summaryrefslogtreecommitdiff
path: root/chromium/cc/base/rtree.h
blob: 31250b2e8103c27e57fdcec93353069a6b8789e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef CC_BASE_RTREE_H_
#define CC_BASE_RTREE_H_

#include <stddef.h>
#include <stdint.h>

#include <vector>

#include "cc/base/cc_export.h"
#include "ui/gfx/geometry/rect.h"

namespace cc {

// The following description and most of the implementation is borrowed from
// Skia's SkRTree implementation.
//
// An R-Tree implementation. In short, it is a balanced n-ary tree containing a
// hierarchy of bounding rectangles.
//
// It only supports bulk-loading, i.e. creation from a batch of bounding
// rectangles. This performs a bottom-up bulk load using the STR
// (sort-tile-recursive) algorithm.
//
// Things to do: Experiment with other bulk-load algorithms (in particular the
// Hilbert pack variant, which groups rects by position on the Hilbert curve, is
// probably worth a look). There also exist top-down bulk load variants
// (VAMSplit, TopDownGreedy, etc).
//
// For more details see:
//
//  Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990).
//  "The R*-tree: an efficient and robust access method for points and
//  rectangles"
class CC_EXPORT RTree {
 public:
  RTree();
  ~RTree();

  template <typename Container, typename Functor>
  void Build(const Container& items, const Functor& bounds_getter) {
    DCHECK_EQ(0u, num_data_elements_);

    std::vector<Branch> branches;
    branches.reserve(items.size());

    for (size_t i = 0; i < items.size(); i++) {
      const gfx::Rect& bounds = bounds_getter(items[i]);
      if (bounds.IsEmpty())
        continue;

      branches.push_back(Branch());
      Branch& branch = branches.back();
      branch.bounds = bounds;
      branch.index = i;
    }

    num_data_elements_ = branches.size();
    if (num_data_elements_ == 1u) {
      nodes_.reserve(1);
      Node* node = AllocateNodeAtLevel(0);
      node->num_children = 1;
      node->children[0] = branches[0];
      root_.subtree = node;
      root_.bounds = branches[0].bounds;
    } else if (num_data_elements_ > 1u) {
      // Determine a reasonable upper bound on the number of nodes to prevent
      // reallocations. This is basically (n**d - 1) / (n - 1), which is the
      // number of nodes in a complete tree with n branches at each node. In the
      // code n = |branch_count|, d = |depth|. However, we normally would have
      // kMaxChildren branch factor, but that can be broken if some children
      // don't have enough nodes. That can happen for at most kMinChildren nodes
      // (since otherwise, we'd create a new node).
      size_t branch_count = kMaxChildren;
      double depth = log(branches.size()) / log(branch_count);
      size_t node_count =
          static_cast<size_t>((std::pow(branch_count, depth) - 1) /
                              (branch_count - 1)) +
          kMinChildren;
      nodes_.reserve(node_count);

      root_ = BuildRecursive(&branches, 0);
    }
    // We should've wasted at most kMinChildren nodes.
    DCHECK_LE(nodes_.capacity() - nodes_.size(),
              static_cast<size_t>(kMinChildren));
  }

  template <typename Container>
  void Build(const Container& items) {
    Build(items, [](const gfx::Rect& bounds) { return bounds; });
  }

  void Search(const gfx::Rect& query, std::vector<size_t>* results) const;

  gfx::Rect GetBounds() const;

 private:
  // These values were empirically determined to produce reasonable performance
  // in most cases.
  enum { kMinChildren = 6 };
  enum { kMaxChildren = 11 };

  struct Node;
  struct Branch {
    // When the node level is 0, then the node is a leaf and the branch has a
    // valid index pointing to an element in the vector that was used to build
    // this rtree. When the level is not 0, it's an internal node and it has a
    // valid subtree pointer.
    union {
      Node* subtree;
      size_t index;
    };
    gfx::Rect bounds;
  };

  struct Node {
    uint16_t num_children;
    uint16_t level;
    Branch children[kMaxChildren];
  };

  void SearchRecursive(Node* root,
                       const gfx::Rect& query,
                       std::vector<size_t>* results) const;

  // Consumes the input array.
  Branch BuildRecursive(std::vector<Branch>* branches, int level);
  Node* AllocateNodeAtLevel(int level);

  // This is the count of data elements (rather than total nodes in the tree)
  size_t num_data_elements_;
  Branch root_;
  std::vector<Node> nodes_;
};

}  // namespace cc

#endif  // CC_BASE_RTREE_H_