summaryrefslogtreecommitdiff
path: root/chromium/cc/resources/picture_layer_tiling.cc
blob: 12bfb18b441bf63015115dbcdc208df5e46a28b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/picture_layer_tiling.h"

#include <algorithm>
#include <cmath>
#include <limits>

#include "base/debug/trace_event.h"
#include "cc/base/math_util.h"
#include "ui/gfx/point_conversions.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/safe_integer_conversions.h"
#include "ui/gfx/size_conversions.h"

namespace cc {

scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
    float contents_scale,
    gfx::Size layer_bounds,
    PictureLayerTilingClient* client) {
  return make_scoped_ptr(new PictureLayerTiling(contents_scale,
                                                layer_bounds,
                                                client));
}

PictureLayerTiling::PictureLayerTiling(float contents_scale,
                                       gfx::Size layer_bounds,
                                       PictureLayerTilingClient* client)
    : contents_scale_(contents_scale),
      layer_bounds_(layer_bounds),
      resolution_(NON_IDEAL_RESOLUTION),
      client_(client),
      tiling_data_(gfx::Size(), gfx::Size(), true),
      last_impl_frame_time_in_seconds_(0.0) {
  gfx::Size content_bounds =
      gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale));
  gfx::Size tile_size = client_->CalculateTileSize(content_bounds);

  DCHECK(!gfx::ToFlooredSize(
      gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) <<
      "Tiling created with scale too small as contents become empty." <<
      " Layer bounds: " << layer_bounds.ToString() <<
      " Contents scale: " << contents_scale;

  tiling_data_.SetTotalSize(content_bounds);
  tiling_data_.SetMaxTextureSize(tile_size);
}

PictureLayerTiling::~PictureLayerTiling() {
}

void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
  client_ = client;
}

gfx::Rect PictureLayerTiling::ContentRect() const {
  return gfx::Rect(tiling_data_.total_size());
}

gfx::SizeF PictureLayerTiling::ContentSizeF() const {
  return gfx::ScaleSize(layer_bounds_, contents_scale_);
}

Tile* PictureLayerTiling::TileAt(int i, int j) const {
  TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j));
  if (iter == tiles_.end())
    return NULL;
  return iter->second.get();
}

void PictureLayerTiling::CreateTile(int i,
                                    int j,
                                    const PictureLayerTiling* twin_tiling) {
  TileMapKey key(i, j);
  DCHECK(tiles_.find(key) == tiles_.end());

  gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j);
  gfx::Rect tile_rect = paint_rect;
  tile_rect.set_size(tiling_data_.max_texture_size());

  // Check our twin for a valid tile.
  if (twin_tiling &&
      tiling_data_.max_texture_size() ==
      twin_tiling->tiling_data_.max_texture_size()) {
    if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) {
      gfx::Rect rect =
          gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_);
      if (!client_->GetInvalidation()->Intersects(rect)) {
        tiles_[key] = candidate_tile;
        return;
      }
    }
  }

  // Create a new tile because our twin didn't have a valid one.
  scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
  if (tile.get())
    tiles_[key] = tile;
}

Region PictureLayerTiling::OpaqueRegionInContentRect(
    gfx::Rect content_rect) const {
  Region opaque_region;
  // TODO(enne): implement me
  return opaque_region;
}

void PictureLayerTiling::SetCanUseLCDText(bool can_use_lcd_text) {
  for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it)
    it->second->set_can_use_lcd_text(can_use_lcd_text);
}

void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
  const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
  for (TilingData::Iterator iter(&tiling_data_, live_tiles_rect_); iter;
       ++iter) {
    TileMapKey key = iter.index();
    TileMap::iterator find = tiles_.find(key);
    if (find != tiles_.end())
      continue;
    CreateTile(key.first, key.second, twin_tiling);
  }
}

void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) {
  if (layer_bounds_ == layer_bounds)
    return;

  DCHECK(!layer_bounds.IsEmpty());

  gfx::Size old_layer_bounds = layer_bounds_;
  layer_bounds_ = layer_bounds;
  gfx::Size old_content_bounds = tiling_data_.total_size();
  gfx::Size content_bounds =
      gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));

  gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
  if (tile_size != tiling_data_.max_texture_size()) {
    tiling_data_.SetTotalSize(content_bounds);
    tiling_data_.SetMaxTextureSize(tile_size);
    Reset();
    return;
  }

