1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_RTREE_H_
#define CC_BASE_RTREE_H_
#include <stddef.h>
#include <stdint.h>
#include <deque>
#include <vector>
#include "cc/base/cc_export.h"
#include "ui/gfx/geometry/rect.h"
namespace cc {
// The following description and most of the implementation is borrowed from
// Skia's SkRTree implementation.
//
// An R-Tree implementation. In short, it is a balanced n-ary tree containing a
// hierarchy of bounding rectangles.
//
// It only supports bulk-loading, i.e. creation from a batch of bounding
// rectangles. This performs a bottom-up bulk load using the STR
// (sort-tile-recursive) algorithm.
//
// Things to do: Experiment with other bulk-load algorithms (in particular the
// Hilbert pack variant, which groups rects by position on the Hilbert curve, is
// probably worth a look). There also exist top-down bulk load variants
// (VAMSplit, TopDownGreedy, etc).
//
// For more details see:
//
// Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990).
// "The R*-tree: an efficient and robust access method for points and
// rectangles"
class CC_EXPORT RTree {
public:
RTree();
~RTree();
template <typename Container, typename Functor>
void Build(const Container& items, const Functor& bounds_getter) {
DCHECK_EQ(0u, num_data_elements_);
std::vector<Branch> branches;
branches.reserve(items.size());
for (size_t i = 0; i < items.size(); i++) {
const gfx::Rect& bounds = bounds_getter(items[i]);
if (bounds.IsEmpty())
continue;
branches.push_back(Branch());
Branch& branch = branches.back();
branch.bounds = bounds;
branch.index = i;
}
num_data_elements_ = branches.size();
if (num_data_elements_ == 1u) {
Node* node = AllocateNodeAtLevel(0);
node->num_children = 1;
node->children[0] = branches[0];
root_.subtree = node;
root_.bounds = branches[0].bounds;
} else if (num_data_elements_ > 1u) {
root_ = BuildRecursive(&branches, 0);
}
}
template <typename Container>
void Build(const Container& items) {
Build(items, [](const gfx::Rect& bounds) { return bounds; });
}
void Search(const gfx::Rect& query, std::vector<size_t>* results) const;
gfx::Rect GetBounds() const;
private:
// These values were empirically determined to produce reasonable performance
// in most cases.
enum { MIN_CHILDREN = 6, MAX_CHILDREN = 11 };
struct Node;
struct Branch {
// When the node level is 0, then the node is a leaf and the branch has a
// valid index pointing to an element in the vector that was used to build
// this rtree. When the level is not 0, it's an internal node and it has a
// valid subtree pointer.
union {
Node* subtree;
size_t index;
};
gfx::Rect bounds;
};
struct Node {
uint16_t num_children;
uint16_t level;
Branch children[MAX_CHILDREN];
};
void SearchRecursive(Node* root,
const gfx::Rect& query,
std::vector<size_t>* results) const;
// Consumes the input array.
Branch BuildRecursive(std::vector<Branch>* branches, int level);
Node* AllocateNodeAtLevel(int level);
// This is the count of data elements (rather than total nodes in the tree)
size_t num_data_elements_;
Branch root_;
std::deque<Node> nodes_;
};
} // namespace cc
#endif // CC_BASE_RTREE_H_
|