duration / std::abs(playback_rate_);
// Calculate the scaled active time
base::TimeDelta scaled_active_time;
if (playback_rate_ < 0) {
DCHECK(std::isfinite(iterations_));
scaled_active_time =
((active_time - active_duration) * playback_rate_) + start_offset;
} else {
scaled_active_time = (active_time * playback_rate_) + start_offset;
}
// Calculate the iteration time
base::TimeDelta iteration_time;
if (scaled_active_time - start_offset == repeated_duration &&
fmod(iterations_ + iteration_start_, 1) == 0)
iteration_time = curve_->Duration();
else
iteration_time = scaled_active_time % curve_->Duration();
// Calculate the current iteration
int iteration;
if (scaled_active_time <= base::TimeDelta())
iteration = 0;
else if (iteration_time == curve_->Duration())
iteration = ceil(iteration_start_ + iterations_ - 1);
else
iteration = static_cast<int>(scaled_active_time / curve_->Duration());
// Check if we are running the keyframe model in reverse direction for the
// current iteration
bool reverse =
(direction_ == Direction::REVERSE) ||
(direction_ == Direction::ALTERNATE_NORMAL && iteration % 2 == 1) ||
(direction_ == Direction::ALTERNATE_REVERSE && iteration % 2 == 0);
// If we are running the keyframe model in reverse direction, reverse the
// result
if (reverse)
iteration_time = curve_->Duration() - iteration_time;
return iteration_time;
}
void KeyframeModel::PushPropertiesTo(KeyframeModel* other) const {
other->element_id_ = element_id_;
if (run_state_ == KeyframeModel::PAUSED ||
other->run_state_ == KeyframeModel::PAUSED) {
other->run_state_ = run_state_;
other->pause_time_ = pause_time_;
other->total_paused_duration_ = total_paused_duration_;
}
}
std::string KeyframeModel::ToString() const {
return base::StringPrintf(
"KeyframeModel{id=%d, group=%d, target_property_id=%d, "
"run_state=%s}",
id_, group_, target_property_id_,
KeyframeModel::ToString(run_state_).c_str());
}
void KeyframeModel::SetIsImplOnly() {
is_impl_only_ = true;
// Impl only animations have a single instance which by definition is the
// controlling instance.
is_controlling_instance_ = true;
}
} // namespace cc
|