  // Any tiles outside our new bounds are invalid and should be dropped.
  gfx::Rect bounded_live_tiles_rect(live_tiles_rect_);
  bounded_live_tiles_rect.Intersect(gfx::Rect(content_bounds));
  SetLiveTilesRect(bounded_live_tiles_rect);
  tiling_data_.SetTotalSize(content_bounds);

  // Create tiles for newly exposed areas.
  Region layer_region((gfx::Rect(layer_bounds_)));
  layer_region.Subtract(gfx::Rect(old_layer_bounds));
  Invalidate(layer_region);
}

void PictureLayerTiling::Invalidate(const Region& layer_region) {
  std::vector<TileMapKey> new_tile_keys;
  for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
    gfx::Rect layer_rect = iter.rect();
    gfx::Rect content_rect =
        gfx::ScaleToEnclosingRect(layer_rect, contents_scale_);
    content_rect.Intersect(live_tiles_rect_);
    if (content_rect.IsEmpty())
      continue;
    for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) {
      TileMapKey key(iter.index());
      TileMap::iterator find = tiles_.find(key);
      if (find == tiles_.end())
        continue;
      tiles_.erase(find);
      new_tile_keys.push_back(key);
    }
  }

  const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
  for (size_t i = 0; i < new_tile_keys.size(); ++i)
    CreateTile(new_tile_keys[i].first, new_tile_keys[i].second, twin_tiling);
}

PictureLayerTiling::CoverageIterator::CoverageIterator()
    : tiling_(NULL),
      current_tile_(NULL),
      tile_i_(0),
      tile_j_(0),
      left_(0),
      top_(0),
      right_(-1),
      bottom_(-1) {
}

PictureLayerTiling::CoverageIterator::CoverageIterator(
    const PictureLayerTiling* tiling,
    float dest_scale,
    gfx::Rect dest_rect)
    : tiling_(tiling),
      dest_rect_(dest_rect),
      dest_to_content_scale_(0),
      current_tile_(NULL),
      tile_i_(0),
      tile_j_(0),
      left_(0),
      top_(0),
      right_(-1),
      bottom_(-1) {
  DCHECK(tiling_);
  if (dest_rect_.IsEmpty())
    return;

  dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
  // This is the maximum size that the dest rect can be, given the content size.
  gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize(
      tiling_->ContentRect().size(),
      1 / dest_to_content_scale_,
      1 / dest_to_content_scale_));

  gfx::Rect content_rect =
      gfx::ScaleToEnclosingRect(dest_rect_,
                                dest_to_content_scale_,
                                dest_to_content_scale_);
  // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
  // check for non-intersection first.
  content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size()));
  if (content_rect.IsEmpty())
    return;

  left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
  top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
  right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
      content_rect.right() - 1);
  bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
      content_rect.bottom() - 1);

  tile_i_ = left_ - 1;
  tile_j_ = top_;
  ++(*this);
}

PictureLayerTiling::CoverageIterator::~CoverageIterator() {
}

PictureLayerTiling::CoverageIterator&
PictureLayerTiling::CoverageIterator::operator++() {
  if (tile_j_ > bottom_)
    return *this;

  bool first_time = tile_i_ < left_;
  bool new_row = false;
  tile_i_++;
  if (tile_i_ > right_) {
    tile_i_ = left_;
    tile_j_++;
    new_row = true;
    if (tile_j_ > bottom_) {
      current_tile_ = NULL;
      return *this;
    }
  }

  current_tile_ = tiling_->TileAt(tile_i_, tile_j_);

  // Calculate the current geometry rect.  Due to floating point rounding
  // and ToEnclosingRect, tiles might overlap in destination space on the
  // edges.
  gfx::Rect last_geometry_rect = current_geometry_rect_;

  gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);

  current_geometry_rect_ =
      gfx::ScaleToEnclosingRect(content_rect,
                                1 / dest_to_content_scale_,
                                1 / dest_to_content_scale_);

  current_geometry_rect_.Intersect(dest_rect_);

  if (first_time)
    return *this;

  // Iteration happens left->right, top->bottom.  Running off the bottom-right
  // edge is handled by the intersection above with dest_rect_.  Here we make
  // sure that the new current geometry rect doesn't overlap with the last.
  int min_left;
  int min_top;
  if (new_row) {
    min_left = dest_rect_.x();
    min_top = last_geometry_rect.bottom();
  } else {
    min_left = last_geometry_rect.right();
    min_top = last_geometry_rect.y();
  }

  int inset_left = std::max(0, min_left - current_geometry_rect_.x());
  int inset_top = std::max(0, min_top - current_geometry_rect_.y());
  current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);

  if (!new_row) {
    DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
    DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
    DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
  }

  return *this;
}

gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
  return current_geometry_rect_;
}

gfx::Rect
PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const {
  gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
  rect.set_size(tiling_->tiling_data_.max_texture_size());
  return rect;
}

gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
  gfx::PointF tex_origin =
      tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();

  // Convert from dest space => content space => texture space.
  gfx::RectF texture_rect(current_geometry_rect_);
  texture_rect.Scale(dest_to_content_scale_,
                     dest_to_content_scale_);
  texture_rect.Offset(-tex_origin.OffsetFromOrigin());
  texture_rect.Intersect(tiling_->ContentRect());

  return texture_rect;
}

gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const {
  return tiling_->tiling_data_.max_texture_size();
}

void PictureLayerTiling::Reset() {
  live_tiles_rect_ = gfx::Rect();
  tiles_.clear();
}

namespace {

bool NearlyOne(SkMScalar lhs) {
  return std::abs(lhs-1.0) < std::numeric_limits<float>::epsilon();
}

bool NearlyZero(SkMScalar lhs) {
  return std::abs(lhs) < std::numeric_limits<float>::epsilon();
}

bool ApproximatelyTranslation(const SkMatrix44& matrix) {
  return
      NearlyOne(matrix.get(0, 0)) &&
      NearlyZero(matrix.get(1, 0)) &&
      NearlyZero(matrix.get(2, 0)) &&
      matrix.get(3, 0) == 0 &&
      NearlyZero(matrix.get(0, 1)) &&
      NearlyOne(matrix.get(1, 1)) &&
      NearlyZero(matrix.get(2, 1)) &&
      matrix.get(3, 1) == 0 &&
      NearlyZero(matrix.get(0, 2)) &&
      NearlyZero(matrix.get(1, 2)) &&
      NearlyOne(matrix.get(2, 2)) &&
      matrix.get(3, 2) == 0 &&
      matrix.get(3, 3) == 1;
}

}  // namespace

void PictureLayerTiling::UpdateTilePriorities(
    WhichTree tree,
    gfx::Size device_viewport,
    gfx::Rect viewport_in_layer_space,
    gfx::Rect visible_layer_rect,
    gfx::Size last_layer_bounds,
    gfx::Size current_layer_bounds,
    float last_layer_contents_scale,
    float current_layer_contents_scale,
    const gfx::Transform& last_screen_transform,
    const gfx::Transform& current_screen_transform,
    double current_frame_time_in_seconds,
    size_t max_tiles_for_interest_area) {
  if (!NeedsUpdateForFrameAtTime(current_frame_time_in_seconds)) {
    // This should never be zero for the purposes of has_ever_been_updated().
    DCHECK_NE(current_frame_time_in_seconds, 0.0);
    return;
  }
  if (ContentRect().IsEmpty()) {
    last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
    return;
  }

  gfx::Rect viewport_in_content_space =
      gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_);
  gfx::Rect visible_content_rect =
      gfx::ScaleToEnclosingRect(visible_layer_rect, contents_scale_);

  gfx::Size tile_size = tiling_data_.max_texture_size();
  int64 interest_rect_area =
      max_tiles_for_interest_area * tile_size.width() * tile_size.height();

  gfx::Rect starting_rect = visible_content_rect.IsEmpty()
                            ? viewport_in_content_space
                            : visible_content_rect;
  gfx::Rect interest_rect = ExpandRectEquallyToAreaBoundedBy(
      starting_rect,
      interest_rect_area,
      ContentRect());
  DCHECK(interest_rect.IsEmpty() ||
         ContentRect().Contains(interest_rect));

  SetLiveTilesRect(interest_rect);

  double time_delta = 0;
  if (last_impl_frame_time_in_seconds_ != 0.0 &&
      last_layer_bounds == current_layer_bounds) {
    time_delta =
        current_frame_time_in_seconds - last_impl_frame_time_in_seconds_;
  }

  gfx::Rect view_rect(device_viewport);
  float current_scale = current_layer_contents_scale / contents_scale_;
  float last_scale = last_layer_contents_scale / contents_scale_;

  bool store_screen_space_quads_on_tiles;
  TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
                                     &store_screen_space_quads_on_tiles);

  // Fast path tile priority calculation when both transforms are translations.
  if (ApproximatelyTranslation(last_screen_transform.matrix()) &&
      ApproximatelyTranslation(current_screen_transform.matrix())) {
    gfx::Vector2dF current_offset(
        current_screen_transform.matrix().get(0, 3),
        current_screen_transform.matrix().get(1, 3));
    gfx::Vector2dF last_offset(
        last_screen_transform.matrix().get(0, 3),
        last_screen_transform.matrix().get(1, 3));

    for (TilingData::Iterator iter(&tiling_data_, interest_rect);
         iter; ++iter) {
      TileMap::iterator find = tiles_.find(iter.index());
      if (find == tiles_.end())
        continue;
      Tile* tile = find->second.get();

      gfx::Rect tile_bounds =
          tiling_data_.TileBounds(iter.index_x(), iter.index_y());
      gfx::RectF current_screen_rect = gfx::ScaleRect(
          tile_bounds,
          current_scale,
          current_scale) + current_offset;
      gfx::RectF last_screen_rect = gfx::ScaleRect(
          tile_bounds,
          last_scale,
          last_scale) + last_offset;

      float distance_to_visible_in_pixels =
          TilePriority::manhattanDistance(current_screen_rect, view_rect);

      float time_to_visible_in_seconds =
          TilePriority::TimeForBoundsToIntersect(
              last_screen_rect, current_screen_rect, time_delta, view_rect);
      TilePriority priority(
          resolution_,
          time_to_visible_in_seconds,
          distance_to_visible_in_pixels);
      if (store_screen_space_quads_on_tiles)
        priority.set_current_screen_quad(gfx::QuadF(current_screen_rect));
      tile->SetPriority(tree, priority);
    }
  } else if (!last_screen_transform.HasPerspective() &&
             !current_screen_transform.HasPerspective()) {
    // Secondary fast path that can be applied for any affine transforms.

    // Initialize the necessary geometry in screen space, so that we can
    // iterate over tiles in screen space without needing a costly transform
    // mapping for each tile.

    // Apply screen space transform to the local origin point (0, 0); only the
    // translation component is needed and can be initialized directly.
    gfx::Point current_screen_space_origin(
        current_screen_transform.matrix().get(0, 3),
        current_screen_transform.matrix().get(1, 3));

    gfx::Point last_screen_space_origin(
        last_screen_transform.matrix().get(0, 3),
        last_screen_transform.matrix().get(1, 3));

    float current_tile_width = tiling_data_.TileSizeX(0) * current_scale;
    float last_tile_width = tiling_data_.TileSizeX(0) * last_scale;
    float current_tile_height = tiling_data_.TileSizeY(0) * current_scale;
    float last_tile_height = tiling_data_.TileSizeY(0) * last_scale;

    // Apply screen space transform to local basis vectors (tile_width, 0) and
    // (0, tile_height); the math simplifies and can be initialized directly.
    gfx::Vector2dF current_horizontal(
        current_screen_transform.matrix().get(0, 0) * current_tile_width,
        current_screen_transform.matrix().get(1, 0) * current_tile_width);
    gfx::Vector2dF current_vertical(
        current_screen_transform.matrix().get(0, 1) * current_tile_height,
        current_screen_transform.matrix().get(1, 1) * current_tile_height);

    gfx::Vector2dF last_horizontal(
        last_screen_transform.matrix().get(0, 0) * last_tile_width,
        last_screen_transform.matrix().get(1, 0) * last_tile_width);
    gfx::Vector2dF last_vertical(
        last_screen_transform.matrix().get(0, 1) * last_tile_height,
        last_screen_transform.matrix().get(1, 1) * last_tile_height);

    for (TilingData::Iterator iter(&tiling_data_, interest_rect);
         iter; ++iter) {
      TileMap::iterator find = tiles_.find(iter.index());
      if (find == tiles_.end())
        continue;

      Tile* tile = find->second.get();

      int i = iter.index_x();
      int j = iter.index_y();
      gfx::PointF current_tile_origin = current_screen_space_origin +
              ScaleVector2d(current_horizontal, i) +
              ScaleVector2d(current_vertical, j);
      gfx::PointF last_tile_origin = last_screen_space_origin +
              ScaleVector2d(last_horizontal, i) +
              ScaleVector2d(last_vertical, j);

      gfx::RectF current_screen_rect = gfx::QuadF(
          current_tile_origin,
          current_tile_origin + current_horizontal,
          current_tile_origin + current_horizontal + current_vertical,
          current_tile_origin + current_vertical).BoundingBox();

      gfx::RectF last_screen_rect = gfx::QuadF(
          last_tile_origin,
          last_tile_origin + last_horizontal,
          last_tile_origin + last_horizontal + last_vertical,
          last_tile_origin + last_vertical).BoundingBox();

      float distance_to_visible_in_pixels =
          TilePriority::manhattanDistance(current_screen_rect, view_rect);

      float time_to_visible_in_seconds =
          TilePriority::TimeForBoundsToIntersect(
              last_screen_rect, current_screen_rect, time_delta, view_rect);
      TilePriority priority(
          resolution_,
          time_to_visible_in_seconds,
          distance_to_visible_in_pixels);

      if (store_screen_space_quads_on_tiles) {
        // This overhead is only triggered when logging event tracing data.
        gfx::Rect tile_bounds =
            tiling_data_.TileBounds(iter.index_x(), iter.index_y());
        gfx::RectF current_layer_content_rect = gfx::ScaleRect(
            tile_bounds,
            current_scale,
            current_scale);
        bool clipped;
        priority.set_current_screen_quad(
            MathUtil::MapQuad(current_screen_transform,
                              gfx::QuadF(current_layer_content_rect),
                              &clipped));
      }
      tile->SetPriority(tree, priority);
    }
  } else {
    for (TilingData::Iterator iter(&tiling_data_, interest_rect);
         iter; ++iter) {
      TileMap::iterator find = tiles_.find(iter.index());
      if (find == tiles_.end())
        continue;
      Tile* tile = find->second.get();

      gfx::Rect tile_bounds =
          tiling_data_.TileBounds(iter.index_x(), iter.index_y());
      gfx::RectF current_layer_content_rect = gfx::ScaleRect(
          tile_bounds,
          current_scale,
          current_scale);
      gfx::RectF current_screen_rect = MathUtil::MapClippedRect(
          current_screen_transform, current_layer_content_rect);
      gfx::RectF last_layer_content_rect = gfx::ScaleRect(
          tile_bounds,
          last_scale,
          last_scale);
      gfx::RectF last_screen_rect  = MathUtil::MapClippedRect(
          last_screen_transform, last_layer_content_rect);

      float distance_to_visible_in_pixels =
          TilePriority::manhattanDistance(current_screen_rect, view_rect);

      float time_to_visible_in_seconds =
          TilePriority::TimeForBoundsToIntersect(
              last_screen_rect, current_screen_rect, time_delta, view_rect);

      TilePriority priority(
          resolution_,
          time_to_visible_in_seconds,
          distance_to_visible_in_pixels);
      if (store_screen_space_quads_on_tiles) {
        bool clipped;
        priority.set_current_screen_quad(
            MathUtil::MapQuad(current_screen_transform,
                              gfx::QuadF(current_layer_content_rect),
                              &clipped));
      }
      tile->SetPriority(tree, priority);
    }
  }

  last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
}

void PictureLayerTiling::SetLiveTilesRect(
    gfx::Rect new_live_tiles_rect) {
  DCHECK(new_live_tiles_rect.IsEmpty() ||
         ContentRect().Contains(new_live_tiles_rect));
  if (live_tiles_rect_ == new_live_tiles_rect)
    return;

  // Iterate to delete all tiles outside of our new live_tiles rect.
  for (TilingData::DifferenceIterator iter(&tiling_data_,
                                           live_tiles_rect_,
                                           new_live_tiles_rect);
       iter;
       ++iter) {
    TileMapKey key(iter.index());
    TileMap::iterator found = tiles_.find(key);
    // If the tile was outside of the recorded region, it won't exist even
    // though it was in the live rect.
    if (found != tiles_.end())
      tiles_.erase(found);
  }

  const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);

  // Iterate to allocate new tiles for all regions with newly exposed area.
  for (TilingData::DifferenceIterator iter(&tiling_data_,
                                           new_live_tiles_rect,
                                           live_tiles_rect_);
       iter;
       ++iter) {
    TileMapKey key(iter.index());
    CreateTile(key.first, key.second, twin_tiling);
  }

  live_tiles_rect_ = new_live_tiles_rect;
}

void PictureLayerTiling::DidBecomeActive() {
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE));
    it->second->SetPriority(PENDING_TREE, TilePriority());

    // Tile holds a ref onto a picture pile. If the tile never gets invalidated
    // and recreated, then that picture pile ref could exist indefinitely.  To
    // prevent this, ask the client to update the pile to its own ref.  This
    // will cause PicturePileImpls and their clones to get deleted once the
    // corresponding PictureLayerImpl and any in flight raster jobs go out of
    // scope.
    client_->UpdatePile(it->second.get());
  }
}

void PictureLayerTiling::UpdateTilesToCurrentPile() {
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    client_->UpdatePile(it->second.get());
  }
}

scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("num_tiles", tiles_.size());
  state->SetDouble("content_scale", contents_scale_);
  state->Set("content_bounds",
             MathUtil::AsValue(ContentRect().size()).release());
  return state.PassAs<base::Value>();
}

size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
  size_t amount = 0;
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    const Tile* tile = it->second.get();
    amount += tile->GPUMemoryUsageInBytes();
  }
  return amount;
}

namespace {

// This struct represents an event at which the expending rect intersects
// one of its boundaries.  4 intersection events will occur during expansion.
struct EdgeEvent {
  enum { BOTTOM, TOP, LEFT, RIGHT } edge;
  int* num_edges;
  int distance;
};

// Compute the delta to expand from edges to cover target_area.
int ComputeExpansionDelta(int num_x_edges, int num_y_edges,
                          int width, int height,
                          int64 target_area) {
  // Compute coefficients for the quadratic equation:
  //   a*x^2 + b*x + c = 0
  int a = num_y_edges * num_x_edges;
  int b = num_y_edges * width + num_x_edges * height;
  int64 c = static_cast<int64>(width) * height - target_area;

  // Compute the delta for our edges using the quadratic equation.
  return a == 0 ? -c / b :
     (-b + static_cast<int>(
         std::sqrt(static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a);
}

}  // namespace

gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
    gfx::Rect starting_rect,
    int64 target_area,
    gfx::Rect bounding_rect) {
  if (starting_rect.IsEmpty())
    return starting_rect;

  DCHECK(!bounding_rect.IsEmpty());
  DCHECK_GT(target_area, 0);

  // Expand the starting rect to cover target_area, if it is smaller than it.
  int delta = ComputeExpansionDelta(
      2, 2, starting_rect.width(), starting_rect.height(), target_area);
  gfx::Rect expanded_starting_rect = starting_rect;
  if (delta > 0)
    expanded_starting_rect.Inset(-delta, -delta);

  gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect);
  if (rect.IsEmpty()) {
    // The starting_rect and bounding_rect are far away.
    return rect;
  }
  if (delta >= 0 && rect == expanded_starting_rect) {
    // The starting rect already covers the entire bounding_rect and isn't too
    // large for the target_area.
    return rect;
  }

  // Continue to expand/shrink rect to let it cover target_area.

  // These values will be updated by the loop and uses as the output.
  int origin_x = rect.x();
  int origin_y = rect.y();
  int width = rect.width();
  int height = rect.height();

  // In the beginning we will consider 2 edges in each dimension.
  int num_y_edges = 2;
  int num_x_edges = 2;

  // Create an event list.
  EdgeEvent events[] = {
    { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() },
    { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() },
    { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() },
    { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() }
  };

  // Sort the events by distance (closest first).
  if (events[0].distance > events[1].distance) std::swap(events[0], events[1]);
  if (events[2].distance > events[3].distance) std::swap(events[2], events[3]);
  if (events[0].distance > events[2].distance) std::swap(events[0], events[2]);
  if (events[1].distance > events[3].distance) std::swap(events[1], events[3]);
  if (events[1].distance > events[2].distance) std::swap(events[1], events[2]);

  for (int event_index = 0; event_index < 4; event_index++) {
    const EdgeEvent& event = events[event_index];

    int delta = ComputeExpansionDelta(
        num_x_edges, num_y_edges, width, height, target_area);

    // Clamp delta to our event distance.
    if (delta > event.distance)
      delta = event.distance;

    // Adjust the edge count for this kind of edge.
    --*event.num_edges;

    // Apply the delta to the edges and edge events.
    for (int i = event_index; i < 4; i++) {
      switch (events[i].edge) {
        case EdgeEvent::BOTTOM:
            origin_y -= delta;
            height += delta;
            break;
        case EdgeEvent::TOP:
            height += delta;
            break;
        case EdgeEvent::LEFT:
            origin_x -= delta;
            width += delta;
            break;
        case EdgeEvent::RIGHT:
            width += delta;
            break;
      }
      events[i].distance -= delta;
    }

    // If our delta is less then our event distance, we're done.
    if (delta < event.distance)
      break;
  }

  return gfx::Rect(origin_x, origin_y, width, height);
}

}  // namespace cc